Abstract

The detection of weak optical signals embedded in strong background illumination has broad application prospects. We propose an imaging enhancement method based on stimulated Brillouin scattering (SBS) in a single-mode fiber, which is capable of amplifying the weak optical signal while neglecting the broadband background noise because of its narrow gain bandwidth. In experiment, a high gain of 60 dB was achieved. An imaging enhancement experiment was carried out, where a target which cannot be seen because of transmission loss could be clearly captured with the amplification of SBS in the fiber. Because of the employment of continuous pump rather than a pulsed pump, this system has wide application in the monitoring of non-cooperative targets.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stimulated Brillouin scattering in optical fibers

Andrey Kobyakov, Michael Sauer, and Dipak Chowdhury
Adv. Opt. Photon. 2(1) 1-59 (2010)

Optimization of a DPP-BOTDA sensor with 25 cm spatial resolution over 60 km standard single-mode fiber using Simplex codes and optical pre-amplification

Marcelo A. Soto, Mohammad Taki, Gabriele Bolognini, and Fabrizio Di Pasquale
Opt. Express 20(7) 6860-6869 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J. Xu, M. Kong, A. Lin, Y. Song, J. Han, Z. Xu, B. Wu, S. Gao, and N. Deng, “Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication,” Opt. Lett. 42(9), 1664–1667 (2017).
    [Crossref] [PubMed]
  2. L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
    [Crossref] [PubMed]
  3. W. Gao, Z. W. Lu, Y. K. Dong, and W. M. He, “A new approach to measure the ocean temperature using Brillouin lidar,” Chin. Opt. Lett. 4(7), 428–431 (2006).
  4. A. Ancona, V. Spagnolo, P. M. Lugarà, and M. Ferrara, “Optical sensor for real-time monitoring of CO2 laser welding process,” Appl. Opt. 40(33), 6019–6025 (2001).
    [Crossref] [PubMed]
  5. A. G. Merzhanov, “SHS technology,” Adv. Mater. 4(4), 294–295 (1992).
    [Crossref]
  6. X. Xue, C. Janisch, Y. Chen, Z. Liu, and J. Chen, “Low-frequency shift Raman spectroscopy using atomic filters,” Opt. Lett. 41(22), 5397–5400 (2016).
    [Crossref] [PubMed]
  7. X. B. Xue, D. Pan, X. G. Zhang, B. Luo, J. B. Chen, and H. Guo, “Faraday anomalous dispersion optical filter at 133Cs weak 459 nm transition,” Photon. Res. 3(5), 275–278 (2015).
    [Crossref]
  8. B. Luo, L. Yin, J. Xiong, J. Chen, and H. Guo, “Signal intensity influences on the atomic Faraday filter,” Opt. Lett. 43(11), 2458–2461 (2018).
    [Crossref] [PubMed]
  9. M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18(25), 26450–26460 (2010).
    [Crossref] [PubMed]
  10. G. Yang, R. Billmers, P. R. Herczfeld, and V. M. Contarino, “Temporal characteristics of narrow-band optical filters and their application in lidar systems,” Opt. Lett. 22(6), 414–416 (1997).
    [Crossref] [PubMed]
  11. A. McCarthy, R. J. Collins, N. J. Krichel, V. Fernández, A. M. Wallace, and G. S. Buller, “Long-range time-of-flight scanning sensor based on high-speed time-correlated single-photon counting,” Appl. Opt. 48(32), 6241–6251 (2009).
    [Crossref] [PubMed]
  12. K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, S. V. Markova, and G. G. Petrash, “Active optical systems with brightness amplification by pulsed metal vapor lasers,” Opt. Commun. 18(1), 144 (1976).
    [Crossref]
  13. R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15(7), 3816–3832 (2007).
    [Crossref] [PubMed]
  14. Y. Liu, J. Shi, and G. Zeng, “Single-photon-counting polarization ghost imaging,” Appl. Opt. 55(36), 10347–10351 (2016).
    [Crossref] [PubMed]
  15. Z. Chen, H. Gao, and G. Barbastathis, “Background suppression in long-distance imaging using volume hologram filters,” Opt. Express 22(25), 31123–31130 (2014).
    [Crossref] [PubMed]
  16. M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).
    [Crossref]
  17. I. M. Bel’dyugin, V. F. Efimkov, S. I. Mikhailov, and I. G. Zubarev, “Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering,” J. Russ. Laser Res. 26(1), 1–12 (2005).
    [Crossref]
  18. Z. Lu, W. Gao, W. He, Z. Zhang, and W. Hasi, “High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier,” Opt. Express 17(13), 10675–10680 (2009).
    [Crossref] [PubMed]
  19. S. Sternklar, S. Jackel, D. Chomsky, and A. Zigler, “Coherent beam and image amplification by Brillouin two-beam coupling in CSS2,” Opt. Lett. 15(11), 616–618 (1990).
    [Crossref] [PubMed]
  20. M. V. Chekhova and Z. Y. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–154 (2016).
    [Crossref]
  21. R. W. Boyd, Nonlinear optics, 3rd ed. (Academic, 2008), Chap. 9.
  22. E. L. Buckland and R. W. Boyd, “Measurement of the frequency response of the electrostrictive nonlinearity in optical fibers,” Opt. Lett. 22(10), 676–678 (1997).
    [Crossref] [PubMed]
  23. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering,” Opt. Lett. 27(11), 927–929 (2002).
    [Crossref] [PubMed]
  24. M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
    [Crossref]
  25. Y. K. Dong, Z. W. Lu, Q. Li, and W. Gao, “Controllable optical delay line using a Brillouin optical fiber ring laser,” Chin. Opt. Lett. 4(11), 628–630 (2006).
  26. Z. Lu, Y. Dong, and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15(4), 1871–1877 (2007).
    [Crossref] [PubMed]
  27. C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
    [Crossref]
  28. Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
    [Crossref] [PubMed]
  29. Z. Liu, Y. Wang, Y. Wang, S. Li, Z. Bai, D. Lin, W. He, and Z. Lu, “Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime,” Opt. Express 26(5), 5701–5710 (2018).
    [Crossref] [PubMed]
  30. Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7(1), 40526 (2017).
    [Crossref] [PubMed]
  31. H. Li, N. Chang, H. Zhang, B. Wang, W. Gao, and Z. Zhu, “Frequency domain staring pump-probe technique for Brillouin gain/loss spectrum measurement,” Appl. Opt. 56(20), 5745–5750 (2017).
    [Crossref] [PubMed]
  32. L. W. Sheng, D. X. Ba, and Z. W. Lv, “High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation,” Chin. Phys. B 28(2), 024212 (2019).
    [Crossref]
  33. M. Shi, L. Yi, W. Wei, and W. Hu, “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering,” Opt. Express 26(13), 16113–16124 (2018).
    [Crossref] [PubMed]

2019 (1)

L. W. Sheng, D. X. Ba, and Z. W. Lv, “High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation,” Chin. Phys. B 28(2), 024212 (2019).
[Crossref]

2018 (4)

2017 (3)

2016 (4)

M. V. Chekhova and Z. Y. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–154 (2016).
[Crossref]

M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).
[Crossref]

X. Xue, C. Janisch, Y. Chen, Z. Liu, and J. Chen, “Low-frequency shift Raman spectroscopy using atomic filters,” Opt. Lett. 41(22), 5397–5400 (2016).
[Crossref] [PubMed]

Y. Liu, J. Shi, and G. Zeng, “Single-photon-counting polarization ghost imaging,” Appl. Opt. 55(36), 10347–10351 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (1)

2010 (1)

2009 (2)

2007 (2)

2006 (2)

2005 (1)

I. M. Bel’dyugin, V. F. Efimkov, S. I. Mikhailov, and I. G. Zubarev, “Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering,” J. Russ. Laser Res. 26(1), 1–12 (2005).
[Crossref]

2002 (1)

2001 (1)

1997 (3)

1994 (1)

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

1992 (1)

A. G. Merzhanov, “SHS technology,” Adv. Mater. 4(4), 294–295 (1992).
[Crossref]

1990 (1)

1976 (1)

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, S. V. Markova, and G. G. Petrash, “Active optical systems with brightness amplification by pulsed metal vapor lasers,” Opt. Commun. 18(1), 144 (1976).
[Crossref]

Ancona, A.

Ba, D. X.

L. W. Sheng, D. X. Ba, and Z. W. Lv, “High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation,” Chin. Phys. B 28(2), 024212 (2019).
[Crossref]

Bai, Z.

Barbastathis, G.

Bel’dyugin, I. M.

I. M. Bel’dyugin, V. F. Efimkov, S. I. Mikhailov, and I. G. Zubarev, “Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering,” J. Russ. Laser Res. 26(1), 1–12 (2005).
[Crossref]

Belardi, W.

Billmers, R.

Boyd, R. W.

Brydegaard, M.

Buckland, E. L.

Buller, G. S.

Chang, N.

Chekhova, M. V.

M. V. Chekhova and Z. Y. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–154 (2016).
[Crossref]

Chen, J.

Chen, J. B.

Chen, Y.

Chen, Z.

Chomsky, D.

Collins, R. J.

Contarino, V. M.

Dane, C. B.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

DaneshPanah, M.

Deng, N.

Dong, Y.

Dong, Y. K.

Efimkov, V. F.

I. M. Bel’dyugin, V. F. Efimkov, S. I. Mikhailov, and I. G. Zubarev, “Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering,” J. Russ. Laser Res. 26(1), 1–12 (2005).
[Crossref]

Espinola, R. L.

Evtushenko, G. S.

M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).
[Crossref]

Evtushenko, T. G.

M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).
[Crossref]

Fernández, V.

Ferrara, M.

Gao, H.

Gao, S.

Gao, W.

Guo, H.

Hackel, L. A.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Halford, C. E.

Han, J.

Hasi, W.

He, W.

He, W. M.

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7(1), 40526 (2017).
[Crossref] [PubMed]

W. Gao, Z. W. Lu, Y. K. Dong, and W. M. He, “A new approach to measure the ocean temperature using Brillouin lidar,” Chin. Opt. Lett. 4(7), 428–431 (2006).

Herczfeld, P. R.

Hu, W.

Ibsen, M.

Isaev, A. A.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, S. V. Markova, and G. G. Petrash, “Active optical systems with brightness amplification by pulsed metal vapor lasers,” Opt. Commun. 18(1), 144 (1976).
[Crossref]

Jackel, S.

Jacobs, E. L.

Janisch, C.

Javidi, B.

Jin, D.

Kazaryan, M. A.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, S. V. Markova, and G. G. Petrash, “Active optical systems with brightness amplification by pulsed metal vapor lasers,” Opt. Commun. 18(1), 144 (1976).
[Crossref]

Kong, M.

Krichel, N. J.

Lee, J. H.

Li, H.

Li, Q.

Li, S.

Lin, A.

Lin, D.

Liu, Y.

Liu, Z.

Lu, Z.

Lu, Z. W.

Lugarà, P. M.

Luo, B.

Lv, Z. W.

L. W. Sheng, D. X. Ba, and Z. W. Lv, “High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation,” Chin. Phys. B 28(2), 024212 (2019).
[Crossref]

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7(1), 40526 (2017).
[Crossref] [PubMed]

Markova, S. V.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, S. V. Markova, and G. G. Petrash, “Active optical systems with brightness amplification by pulsed metal vapor lasers,” Opt. Commun. 18(1), 144 (1976).
[Crossref]

McCarthy, A.

Mei, L.

Merzhanov, A. G.

A. G. Merzhanov, “SHS technology,” Adv. Mater. 4(4), 294–295 (1992).
[Crossref]

Mikhailov, S. I.

I. M. Bel’dyugin, V. F. Efimkov, S. I. Mikhailov, and I. G. Zubarev, “Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering,” J. Russ. Laser Res. 26(1), 1–12 (2005).
[Crossref]

Monro, T. M.

Neuman, W. A.

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

Niklès, M.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Ou, Z. Y.

M. V. Chekhova and Z. Y. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–154 (2016).
[Crossref]

Pan, D.

Petrash, G. G.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, S. V. Markova, and G. G. Petrash, “Active optical systems with brightness amplification by pulsed metal vapor lasers,” Opt. Commun. 18(1), 144 (1976).
[Crossref]

Richardson, D. J.

Robert, P. A.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Sheng, L. W.

L. W. Sheng, D. X. Ba, and Z. W. Lv, “High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation,” Chin. Phys. B 28(2), 024212 (2019).
[Crossref]

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7(1), 40526 (2017).
[Crossref] [PubMed]

Shi, J.

Shi, M.

Shiyanov, D. V.

M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).
[Crossref]

Song, Y.

Spagnolo, V.

Sternklar, S.

Thévenaz, L.

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

Tofsted, D. H.

Torgaev, S. N.

M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).
[Crossref]

Trigub, M. V.

M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).
[Crossref]

Vollmerhausen, R.

Wallace, A. M.

Wang, B.

Wang, H.

Wang, Y.

Watson, E. A.

Wei, W.

Wu, B.

Xiong, J.

Xu, J.

Xu, Z.

Xue, X.

Xue, X. B.

Yang, G.

Yi, L.

Yin, L.

Yuan, H.

Yusoff, Z.

Zemskov, K. I.

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, S. V. Markova, and G. G. Petrash, “Active optical systems with brightness amplification by pulsed metal vapor lasers,” Opt. Commun. 18(1), 144 (1976).
[Crossref]

Zeng, G.

Zhang, H.

Zhang, X. G.

Zhang, Z.

Zhu, Z.

Zhu, Z. H.

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7(1), 40526 (2017).
[Crossref] [PubMed]

Zigler, A.

Zubarev, I. G.

I. M. Bel’dyugin, V. F. Efimkov, S. I. Mikhailov, and I. G. Zubarev, “Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering,” J. Russ. Laser Res. 26(1), 1–12 (2005).
[Crossref]

Adv. Mater. (1)

A. G. Merzhanov, “SHS technology,” Adv. Mater. 4(4), 294–295 (1992).
[Crossref]

Adv. Opt. Photonics (1)

M. V. Chekhova and Z. Y. Ou, “Nonlinear interferometers in quantum optics,” Adv. Opt. Photonics 8(1), 104–154 (2016).
[Crossref]

Appl. Opt. (4)

Chin. Opt. Lett. (2)

Chin. Phys. B (1)

L. W. Sheng, D. X. Ba, and Z. W. Lv, “High-gain and low-distortion Brillouin amplification based on pump multi-frequency intensity modulation,” Chin. Phys. B 28(2), 024212 (2019).
[Crossref]

IEEE J. Quantum Electron. (1)

C. B. Dane, W. A. Neuman, and L. A. Hackel, “High-energy SBS pulse compression,” IEEE J. Quantum Electron. 30(8), 1907–1915 (1994).
[Crossref]

J. Lightwave Technol. (1)

M. Niklès, L. Thévenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15(10), 1842–1851 (1997).
[Crossref]

J. Russ. Laser Res. (1)

I. M. Bel’dyugin, V. F. Efimkov, S. I. Mikhailov, and I. G. Zubarev, “Amplification of weak Stokes signals in the transient regime of stimulated Brillouin scattering,” J. Russ. Laser Res. 26(1), 1–12 (2005).
[Crossref]

Opt. Commun. (2)

M. V. Trigub, G. S. Evtushenko, S. N. Torgaev, D. V. Shiyanov, and T. G. Evtushenko, “Copper bromide vapor brightness amplifiers with 100 kHz pulse repetition frequency,” Opt. Commun. 376, 81–85 (2016).
[Crossref]

K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, S. V. Markova, and G. G. Petrash, “Active optical systems with brightness amplification by pulsed metal vapor lasers,” Opt. Commun. 18(1), 144 (1976).
[Crossref]

Opt. Express (9)

R. L. Espinola, E. L. Jacobs, C. E. Halford, R. Vollmerhausen, and D. H. Tofsted, “Modeling the target acquisition performance of active imaging systems,” Opt. Express 15(7), 3816–3832 (2007).
[Crossref] [PubMed]

Z. Chen, H. Gao, and G. Barbastathis, “Background suppression in long-distance imaging using volume hologram filters,” Opt. Express 22(25), 31123–31130 (2014).
[Crossref] [PubMed]

Z. Lu, W. Gao, W. He, Z. Zhang, and W. Hasi, “High amplification and low noise achieved by a double-stage non-collinear Brillouin amplifier,” Opt. Express 17(13), 10675–10680 (2009).
[Crossref] [PubMed]

L. Mei and M. Brydegaard, “Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system,” Opt. Express 23(24), A1613–A1628 (2015).
[Crossref] [PubMed]

M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimensional object recognition with photon counting imagery in the presence of noise,” Opt. Express 18(25), 26450–26460 (2010).
[Crossref] [PubMed]

M. Shi, L. Yi, W. Wei, and W. Hu, “Generation and phase noise analysis of a wide optoelectronic oscillator with ultra-high resolution based on stimulated Brillouin scattering,” Opt. Express 26(13), 16113–16124 (2018).
[Crossref] [PubMed]

Z. Lu, Y. Dong, and Q. Li, “Slow light in multi-line Brillouin gain spectrum,” Opt. Express 15(4), 1871–1877 (2007).
[Crossref] [PubMed]

Z. Liu, Y. Wang, Z. Bai, Y. Wang, D. Jin, H. Wang, H. Yuan, D. Lin, and Z. Lu, “Pulse compression to one-tenth of phonon lifetime using quasi-steady-state stimulated Brillouin scattering,” Opt. Express 26(18), 23051–23060 (2018).
[Crossref] [PubMed]

Z. Liu, Y. Wang, Y. Wang, S. Li, Z. Bai, D. Lin, W. He, and Z. Lu, “Pulse-shape dependence of stimulated Brillouin scattering pulse compression to sub-phonon lifetime,” Opt. Express 26(5), 5701–5710 (2018).
[Crossref] [PubMed]

Opt. Lett. (7)

Photon. Res. (1)

Sci. Rep. (1)

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7(1), 40526 (2017).
[Crossref] [PubMed]

Other (1)

R. W. Boyd, Nonlinear optics, 3rd ed. (Academic, 2008), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The principle of the Stokes beam amplification based on SBS in optical fiber.
Fig. 2
Fig. 2 Experimental setup of the laser imaging system based on SBS. PC: polarization controller; EOM: electro-optic modulator; FBG: fiber Bragg grating; EDFA: erbium doped fiber amplifier; FUT: fiber under test; AWG: arbitrary waveform generator; PD: photodetector; OSC: oscilloscope; VOA: variable optical attenuator; MG: microwave signal generator; OI: isolator.
Fig. 3
Fig. 3 Brillouin gain spectrum of the SMF-28.
Fig. 4
Fig. 4 In the absence/presence of stray lighting of the magnification as a function of the pump power.
Fig. 5
Fig. 5 The normalized of input and amplified Stokes pulses.
Fig. 6
Fig. 6 Test-object experiment. (а) Image of the object without SBS amplifier under the condition of stray lighting. (b) Image of the object without SBS amplifier under the condition of no stray lighting. (c) Image of the object with the SBS amplifier under the condition of stray lighting. (d) Image of the object with the SBS amplifier under the condition of no stray lighting. (e) the binary image processing of Panel (c). (f) the binary image processing of Panel (d).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g B (ν)= g 0 ( Δ ν B /2 ) 2 (ν ν B ) 2 + ( Δ ν B /2 ) 2

Metrics