Abstract

Dielectric photonics platform provides unique possibilities to control light scattering via utilizing high-index dielectric nanoantennas with peculiar optical signatures. Despite the intensively growing field of all-dielectric nanophotonics, it is still unclear how surrounding media affect scattering properties of a nanoantenna with complex multipole response. Here, we report on light scattering by a silicon cubic nanoparticle embedded in lossless media, supporting optical resonant response. We show that significant changes in the scattering process are governed by the electro-magnetic multipole resonances, which experience spectral red-shift and broadening over the whole visible and near-infrared spectra as the indices of media increase. Most interestingly, the considered nanoantenna exhibits the broadband forward scattering in the visible and near-infrared spectral ranges due to the Kerker-effect in high-index media. The revealed effect of broadband forward scattering is essential for highly demanding applications in which the influence of the media is crucial such as health-care, e.g., sensing, treatment efficiency monitoring, and diagnostics. In addition, the insights from this study are expected to pave the way toward engineering the nanophotonic systems including but not limited to Huygens-metasurfaces in media within a single framework.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multiple unidirectional forward scattering of hybrid metal-dielectric nanoantenna in the near-infrared region

Haiwei Mu, Jingwei Lv, Xiaoming Zhang, Xili Lu, Wei Liu, Qiang Liu, Famei Wang, Lin Yang, Chao Liu, Tao Sun, and Paul K. Chu
Opt. Mater. Express 8(11) 3410-3423 (2018)

Dual-band directional scattering with all-dielectric trimer in the near-infrared region

Haiwei Mu, Wenjing Xu, Jingwei Lv, Chunhong Xu, Famei Wang, Qiang Liu, Chao Liu, Tao Sun, and Paul K. Chu
Appl. Opt. 58(18) 5082-5089 (2019)

Designing metal-dielectric nanoantenna for unidirectional scattering via Bayesian optimization

Feifei Qin, Dasen Zhang, Zhenzhen Liu, Qiang Zhang, and Junjun Xiao
Opt. Express 27(21) 31075-31086 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5, e16164 (2016).
    [Crossref]
  2. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
    [Crossref] [PubMed]
  3. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
    [Crossref]
  4. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
    [Crossref]
  5. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
    [Crossref]
  6. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
    [Crossref] [PubMed]
  7. S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
    [Crossref] [PubMed]
  8. A. K. Ospanova, A. Karabchevsky, and A. A. Basharin, “Metamaterial engineered transparency due to the nullifying of multipole moments,” Opt. Lett. 43, 503–506 (2018).
    [Crossref]
  9. A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).
  10. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
    [Crossref]
  11. Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with Si nano-spacer,” Sci. Rep. 7, 12076 (2017).
    [Crossref]
  12. A. Katiyi and A. Karabchevsky, “Si nanostrip pptical waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
    [Crossref]
  13. J. D. Jackson and R. F. Fox, “Classical Electrodynamics,” Am. J. Phys. 67, 841 (1999).
    [Crossref]
  14. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
    [Crossref] [PubMed]
  15. B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
    [Crossref] [PubMed]
  16. D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
    [Crossref]
  17. K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017).
    [Crossref]
  18. V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and P. Ginzburg, “Asymmetric backscattering from the hybrid magneto-electric meta particle,” Appl. Phys. Lett. 109, 203503 (2016).
    [Crossref]
  19. A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Light. Technol. 35, 2902–2908 (2017).
    [Crossref]
  20. N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
    [Crossref] [PubMed]
  21. O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
    [Crossref] [PubMed]
  22. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
    [Crossref] [PubMed]
  23. P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
    [Crossref]
  24. A. Sayanskiy, M. Danaeifar, P. Kapitanova, and A. E. Miroshnichenko, “All-dielectric metalattice with enhanced toroidal dipole response,” Adv. Opt. Mater. 6, 1800302 (2018).
    [Crossref]
  25. P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).
  26. R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: origins, present, and future perspectives,” Phys. Rev. Appl. 4, 37001 (2015).
    [Crossref]
  27. Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
    [Crossref]
  28. G. A. Hughes, “Nanostructure-mediated drug delivery,” in Nanomedicine in Cancer, (Pan Stanford, 2017), pp. 47–72.
  29. E. Blanco, H. Shen, and M. Ferrari, “Principles of nanoparticle design for overcoming biological barriers to drug delivery,” Nat. Biotechnol. 33, 941 (2015).
    [Crossref]
  30. E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 64026 (2006).
    [Crossref]
  31. M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am. 73, 765–767 (1983).
    [Crossref]
  32. M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
    [Crossref]
  33. W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
    [Crossref] [PubMed]
  34. J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
    [Crossref]
  35. M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7, 14762 (2017).
    [Crossref]
  36. M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
    [Crossref]
  37. R. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B 96, 180201 (2017).
    [Crossref]
  38. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic, 1998).
  39. A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
    [Crossref]
  40. R. E. Raab and O. L. De Lange, Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, vol. 128 (Oxford University, 2005).
  41. R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
    [Crossref]
  42. D. W. Pepper and J. C. Heinrich, The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL (CRC, 2017).
    [Crossref]
  43. COMSOL Multiphysics, www.comsol.com .
  44. P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
    [Crossref] [PubMed]
  45. H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).
  46. M. J. Berg, C. M. Sorensen, and A. Chakrabarti, “Extinction and the optical theorem Part I Single particles,” J. Opt. Soc. Am. A 25, 1504 (2008).
    [Crossref]

2019 (3)

P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
[Crossref]

2018 (4)

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Si nanostrip pptical waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
[Crossref]

A. Sayanskiy, M. Danaeifar, P. Kapitanova, and A. E. Miroshnichenko, “All-dielectric metalattice with enhanced toroidal dipole response,” Adv. Opt. Mater. 6, 1800302 (2018).
[Crossref]

A. K. Ospanova, A. Karabchevsky, and A. A. Basharin, “Metamaterial engineered transparency due to the nullifying of multipole moments,” Opt. Lett. 43, 503–506 (2018).
[Crossref]

2017 (9)

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
[Crossref] [PubMed]

K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Light. Technol. 35, 2902–2908 (2017).
[Crossref]

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref] [PubMed]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
[Crossref]

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with Si nano-spacer,” Sci. Rep. 7, 12076 (2017).
[Crossref]

R. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B 96, 180201 (2017).
[Crossref]

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7, 14762 (2017).
[Crossref]

2016 (6)

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5, e16164 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
[Crossref] [PubMed]

V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and P. Ginzburg, “Asymmetric backscattering from the hybrid magneto-electric meta particle,” Appl. Phys. Lett. 109, 203503 (2016).
[Crossref]

2015 (5)

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: origins, present, and future perspectives,” Phys. Rev. Appl. 4, 37001 (2015).
[Crossref]

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

E. Blanco, H. Shen, and M. Ferrari, “Principles of nanoparticle design for overcoming biological barriers to drug delivery,” Nat. Biotechnol. 33, 941 (2015).
[Crossref]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

2014 (1)

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

2012 (6)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

B. Rolly, B. Stout, and N. Bonod, “Boosting the directivity of optical antennas with magnetic and electric dipolar resonant particles,” Opt. Express 20, 20376–20386 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

2011 (1)

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

2010 (1)

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

2008 (1)

2006 (1)

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 64026 (2006).
[Crossref]

1999 (1)

J. D. Jackson and R. F. Fox, “Classical Electrodynamics,” Am. J. Phys. 67, 841 (1999).
[Crossref]

1983 (1)

Abdelrahman, M. I.

M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
[Crossref]

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7, 14762 (2017).
[Crossref]

Alaee, R.

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

Alessandri, I.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

Alù, A.

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: origins, present, and future perspectives,” Phys. Rev. Appl. 4, 37001 (2015).
[Crossref]

Artemyev, Y. A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
[Crossref]

Babicheva, V. E.

P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
[Crossref]

Baron, A.

R. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B 96, 180201 (2017).
[Crossref]

Baryshnikova, K.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Baryshnikova, K. V.

P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
[Crossref] [PubMed]

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Basharin, A. A.

A. K. Ospanova, A. Karabchevsky, and A. A. Basharin, “Metamaterial engineered transparency due to the nullifying of multipole moments,” Opt. Lett. 43, 503–506 (2018).
[Crossref]

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

Belov, P.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Belov, P. A.

Berg, M. J.

Blanco, E.

E. Blanco, H. Shen, and M. Ferrari, “Principles of nanoparticle design for overcoming biological barriers to drug delivery,” Nat. Biotechnol. 33, 941 (2015).
[Crossref]

Bonod, N.

Bontempi, N.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Brener, I.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

Chakrabarti, A.

Chen, H. J.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Choi, D.-Y.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

Chong, K. E.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

Danaeifar, M.

A. Sayanskiy, M. Danaeifar, P. Kapitanova, and A. E. Miroshnichenko, “All-dielectric metalattice with enhanced toroidal dipole response,” Adv. Opt. Mater. 6, 1800302 (2018).
[Crossref]

De Lange, O. L.

R. E. Raab and O. L. De Lange, Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, vol. 128 (Oxford University, 2005).

Decker, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Dezert, R.

R. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B 96, 180201 (2017).
[Crossref]

Dobosz, P.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref] [PubMed]

Dominguez, J.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Economou, E. N.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
[Crossref] [PubMed]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Falek, E.

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with Si nano-spacer,” Sci. Rep. 7, 12076 (2017).
[Crossref]

Falkner, M.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Fedotov, V. A.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

Fernandez-Corbaton, I.

M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
[Crossref]

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7, 14762 (2017).
[Crossref]

Ferrari, M.

E. Blanco, H. Shen, and M. Ferrari, “Principles of nanoparticle design for overcoming biological barriers to drug delivery,” Nat. Biotechnol. 33, 941 (2015).
[Crossref]

Filonov, D.

V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and P. Ginzburg, “Asymmetric backscattering from the hybrid magneto-electric meta particle,” Appl. Phys. Lett. 109, 203503 (2016).
[Crossref]

Fischer, T.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

Fleury, R.

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: origins, present, and future perspectives,” Phys. Rev. Appl. 4, 37001 (2015).
[Crossref]

Fox, R. F.

J. D. Jackson and R. F. Fox, “Classical Electrodynamics,” Am. J. Phys. 67, 841 (1999).
[Crossref]

Fu, Y. H.

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Galutin, Y.

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with Si nano-spacer,” Sci. Rep. 7, 12076 (2017).
[Crossref]

Gao, Y.

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

Geffrin, J.-M.

M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
[Crossref]

Geng, H.

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

Giles, C. L.

Ginzburg, P.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and P. Ginzburg, “Asymmetric backscattering from the hybrid magneto-electric meta particle,” Appl. Phys. Lett. 109, 203503 (2016).
[Crossref]

Gralak, B.

M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
[Crossref]

Greenberg, Y.

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

Heinrich, J. C.

D. W. Pepper and J. C. Heinrich, The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL (CRC, 2017).
[Crossref]

Huang, J.

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

Hughes, G. A.

G. A. Hughes, “Nanostructure-mediated drug delivery,” in Nanomedicine in Cancer, (Pan Stanford, 2017), pp. 47–72.

Jackson, J. D.

J. D. Jackson and R. F. Fox, “Classical Electrodynamics,” Am. J. Phys. 67, 841 (1999).
[Crossref]

Jacob, Z.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
[Crossref] [PubMed]

Jahani, S.

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
[Crossref] [PubMed]

Jiang, B.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 64026 (2006).
[Crossref]

Kafesaki, M.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

Kapitanova, P.

A. Sayanskiy, M. Danaeifar, P. Kapitanova, and A. E. Miroshnichenko, “All-dielectric metalattice with enhanced toroidal dipole response,” Adv. Opt. Mater. 6, 1800302 (2018).
[Crossref]

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Karabchevsky, A.

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
[Crossref]

A. K. Ospanova, A. Karabchevsky, and A. A. Basharin, “Metamaterial engineered transparency due to the nullifying of multipole moments,” Opt. Lett. 43, 503–506 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Si nanostrip pptical waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
[Crossref] [PubMed]

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with Si nano-spacer,” Sci. Rep. 7, 12076 (2017).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Light. Technol. 35, 2902–2908 (2017).
[Crossref]

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5, e16164 (2016).
[Crossref]

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Katiyi, A.

A. Katiyi and A. Karabchevsky, “Si nanostrip pptical waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
[Crossref]

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Light. Technol. 35, 2902–2908 (2017).
[Crossref]

Kavokin, A. V.

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5, e16164 (2016).
[Crossref]

Kerker, M.

Kivshar, Y.

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Kivshar, Y. S.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

Kozlov, V.

V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and P. Ginzburg, “Asymmetric backscattering from the hybrid magneto-electric meta particle,” Appl. Phys. Lett. 109, 203503 (2016).
[Crossref]

Krasnok, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Krasnok, A. E.

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Lin, Z. Y.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

Liu, P.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

Liu, W.

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Lukyanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

Lukyanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Markovich, D.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Miroshnichenko, A. E.

A. Sayanskiy, M. Danaeifar, P. Kapitanova, and A. E. Miroshnichenko, “All-dielectric metalattice with enhanced toroidal dipole response,” Adv. Opt. Mater. 6, 1800302 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20, 20599–20604 (2012).
[Crossref] [PubMed]

Monticone, F.

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: origins, present, and future perspectives,” Phys. Rev. Appl. 4, 37001 (2015).
[Crossref]

Mosayyebi, A.

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5, e16164 (2016).
[Crossref]

Neshev, D. N.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

Novak, J.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 64026 (2006).
[Crossref]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

Novitsky, A.

Orton, H. W.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

Ospanova, A. K.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic, 1998).

Pepper, D. W.

D. W. Pepper and J. C. Heinrich, The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL (CRC, 2017).
[Crossref]

Pertsch, T.

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Quidant, R.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref] [PubMed]

Raab, R. E.

R. E. Raab and O. L. De Lange, Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, vol. 128 (Oxford University, 2005).

Reinhardt, C.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Richetti, P.

R. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B 96, 180201 (2017).
[Crossref]

Rockstuhl, C.

M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
[Crossref]

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7, 14762 (2017).
[Crossref]

Rolly, B.

Saleh, H.

M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
[Crossref]

Salomatina, E. V.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 64026 (2006).
[Crossref]

Samusev, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Sanz, V.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref] [PubMed]

Savinov, V.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

Sayanskiy, A.

A. Sayanskiy, M. Danaeifar, P. Kapitanova, and A. E. Miroshnichenko, “All-dielectric metalattice with enhanced toroidal dipole response,” Adv. Opt. Mater. 6, 1800302 (2018).
[Crossref]

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

Shalin, A.

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

Shalin, A. S.

P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

K. V. Baryshnikova, A. Novitsky, A. B. Evlyukhin, and A. S. Shalin, “Magnetic field concentration with coaxial silicon nanocylinders in the optical spectral range,” J. Opt. Soc. Am. B 34, D36–D41 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
[Crossref] [PubMed]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
[Crossref]

V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and P. Ginzburg, “Asymmetric backscattering from the hybrid magneto-electric meta particle,” Appl. Phys. Lett. 109, 203503 (2016).
[Crossref]

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Shamkhi, H. K.

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Shen, H.

E. Blanco, H. Shen, and M. Ferrari, “Principles of nanoparticle design for overcoming biological barriers to drug delivery,” Nat. Biotechnol. 33, 941 (2015).
[Crossref]

Sorensen, C. M.

Soukoulis, C. M.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Staude, I.

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

Steinberg, B. Z.

V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and P. Ginzburg, “Asymmetric backscattering from the hybrid magneto-electric meta particle,” Appl. Phys. Lett. 109, 203503 (2016).
[Crossref]

Stout, B.

Svedendahl, M.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref] [PubMed]

Terekhov, P. D.

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Resonant forward scattering of light by high-refractive-index dielectric nanoparticles with toroidal dipole contribution,” Opt. Lett. 42, 835–838 (2017).
[Crossref] [PubMed]

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

Wang, C. X.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

Wang, D.-S.

Wang, H.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

Wang, S.

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

Wang, Y.

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

Yan, J. H.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

Yang, G. W.

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

Yaroslavsky, A. N.

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 64026 (2006).
[Crossref]

Yavas, O.

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref] [PubMed]

Zhang, J.

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

Zhao, Q.

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

Zheludev, N. I.

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

Q. Zhao, H. Geng, Y. Wang, Y. Gao, J. Huang, Y. Wang, J. Zhang, and S. Wang, “Hyaluronic acid oligosaccharide modified redox-responsive mesoporous silica nanoparticles for targeted drug delivery,” ACS Appl. Mater. Interfaces 6, 20290–20299 (2014).
[Crossref]

ACS Nano (1)

W. Liu, A. E. Miroshnichenko, D. N. Neshev, and Y. S. Kivshar, “Broadband unidirectional scattering by magneto-electric core-shell nanoparticles,” ACS Nano 6, 5489–5497 (2012).
[Crossref] [PubMed]

ACS Sens. (1)

A. Katiyi and A. Karabchevsky, “Si nanostrip pptical waveguide for on-chip broadband molecular overtone spectroscopy in near-infrared,” ACS Sens. 3, 618–623 (2018).
[Crossref]

Adv. Opt. Mater. (2)

M. Decker, I. Staude, M. Falkner, J. Dominguez, D. N. Neshev, I. Brener, T. Pertsch, and Y. S. Kivshar, “High-efficiency dielectric Huygens’ surfaces,” Adv. Opt. Mater. 3, 813–820 (2015).
[Crossref]

A. Sayanskiy, M. Danaeifar, P. Kapitanova, and A. E. Miroshnichenko, “All-dielectric metalattice with enhanced toroidal dipole response,” Adv. Opt. Mater. 6, 1800302 (2018).
[Crossref]

Am. J. Phys. (1)

J. D. Jackson and R. F. Fox, “Classical Electrodynamics,” Am. J. Phys. 67, 841 (1999).
[Crossref]

APL Photonics (1)

M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.-M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics 4, 020802 (2019).
[Crossref]

Appl. Phys. Lett. (1)

V. Kozlov, D. Filonov, A. S. Shalin, B. Z. Steinberg, and P. Ginzburg, “Asymmetric backscattering from the hybrid magneto-electric meta particle,” Appl. Phys. Lett. 109, 203503 (2016).
[Crossref]

J. Biomed. Opt. (1)

E. V. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11, 64026 (2006).
[Crossref]

J. Light. Technol. (1)

A. Katiyi and A. Karabchevsky, “Figure of merit of all-dielectric waveguide structures for absorption overtone spectroscopy,” J. Light. Technol. 35, 2902–2908 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Light: Sci. Appl. (1)

A. Karabchevsky, A. Mosayyebi, and A. V. Kavokin, “Tuning the chemiluminescence of a luminol flow using plasmonic nanoparticles,” Light: Sci. Appl. 5, e16164 (2016).
[Crossref]

Nano Lett. (2)

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12, 3749–3755 (2012).
[Crossref] [PubMed]

O. Yavas, M. Svedendahl, P. Dobosz, V. Sanz, and R. Quidant, “On-a-chip biosensing based on all-dielectric nanoresonators,” Nano Lett. 17, 4421–4426 (2017).
[Crossref] [PubMed]

Nanoscale (1)

N. Bontempi, K. E. Chong, H. W. Orton, I. Staude, D.-Y. Choi, I. Alessandri, Y. S. Kivshar, and D. N. Neshev, “Highly sensitive biosensors based on all-dielectric nanoresonators,” Nanoscale 9, 4972–4980 (2017).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

E. Blanco, H. Shen, and M. Ferrari, “Principles of nanoparticle design for overcoming biological barriers to drug delivery,” Nat. Biotechnol. 33, 941 (2015).
[Crossref]

Nat. Commun. (2)

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat. Commun. 3, 692 (2012).
[Crossref] [PubMed]

J. H. Yan, P. Liu, Z. Y. Lin, H. Wang, H. J. Chen, C. X. Wang, and G. W. Yang, “Magnetically induced forward scattering at visible wavelengths in silicon nanosphere oligomers,” Nat. Commun. 6, 1–9 (2015).
[Crossref]

Nat. Nanotechnol. (1)

S. Jahani and Z. Jacob, “All-dielectric metamaterials,” Nat. Nanotechnol. 11, 23 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407, 17–21 (2018).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. Appl. (1)

R. Fleury, F. Monticone, and A. Alù, “Invisibility and cloaking: origins, present, and future perspectives,” Phys. Rev. Appl. 4, 37001 (2015).
[Crossref]

Phys. Rev. B (6)

P. D. Terekhov, V. E. Babicheva, K. V. Baryshnikova, A. S. Shalin, A. Karabchevsky, and A. B. Evlyukhin, “Multipole analysis of dielectric metasurfaces composed of non-spherical nanoparticles and lattice invisibility effect,” Phys. Rev. B 99, 045424 (2019).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96, 35443 (2017).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Lukyanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 45404 (2010).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[Crossref]

R. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B 96, 180201 (2017).
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrary shaped nanoparticles,” Phys. Rev. B 94, 205434 (2016).
[Crossref]

Phys. Rev. X (1)

A. A. Basharin, M. Kafesaki, E. N. Economou, C. M. Soukoulis, V. A. Fedotov, V. Savinov, and N. I. Zheludev, “Dielectric metamaterials with toroidal dipolar response,” Phys. Rev. X 5, 11036 (2015).

Sci. Rep. (5)

M. I. Abdelrahman, C. Rockstuhl, and I. Fernandez-Corbaton, “Broadband suppression of backscattering at optical frequencies using low permittivity dielectric spheres,” Sci. Rep. 7, 14762 (2017).
[Crossref]

Y. Galutin, E. Falek, and A. Karabchevsky, “Invisibility cloaking scheme by evanescent fields distortion on composite plasmonic waveguides with Si nano-spacer,” Sci. Rep. 7, 12076 (2017).
[Crossref]

D. Markovich, K. Baryshnikova, A. Shalin, A. Samusev, A. Krasnok, P. Belov, and P. Ginzburg, “Enhancement of artificial magnetism via resonant bianisotropy,” Sci. Rep. 6, 22546 (2016).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2, 492 (2012).
[Crossref]

P. D. Terekhov, K. V. Baryshnikova, Y. Greenberg, Y. H. Fu, A. B. Evlyukhin, A. S. Shalin, and A. Karabchevsky, “Enhanced absorption in all-dielectric metasurfaces due to magnetic dipole excitation,” Sci. Rep. 9, 3438 (2019).

Science (1)

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Lukyanchuk, “Optically resonant dielectric nanostructures,” Science 354, 2472 (2016).
[Crossref] [PubMed]

Other (6)

G. A. Hughes, “Nanostructure-mediated drug delivery,” in Nanomedicine in Cancer, (Pan Stanford, 2017), pp. 47–72.

H. K. Shamkhi, K. V. Baryshnikova, A. Sayanskiy, P. Kapitanova, P. D. Terekhov, A. Karabchevsky, A. B. Evlyukhin, P. Belov, Y. Kivshar, and A. S. Shalin, “Transverse scattering with the generalised Kerker effect in high-index nanoparticles,” arxiv 1808.10708 (2018).

D. W. Pepper and J. C. Heinrich, The finite element method: basic concepts and applications with MATLAB, MAPLE, and COMSOL (CRC, 2017).
[Crossref]

COMSOL Multiphysics, www.comsol.com .

R. E. Raab and O. L. De Lange, Multipole Theory in Electromagnetism: Classical, Quantum, and Symmetry Aspects, with Applications, vol. 128 (Oxford University, 2005).

E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematics of the single particle suspended in a medium.
Fig. 2
Fig. 2 Total scattering cross-sections and the multipoles contributions calculated for the silicon nanocube embedded in different media. The refractive indexes of the surrounding media are (a) n = 1 (b) n = 1.2 (c) n = 1.4 (d) n = 1.6 (e) n = 1.8 (f) n = 2. ’Sum Scat’ states for the scattering cross-section as the sum of the multipole contributions; ’Total scat (COMSOL)’ states for the total scattering cross sections calculated directly in COMSOL. Black arrows mark the resonant areas and describe the dominant multipole contributions to the resonant scattering.
Fig. 3
Fig. 3 The multipole evolution of (a) the TED moment (b) the MD moment (c) the EQ moment (d) the MQ moment contribution to the scattering cross-section as the refractive index of surrounding medium rises.
Fig. 4
Fig. 4 The radiation patterns, the electric field distribution inside the particle and the 2D drawing of near-field distribution in (xz) plane for (a, d, g) n = 1, λ = 765 nm (b, e, h) n = 1.6, λ = 789 nm (c, f, i) n = 2, λ = 789 nm.
Fig. 5
Fig. 5 The scattering efficiency (a) and the asymmetry parameter (b) for 250 nm silicon cube embeded in a medium with n=1, 1.6, 2. (c) The 2D radiation patterns in the medium with n = 2 for various wavelengths λ as indicated in the legend. The radiation patterns are presented in the plane of the electric field polarization of the incident wave.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

E sca ( r ) e i k d r r k 0 2 4 π ε 0 [ ( n × [ D × n ] ] + 1 v d [ m × n ] + i k d 6 [ n × [ n × ( Q ^ n ) ] ] + i k d 2 v d [ n × ( M ^ n ) ] + k d 2 6 [ n × [ n × ( O ^ n n ) ] ] ) ,
C sca k 0 4 6 π ε 0 2 | E inc | 2 | D | 2 + k 0 4 ε d μ 0 6 π ε 0 | E i n c | 2 | m | 2 + k 0 6 ε d 720 π ε 0 2 | E inc | 2 | Q ^ | 2 + k 0 6 ε d 2 μ 0 80 π ε 0 | E inc | 2 | M ^ | 2 + k 0 8 ε d 2 1890 π ε d 2 | E inc | 2 | O ^ | 2 ,
g = 1 | E inc | 2 C sca | E sca | 2 r 2 cos θ d Ω ,
g 1 | E inc | 2 C sca k 0 4 360 π ε 0 2 v d 2 [ 60 v d { D x m y * D y m x * } 6 k d v d 2 { D α Q α z * } 18 k d { m α M α z * } k d 2 v d { Q y α * M x α Q x α * M y α } 24 315 k d 3 v d 2 { Q β β Q α α z * + 2 Q β z O β β α * 5 Q α β O α β z * } ] .

Metrics