Abstract

Atmospheric windows play an important role in the field of infrared detection and radiative cooling. In this paper, the development of VO2-based metamaterial emitter brings broadband thermal-switching light to mid-infrared atmospheric windows. At room temperature, the emitter radiates light in both 3–5μm and 8–14μm atmospheric windows. At high temperature, the radiation peaks move out of the atmospheric windows and result a strong radiation at 5–8μm. The underlying mechanism relies on the relationship between VO2 metal-insulator transition (MIT) and resonant absorption modes coupling. Corresponding thermal imaging experiment exhibits two distinct phenomena. One is the observation of unchanged thermal radiation around MIT temperature. The other phenomenon regards the concealment of the emitter from Al background at specific temperatures. These two phenomena show potential application in infrared anti-detection.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Metal-insulator phase transition in Hf-doped VO2(M) thin films: a study on the structural, electrical, optical and infrared radiation properties

Taixing Huang, Tongtong Kang, Yue Li, Jitao Li, Longjiang Deng, and Lei Bi
Opt. Mater. Express 8(8) 2300-2311 (2018)

Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance

Lin Yang, Peiheng Zhou, Taixing Huang, Guoshuai Zhen, Li Zhang, Lei Bi, Xiaolong Weng, Jianliang Xie, and Longjiang Deng
Opt. Mater. Express 7(8) 2767-2776 (2017)

Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks

Yurui Qu, Lu Cai, Hao Luo, Jun Lu, Min Qiu, and Qiang Li
Opt. Express 26(4) 4279-4287 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
    [Crossref] [PubMed]
  2. Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
    [Crossref] [PubMed]
  3. F. G. Celii, P. E. Pehrsson, H. Wang, and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52(24), 2043–2045 (1988).
    [Crossref]
  4. L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
    [Crossref] [PubMed]
  5. Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
    [Crossref] [PubMed]
  6. T. Nailin, “Development of Infrared Stealth Technology and Materials,” Chem. Ind. Chem. Eng. Prog. 21(4), 283–286 (2002).
  7. J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
    [Crossref]
  8. J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42(2), 83–106 (1992).
    [Crossref]
  9. J. J. Greffet and M. Nieto-Vesperinas, “Field Theory for Generalized Bidirectional Reflectivity: Derivation of Helmholtz’s Reciprocity Principle and Kirchhoff’s Law,” J. Opt. Soc. Am. A 15(10), 2735–2744 (1998).
    [Crossref]
  10. N. F. Mott and L. Friedman, “Metal-insulator transitions in VO2, Ti2O3 and Ti2-x VxO3,” Philos. Mag. 30(2), 389–402 (1974).
    [Crossref]
  11. M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7(5), 1697–1707 (2017).
    [Crossref]
  12. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
    [Crossref] [PubMed]
  13. T. Huang, L. Yang, J. Qin, F. Huang, X. Zhu, P. Zhou, B. Peng, H. Duan, L. Deng, and L. Bi, “Study of the phase evolution, metal-insulator transition, and optical properties of vanadium oxide thin films,” Opt. Mater. Express 6(11), 3609–3621 (2016).
    [Crossref]
  14. K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
    [Crossref] [PubMed]
  15. Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
    [Crossref]
  16. J. P. Reifenberg and M. A. Panzer, “Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films,” Appl. Phys. Lett. 91(11), 111904 (2007).
    [Crossref]
  17. Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
    [Crossref]
  18. J. K. Pradhan, S. Anantha Ramakrishna, B. Rajeswaran, A. M. Umarji, V. G. Achanta, A. K. Agarwal, and A. Ghosh, “High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane,” Opt. Express 25(8), 9116–9121 (2017).
    [Crossref] [PubMed]
  19. L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767–2776 (2017).
    [Crossref]
  20. H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
    [Crossref]
  21. Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
    [Crossref] [PubMed]
  22. K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
    [Crossref] [PubMed]
  23. W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
    [Crossref]
  24. S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
    [Crossref] [PubMed]
  25. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
    [Crossref]
  26. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31(24), 3620–3622 (2006).
    [Crossref] [PubMed]
  27. S. Bagheri, C. M. Zgrabik, T. Gissibl, A. Tittl, F. Sterl, R. Walter, S. De Zuani, A. Berrier, T. Stauden, G. Richter, E. L. Hu, and H. Giessen, “Large-area fabrication of TiN nanoantenna arrays for refractory plasmonics in the mid- infrared by femtosecond direct laser writing and interference lithography,” Opt. Mater. Express 5(11), 2625–2633 (2015).
    [Crossref]
  28. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [Crossref] [PubMed]
  29. N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
    [Crossref]
  30. J. Nath, S. Modak, I. Rezadad, D. Panjwani, F. Rezaie, J. W. Cleary, and R. E. Peale, “Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity,” Opt. Express 23(16), 20366–20380 (2015).
    [Crossref] [PubMed]
  31. X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
    [Crossref] [PubMed]
  32. M. Planck, “On the law of distribution of energy in the normal spectrum,” Ann. Phys-Berlin. 4(553), 1 (1901).
  33. H. P. Baltes, “Deviations from the Stefan Boltzmann law at low temperatures,” Appl. Phys. (Berl.) 1(1), 39–43 (1973).
    [Crossref]
  34. K. J. K. Buettner and C. D. Kern, “The determination of infrared emissivities of terrestrial surfaces,” J. Geophys. Res. 70(6), 1329–1337 (1965).
    [Crossref]
  35. A. H. Elmahdy and F. Devine, “Laboratory infrared thermography technique for window surface temperature- measurement,” ASHRAE Trans. 111(1), 561–571 (2005).

2018 (4)

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

2017 (7)

J. K. Pradhan, S. Anantha Ramakrishna, B. Rajeswaran, A. M. Umarji, V. G. Achanta, A. K. Agarwal, and A. Ghosh, “High contrast switchability of VO2 based metamaterial absorbers with ITO ground plane,” Opt. Express 25(8), 9116–9121 (2017).
[Crossref] [PubMed]

M. Currie, M. A. Mastro, and V. D. Wheeler, “Characterizing the tunable refractive index of vanadium dioxide,” Opt. Mater. Express 7(5), 1697–1707 (2017).
[Crossref]

L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767–2776 (2017).
[Crossref]

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

2016 (3)

2015 (3)

2014 (2)

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

2012 (2)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

X. Y. Peng, B. Wang, S. Lai, D. H. Zhang, and J. H. Teng, “Ultrathin multi-band planar metamaterial absorber based on standing wave resonances,” Opt. Express 20(25), 27756–27765 (2012).
[Crossref] [PubMed]

2007 (2)

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

J. P. Reifenberg and M. A. Panzer, “Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films,” Appl. Phys. Lett. 91(11), 111904 (2007).
[Crossref]

2006 (1)

2005 (1)

A. H. Elmahdy and F. Devine, “Laboratory infrared thermography technique for window surface temperature- measurement,” ASHRAE Trans. 111(1), 561–571 (2005).

2002 (1)

T. Nailin, “Development of Infrared Stealth Technology and Materials,” Chem. Ind. Chem. Eng. Prog. 21(4), 283–286 (2002).

1998 (1)

1994 (1)

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
[Crossref]

1992 (1)

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42(2), 83–106 (1992).
[Crossref]

1988 (1)

F. G. Celii, P. E. Pehrsson, H. Wang, and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52(24), 2043–2045 (1988).
[Crossref]

1983 (1)

1974 (1)

N. F. Mott and L. Friedman, “Metal-insulator transitions in VO2, Ti2O3 and Ti2-x VxO3,” Philos. Mag. 30(2), 389–402 (1974).
[Crossref]

1973 (1)

H. P. Baltes, “Deviations from the Stefan Boltzmann law at low temperatures,” Appl. Phys. (Berl.) 1(1), 39–43 (1973).
[Crossref]

1965 (1)

K. J. K. Buettner and C. D. Kern, “The determination of infrared emissivities of terrestrial surfaces,” J. Geophys. Res. 70(6), 1329–1337 (1965).
[Crossref]

1901 (1)

M. Planck, “On the law of distribution of energy in the normal spectrum,” Ann. Phys-Berlin. 4(553), 1 (1901).

Achanta, V. G.

Agarwal, A. K.

Alexander, R. W.

Anantha Ramakrishna, S.

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Anoma, M. A.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Azad, A. K.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Bagheri, S.

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Baltes, H. P.

H. P. Baltes, “Deviations from the Stefan Boltzmann law at low temperatures,” Appl. Phys. (Berl.) 1(1), 39–43 (1973).
[Crossref]

Basov, D. N.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Berrier, A.

Bhaskaran, H.

Bi, L.

Brehm, M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Buettner, K. J. K.

K. J. K. Buettner and C. D. Kern, “The determination of infrared emissivities of terrestrial surfaces,” J. Geophys. Res. 70(6), 1329–1337 (1965).
[Crossref]

Butler, J. E.

F. G. Celii, P. E. Pehrsson, H. Wang, and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52(24), 2043–2045 (1988).
[Crossref]

Cai, L.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Carrillo, S. G.

Celii, F. G.

F. G. Celii, P. E. Pehrsson, H. Wang, and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52(24), 2043–2045 (1988).
[Crossref]

Chae, B. G.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Cheng, Z.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Cheng, Z. Y.

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Cleary, J. W.

Cryan, M. J.

Currie, M.

D’Aria, D. M.

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
[Crossref]

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42(2), 83–106 (1992).
[Crossref]

Dalvit, D. A. R.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

David, S. N.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

De Zuani, S.

Deng, L.

Devine, F.

A. H. Elmahdy and F. Devine, “Laboratory infrared thermography technique for window surface temperature- measurement,” ASHRAE Trans. 111(1), 561–571 (2005).

Ding, J. C.

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Du, K.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Du, K. K.

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Duan, H.

Economon, E. N.

Elmahdy, A. H.

A. H. Elmahdy and F. Devine, “Laboratory infrared thermography technique for window surface temperature- measurement,” ASHRAE Trans. 111(1), 561–571 (2005).

Fan, S.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Fang, B.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Friedman, L.

N. F. Mott and L. Friedman, “Metal-insulator transitions in VO2, Ti2O3 and Ti2-x VxO3,” Philos. Mag. 30(2), 389–402 (1974).
[Crossref]

Ghosh, A.

Ghosh, P.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

Giessen, H.

Gissibl, T.

Greffet, J. J.

Hayat, H.

Ho, P. C.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Hu, E. L.

Huang, F.

Huang, T.

Huang, Y.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Kang, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref] [PubMed]

Keilmann, F.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kern, C. D.

K. J. K. Buettner and C. D. Kern, “The determination of infrared emissivities of terrestrial surfaces,” J. Geophys. Res. 70(6), 1329–1337 (1965).
[Crossref]

Kim, B. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Kim, H. T.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Klemm, M.

Kort-Kamp, W. J. M.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Koschny, T.

Kramadhati, S.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Lai, S.

Li, Q.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Li, Y.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Li, Z.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Liu, L.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref] [PubMed]

Liu, Z.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Long, L. L.

Lou, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Lu, J.

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Lu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Luo, H.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

Lyu, Y.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Lyu, Y. B.

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Ma, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Maple, M. B.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Mastro, M. A.

Mayer, T. S.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref] [PubMed]

Modak, S.

Mott, N. F.

N. F. Mott and L. Friedman, “Metal-insulator transitions in VO2, Ti2O3 and Ti2-x VxO3,” Philos. Mag. 30(2), 389–402 (1974).
[Crossref]

Nailin, T.

T. Nailin, “Development of Infrared Stealth Technology and Materials,” Chem. Ind. Chem. Eng. Prog. 21(4), 283–286 (2002).

Nash, G. R.

Nath, J.

Nieto-Vesperinas, M.

Ordal, M. A.

Pan, M.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

Panjwani, D.

Panzer, M. A.

J. P. Reifenberg and M. A. Panzer, “Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films,” Appl. Phys. Lett. 91(11), 111904 (2007).
[Crossref]

Peale, R. E.

Pehrsson, P. E.

F. G. Celii, P. E. Pehrsson, H. Wang, and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52(24), 2043–2045 (1988).
[Crossref]

Pei, J.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Peng, B.

Peng, X. Y.

Planck, M.

M. Planck, “On the law of distribution of energy in the normal spectrum,” Ann. Phys-Berlin. 4(553), 1 (1901).

Pradhan, J. K.

Qazilbash, M. M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Qin, J.

Qiu, M.

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Qu, Y.

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Y. Qu, L. Cai, H. Luo, J. Lu, M. Qiu, and Q. Li, “Tunable dual-band thermal emitter consisting of single-sized phase-changing GST nanodisks,” Opt. Express 26(4), 4279–4287 (2018).
[Crossref] [PubMed]

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Rajeswaran, B.

Raman, A. P.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Reifenberg, J. P.

J. P. Reifenberg and M. A. Panzer, “Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films,” Appl. Phys. Lett. 91(11), 111904 (2007).
[Crossref]

Reiten, M. T.

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Rephaeli, E.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Rezadad, I.

Rezaie, F.

Richter, G.

Salisbury, J. W.

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
[Crossref]

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42(2), 83–106 (1992).
[Crossref]

Soukoulis, C. M.

Stauden, T.

Sterl, F.

Tan, G.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Teng, J. H.

Tian, J.

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Tittl, A.

Umarji, A. M.

Walter, R.

Wang, B.

Wang, H.

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

F. G. Celii, P. E. Pehrsson, H. Wang, and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52(24), 2043–2045 (1988).
[Crossref]

Wang, L.

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Wang, S.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Wang, X.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Ward, C. A.

Weng, X.

L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767–2776 (2017).
[Crossref]

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Werner, D. H.

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref] [PubMed]

Wheeler, V. D.

Wright, C. D.

Xiao, H.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Xie, J.

L. Yang, P. Zhou, T. Huang, G. Zhen, L. Zhang, L. Bi, X. Weng, J. Xie, and L. Deng, “Broadband thermal tunable infrared absorber based on the coupling between standing wave and magnetic resonance,” Opt. Mater. Express 7(8), 2767–2776 (2017).
[Crossref]

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Yang, L.

Yang, R.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yang, Y.

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

Yin, X.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Zgrabik, C. M.

Zhai, Y.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhang, D. H.

Zhang, J.

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Zhang, L.

Zhang, N.

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Zhang, Z. M.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

Zhao, D.

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

Zhen, G.

Zhou, J.

Zhou, P.

Zhu, L.

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Zhu, X.

ACS Photonics (1)

W. J. M. Kort-Kamp, S. Kramadhati, A. K. Azad, M. T. Reiten, and D. A. R. Dalvit, “Passive radiative “thermostat” enabled by phase-change photonic nanostructures,” ACS Photonics 5(11), 4554–4560 (2018).
[Crossref]

Ann. Phys-Berlin. (1)

M. Planck, “On the law of distribution of energy in the normal spectrum,” Ann. Phys-Berlin. 4(553), 1 (1901).

Appl. Opt. (1)

Appl. Phys. (Berl.) (1)

H. P. Baltes, “Deviations from the Stefan Boltzmann law at low temperatures,” Appl. Phys. (Berl.) 1(1), 39–43 (1973).
[Crossref]

Appl. Phys. Lett. (3)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100(6), 063902 (2012).
[Crossref]

F. G. Celii, P. E. Pehrsson, H. Wang, and J. E. Butler, “Infrared detection of gaseous species during the filament-assisted growth of diamond,” Appl. Phys. Lett. 52(24), 2043–2045 (1988).
[Crossref]

J. P. Reifenberg and M. A. Panzer, “Thickness and stoichiometry dependence of the thermal conductivity of GeSbTe films,” Appl. Phys. Lett. 91(11), 111904 (2007).
[Crossref]

ASHRAE Trans. (1)

A. H. Elmahdy and F. Devine, “Laboratory infrared thermography technique for window surface temperature- measurement,” ASHRAE Trans. 111(1), 561–571 (2005).

Chem. Ind. Chem. Eng. Prog. (1)

T. Nailin, “Development of Infrared Stealth Technology and Materials,” Chem. Ind. Chem. Eng. Prog. 21(4), 283–286 (2002).

J. Appl. Phys. (1)

H. Wang, Y. Yang, and L. Wang, “Wavelength-tunable infrared metamaterial by tailoring magnetic resonance condition with VO2 phase transition,” J. Appl. Phys. 116(12), 123503 (2014).
[Crossref]

J. Geophys. Res. (1)

K. J. K. Buettner and C. D. Kern, “The determination of infrared emissivities of terrestrial surfaces,” J. Geophys. Res. 70(6), 1329–1337 (1965).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

Z. Liu, Y. Li, J. Zhang, Y. Huang, Z. Li, J. Pei, B. Fang, X. Wang, and H. Xiao, “Design and fabrication of a tunable infrared metamaterial absorber based on VO2 films,” J. Phys. D Appl. Phys. 50(38), 385104 (2017).
[Crossref]

Laser Photonics Rev. (1)

Y. Qu, Q. Li, K. Du, L. Cai, J. Lu, and M. Qiu, “Dynamic Thermal Emission Control Based on Ultrathin Plasmonic Metamaterials Including Phase-Changing Material GST,” Laser Photonics Rev. 11(5), 1700091 (2017).
[Crossref]

Light Sci. Appl. (2)

K. K. Du, Q. Li, Y. B. Lyu, J. C. Ding, Y. Lu, Z. Y. Cheng, and M. Qiu, “Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST,” Light Sci. Appl. 6(1), e16194 (2017).
[Crossref] [PubMed]

Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, and M. Qiu, “Thermal camouflage based on the phase-changing material GST,” Light Sci. Appl. 7(1), 26 (2018).
[Crossref] [PubMed]

Nanoscale (1)

K. Du, L. Cai, H. Luo, Y. Lu, J. Tian, Y. Qu, P. Ghosh, Y. Lyu, Z. Cheng, M. Qiu, and Q. Li, “Wavelength-tunable mid-infrared thermal emitters with a non-volatile phase changing material,” Nanoscale 10(9), 4415–4420 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

L. Liu, L. Kang, T. S. Mayer, and D. H. Werner, “Hybrid metamaterials for electrically triggered multifunctional control,” Nat. Commun. 7(1), 13236 (2016).
[Crossref] [PubMed]

Nature (1)

A. P. Raman, M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan, “Passive radiative cooling below ambient air temperature under direct sunlight,” Nature 515(7528), 540–544 (2014).
[Crossref] [PubMed]

Opt. Commun. (1)

N. Zhang, P. Zhou, S. Wang, X. Weng, J. Xie, and L. Deng, “Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers,” Opt. Commun. 338, 388–392 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (4)

Philos. Mag. (1)

N. F. Mott and L. Friedman, “Metal-insulator transitions in VO2, Ti2O3 and Ti2-x VxO3,” Philos. Mag. 30(2), 389–402 (1974).
[Crossref]

Remote Sens. Environ. (2)

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 3–5 μm atmospheric window,” Remote Sens. Environ. 47(3), 345–361 (1994).
[Crossref]

J. W. Salisbury and D. M. D’Aria, “Emissivity of terrestrial materials in the 8–14 μm atmospheric window,” Remote Sens. Environ. 42(2), 83–106 (1992).
[Crossref]

Science (2)

Y. Zhai, Y. Ma, S. N. David, D. Zhao, R. Lou, G. Tan, R. Yang, and X. Yin, “Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling,” Science 355(6329), 1062–1066 (2017).
[Crossref] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science 318(5857), 1750–1753 (2007).
[Crossref] [PubMed]

Supplementary Material (1)

NameDescription
» Visualization 1       This video shows the radiation temperature change of our optical device during the heating and cooling process. The whole process is recorded by Flir, and the value of the radiation temperature is measured by the Flir Tool.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of the proposed thermal emitter made by photolithography. (b) Schematic of a unit cell of the thermal emitter. The TiN film and VO2 film were deposited by PLD (Pulsed Laser Deposition). The Si film was deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition), and the Al film was deposited by EBE (Electron Beam Evaporation). (c) Photo of the Infrared imaging experiment sample. (d) CST simulated (the red curve and the blue curve) and FTIR (Fourier Transform Infrared Spectrometer) measured (the orange curve and the green curve) emissivity of the emitter at room temperature and 80°C respectively. The emissivity spectrum is measured by subtracting the reflectivity from unity. The pink curve is the emissivity of Al measured by FTIR. The blue background is the atmospheric windows in the mid-infrared band obtained from references [1,23].
Fig. 2
Fig. 2 (a) The relationship between absorption and the radius of Al circular patch (r) varying from 0.1μm to 3μm at room temperature. (b) The relationship between absorption and the thickness of VO2 (t2) varying from 0μm to 0.6μm at room temperature. (c) The relationship between absorption and the radius of Al circular patch (r) varying from 0μm to 3μm at 80°C. (d) The relationship between spectral absorption and the thickness of Si (t2) varying from 0μm to 0.56μm at 80°C. (e) The diagram of current density distribution in x-z plane at point S1 in Figs. 2(a) and 2(b), where the three current loops are marked by solid arrows. (f) The diagram of electric field intensity distribution in x-z plane at point S2 in Figs. 2(a) and 2(b). (g) The diagram of electric field intensity distribution in x-z plane at point S3 in Figs. 2(c) and 2(d).
Fig. 3
Fig. 3 (a) The spectral emissivity of the emitter measured by FTIR at different temperatures (heating process). (b) In the 8-14μm atmospheric window, the comparison between the effective / average emissivity obtained by two different calculation methods during the heating / cooling process. The Heating 1 curve and the Cooling 1 curve are calculated by the Eq. (3), and the Heating 2 curve and the Cooling 2 curve are obtained by the arithmetic mean. (c) In the 3-5μm atmospheric window, the comparison between the effective / average emissivity obtained by two different calculation methods during the heating / cooling process. (d) In the mid-infrared band (3-14μm), the comparison between the effective / average emissivity obtained by two different calculation methods during the heating / cooling process.
Fig. 4
Fig. 4 The principle of FLIR testing.
Fig. 5
Fig. 5 (a) FLIR images of the sample during cooling process. The temperature in the upper left corner of each subimage is the T rad of the “MA” area, and the temperature on the right side is T obj (see Visualization 1). (b) Calculated data (the red curve and the blue curve) and experimental data (the green curve and the orange curve) of T rad at different T obj , and the T rad of the non-pattern area during the process.
Fig. 6
Fig. 6 (a) Infrared images of the “MA” pattern stealth process (heating process). (b) Calculated τ(Τ) and a effma at different T obj in heating / cooling process. (c) In heating process, the calculated T radma with T atm varying from 0°C to 40°C and T obj varying from 0°C to 80°C. The concealment temperature line is marked by stars. The vertical dotted line is the T rad under T atm = 26.4°C, which is the green curve shown in Fig. 5(b).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E bλ =f(λ,T)= C 1 λ 5 e C 2 /(λT) 1 ,
E b = 0 E bλ dλ =σ T 4 ,
e eff = λ 1 λ 2 e(λ,T)f(λ,T)dλ λ 1 λ 2 f(λ,T)dλ .
E( T rad )= e eff1 τE ( T obj ) (814) +(1 a eff )τE ( T sur ) (814) +(1τ)E ( T atm ) (814) ,
T rad 4 = e eff1 τ T obj 4 +(1 a eff τ) T atm 4 .
a eff =1 E ( T sur ) (814) e eff1 τE ( T sur ) (814) E( T sur ) ,
T rad 4 = T atm 4 +( e eff1 a eff )τ T atm 4 .

Metrics