Abstract

We propose an efficient algorithm for calculating photorealistic three-dimensional (3D) computer-generated hologram with Fourier domain segmentation. The segmentation of the spatial frequency processes the depth information from multiple parallel projections, recombining the wave fields of different viewing directions in the Fourier domain. Segmented angular spectrum with layer based processing is introduced to calculate the partitioned elements, which effectively extends the limited region of conventional angular spectrum. The algorithm can provide accurate depth cues and is compatible with computer graphics rendering techniques to provide quality view-dependent properties. Experiments demonstrate the proposed method can reconstruct photorealistic 3D images with accurate depth information.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Computer-generated hologram with occlusion effect using layer-based processing

Hao Zhang, Liangcai Cao, and Guofan Jin
Appl. Opt. 56(13) F138-F143 (2017)

Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Opt. Express 23(4) 3901-3913 (2015)

Layered holographic stereogram based on inverse Fresnel diffraction

Hao Zhang, Yan Zhao, Liangcai Cao, and Guofan Jin
Appl. Opt. 55(3) A154-A159 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Benton and V. M. Bove, Holographic imaging (Wiley, 2008).
  2. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Three-dimensional display technologies in wave and ray optics: a review (Invited Paper),” Chin. Opt. Lett. 12(6), 060002 (2014).
    [Crossref]
  3. M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [Crossref]
  4. H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51, 075801–075801–075801–075805 (2012).
    [Crossref]
  5. K. Matsushima, “Computer-generated holograms for three-dimensional surface objects with shade and texture,” Appl. Opt. 44(22), 4607–4614 (2005).
    [Crossref] [PubMed]
  6. K. Matsushima and S. Nakahara, “Extremely high-definition full-parallax computer-generated hologram created by the polygon-based method,” Appl. Opt. 48(34), H54–H63 (2009).
    [Crossref] [PubMed]
  7. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holograms from three dimensional meshes using an analytic light transport model,” Appl. Opt. 47(10), 1567–1574 (2008).
    [Crossref] [PubMed]
  8. H. Kim, J. Hahn, and B. Lee, “Mathematical modeling of triangle-mesh-modeled three-dimensional surface objects for digital holography,” Appl. Opt. 47(19), D117–D127 (2008).
    [Crossref] [PubMed]
  9. J.-H. Park, S.-B. Kim, H.-J. Yeom, H.-J. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and S.-B. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
    [Crossref] [PubMed]
  10. Y.-P. Zhang, F. Wang, T.-C. Poon, S. Fan, and W. Xu, “Fast generation of full analytical polygon-based computer-generated holograms,” Opt. Express 26(15), 19206–19224 (2018).
    [Crossref] [PubMed]
  11. N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
    [Crossref] [PubMed]
  12. Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
    [Crossref] [PubMed]
  13. H. Zhang, L. Cao, and G. Jin, “Computer-generated hologram with occlusion effect using layer-based processing,” Appl. Opt. 56(13), F138–F143 (2017).
    [Crossref] [PubMed]
  14. T. Yatagai, “Stereoscopic approach to 3-D display using computer-generated holograms,” Appl. Opt. 15(11), 2722–2729 (1976).
    [Crossref] [PubMed]
  15. K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
    [Crossref] [PubMed]
  16. K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
    [Crossref] [PubMed]
  17. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23(4), 3901–3913 (2015).
    [Crossref] [PubMed]
  18. H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Layered holographic stereogram based on inverse Fresnel diffraction,” Appl. Opt. 55(3), A154–A159 (2016).
    [Crossref] [PubMed]
  19. J. W. Goodman, Introduction to Fourier optics, 2nd ed. (McGraw-Hill, 1996).
  20. K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17(22), 19662–19673 (2009).
    [Crossref] [PubMed]

2018 (1)

2017 (1)

2016 (1)

2015 (3)

2014 (1)

2013 (2)

2011 (1)

2009 (2)

2008 (2)

2005 (1)

1993 (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

1976 (1)

Ahrenberg, L.

Benzie, P.

Cao, L.

Fan, S.

Hahn, J.

Ichihashi, Y.

Ito, T.

Ji, Y.-M.

Jin, G.

Kakue, T.

Kim, H.

Kim, H.-J.

Kim, S.-B.

Kim, S.-H.

Ko, S.-B.

Kong, D.

Lee, B.

Li, B.

Lucente, M. E.

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Magnor, M.

Masuda, N.

Matsushima, K.

Nakahara, S.

Oi, R.

Oikawa, M.

Okada, N.

Park, J.-H.

Poon, T.-C.

Shimobaba, T.

Wakunami, K.

Wang, F.

Watson, J.

Xu, W.

Yamaguchi, M.

Yamamoto, K.

Yamashita, H.

Yatagai, T.

Yeom, H.-J.

Zhang, H.

Zhang, Y.-P.

Zhao, Y.

Appl. Opt. (7)

Chin. Opt. Lett. (1)

J. Electron. Imaging (1)

M. E. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[Crossref]

Opt. Express (8)

K. Wakunami and M. Yamaguchi, “Calculation for computer generated hologram using ray-sampling plane,” Opt. Express 19(10), 9086–9101 (2011).
[Crossref] [PubMed]

K. Wakunami, H. Yamashita, and M. Yamaguchi, “Occlusion culling for computer generated hologram based on ray-wavefront conversion,” Opt. Express 21(19), 21811–21822 (2013).
[Crossref] [PubMed]

H. Zhang, Y. Zhao, L. Cao, and G. Jin, “Fully computed holographic stereogram based algorithm for computer-generated holograms with accurate depth cues,” Opt. Express 23(4), 3901–3913 (2015).
[Crossref] [PubMed]

J.-H. Park, S.-B. Kim, H.-J. Yeom, H.-J. Kim, H. Zhang, B. Li, Y.-M. Ji, S.-H. Kim, and S.-B. Ko, “Continuous shading and its fast update in fully analytic triangular-mesh-based computer generated hologram,” Opt. Express 23(26), 33893–33901 (2015).
[Crossref] [PubMed]

Y.-P. Zhang, F. Wang, T.-C. Poon, S. Fan, and W. Xu, “Fast generation of full analytical polygon-based computer-generated holograms,” Opt. Express 26(15), 19206–19224 (2018).
[Crossref] [PubMed]

N. Okada, T. Shimobaba, Y. Ichihashi, R. Oi, K. Yamamoto, M. Oikawa, T. Kakue, N. Masuda, and T. Ito, “Band-limited double-step Fresnel diffraction and its application to computer-generated holograms,” Opt. Express 21(7), 9192–9197 (2013).
[Crossref] [PubMed]

Y. Zhao, L. Cao, H. Zhang, D. Kong, and G. Jin, “Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method,” Opt. Express 23(20), 25440–25449 (2015).
[Crossref] [PubMed]

K. Matsushima and T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17(22), 19662–19673 (2009).
[Crossref] [PubMed]

Other (3)

S. A. Benton and V. M. Bove, Holographic imaging (Wiley, 2008).

H. Zhang, Q. Tan, and G. Jin, “Holographic display system of a three-dimensional image with distortion-free magnification and zero-order elimination,” Opt. Eng. 51, 075801–075801–075801–075805 (2012).
[Crossref]

J. W. Goodman, Introduction to Fourier optics, 2nd ed. (McGraw-Hill, 1996).

Supplementary Material (2)

NameDescription
» Visualization 1       Numerical reconstruction for demonstrating the motion parallax with occlusion effect of the computer-generated hologram.
» Visualization 2       Optical reconstruction for demonstrating the motion parallax with occlusion effect of the computer-generated hologram.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Coordinates of field distributions of the hologram in the spatial and Fourier domains.
Fig. 2
Fig. 2 Parallel projection along αx and αy.
Fig. 3
Fig. 3 Fourier domain segmentation for corresponding parallel projection.
Fig. 4
Fig. 4 Field distribution of the hologram calculated from multiple parallel projections.
Fig. 5
Fig. 5 Optical setup of the optical reconstruction experiment.
Fig. 6
Fig. 6 Numerical and optical reconstruction results when focusing on (a, d) king, (b, e) rook, and (c, f) pawn.
Fig. 7
Fig. 7 Numerical and optical reconstruction results when viewing from (a, d) left, (b, e) center, and (c, f) right viewpoints (see Visualization 1 and Visualization 2).

Tables (1)

Tables Icon

Table 1 Parameters of the CGH

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

h( x,y )= F 1 [ O( f x , f y )exp( j2πz λ 2 f x 2 f y 2 ) ]= F 1 [ H( f x , f y ) ],
H e ( f x , f y )= i=1 m O i ( f x , f y )exp( j2π z i λ 2 f x 2 f y 2 ) ,
f x = cos α x λ .
f x [ 1 2p , 1 2p ],
S fx = 1 Np
I( x,y )=2Re[ h( x,y ) r * ( x,y ) ]+C,
T=exp( j2πz λ 2 f x 2 f y 2 ).
| f lx |= 1 2π | f x ( 2πz λ 2 f x 2 ) |=| z f x λ 2 f x 2 |.
1 2Δ f x | f lx |.
zL λ 2 f x 2 1 .
zL 4 p 2 λ 2 1 .
zL 4 ( Np ) 2 λ 2 1 .
| f I |= 1 2π | ( 2π f y y2π cos α y λ y ) y |=| f y cos α y λ |,
1 2p | f y cos α y λ |.

Metrics