Abstract

Metal structures with resonances in the mid-infrared spectral range enable an increased sensitivity for detecting molecular vibrational signals. 1D gold strip gratings have already proven potential in surface-enhanced infrared absorption (SEIRA) experiments, as grating resonances and local electric field enhancement can be spectrally tuned by changing the grating period. Here, we identify the grating strip width as another important design parameter, which is investigated for further optimization of molecular absorption signal enhancement in SEIRA experiments. Previous literature used gratings to increase light absorption in relatively thick polymer layers. Here, we demonstrate the capability of gold strip gratings fabricated on a CaF2 substrate to enhance the CH2 vibrational modes of a thiol-based monolayer of MHDA. An optimal choice of the strip width w = 1.33 μm enables a maximum vibrational signal enhancement factor of around 84, when normalized to microscopic GIR measurements of an MHDA monolayer on an extended gold surface. Numerical simulations demonstrate the broadband local field enhancement of gold strip gratings, which are suitable for enhancing multiple vibrational modes in a large hot-spot volume.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Surface enhanced infrared spectroscopy with gold strip gratings

Tao Wang, Vu Hoa Nguyen, Andreas Buchenauer, Uwe Schnakenberg, and Thomas Taubner
Opt. Express 21(7) 9005-9010 (2013)

Enhanced ultrafast infrared spectroscopy using coupled nanoantenna arrays

F. Kusa, I. Morichika, A. Takegami, and S. Ashihara
Opt. Express 25(11) 12896-12907 (2017)

Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy

Wei Wei, Na Chen, Jinpeng Nong, Guilian Lan, Wei Wang, Juemin Yi, and Linlong Tang
Opt. Express 26(13) 16903-16916 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Chalmers and P. R. Griffiths, Handbook of vibrational spectroscopy (John Wiley & Sons, 2002), 2nd ed.
  2. F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117, 5110–5145 (2017).
    [Crossref] [PubMed]
  3. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
    [Crossref] [PubMed]
  4. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
    [Crossref] [PubMed]
  5. A. John-Herpin, A. Tittl, and H. Altug, “Quantifying the limits of detection of surface-enhanced infrared spectroscopy with grating order-coupled nanogap antennas,” ACS Photonics 5, 4117–4124 (2018).
    [Crossref]
  6. C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
    [Crossref] [PubMed]
  7. T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7, 39–79 (2017).
    [Crossref]
  8. J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
    [Crossref]
  9. L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
    [Crossref] [PubMed]
  10. E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
    [Crossref]
  11. J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
    [Crossref]
  12. J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, “Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography,” Opt. Express 22, 14425–14432 (2014).
    [Crossref] [PubMed]
  13. L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
    [Crossref] [PubMed]
  14. M. Reininghaus, D. Wortmann, Z. Cao, J. M. Hoffmann, and T. Taubner, “Fabrication and spectral tuning of standing gold infrared antennas using single fs-laser pulses,” Opt. Express 21, 32176 (2013).
    [Crossref]
  15. M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
    [Crossref] [PubMed]
  16. O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
    [Crossref] [PubMed]
  17. E. Pfitzner, H. Seki, R. Schlesinger, K. Ataka, and J. Heberle, “Disc antenna enhanced infrared spectroscopy: From self-assembled monolayers to membrane proteins,” ACS Sensors 3, 984–991 (2018).
    [Crossref] [PubMed]
  18. P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, 2007), 2nd ed.
    [Crossref]
  19. S. Ayas, G. Bakan, E. Ozgur, K. Celebi, and A. Dana, “Universal infrared absorption spectroscopy using uniform electromagnetic enhancement,” ACS Photonics 3, 337–342 (2016).
    [Crossref]
  20. T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21, 9005–9010 (2013).
    [Crossref] [PubMed]
  21. J. W. Petefish and A. C. Hillier, “Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance,” Anal. Chem. 86, 2610–2617 (2014).
    [Crossref] [PubMed]
  22. J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
    [Crossref] [PubMed]
  23. J. Lazar, R. R. Rosencrantz, L. Elling, and U. Schnakenberg, “Simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance in a microfluidic chip: New insights into the spatial origin of the signal,” Anal. Chem. 88, 9590–9596 (2016).
    [Crossref] [PubMed]
  24. S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. Meunier, “Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” Analyst 139, 596–602 (2015).
    [Crossref]
  25. T. W. W. Maß and T. Taubner, “Incident angle-tuning of infrared antenna array resonances for molecular sensing,” ACS Photonics 2, 1498–1504 (2015).
    [Crossref]
  26. J. W. Petefish and A. C. Hillier, “Multipitched diffraction gratings for surface plasmon resonance-enhanced infrared reflection absorption spectroscopy,” Anal. Chem. 87, 10862–10870 (2015).
    [Crossref] [PubMed]
  27. H. Ibach and H. Lüth, Festkörperphysik (Springer, 2009), 7th ed.
  28. V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 19, 11202 (2011).
    [Crossref] [PubMed]
  29. J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett. 101, 193105 (2012).
    [Crossref]
  30. D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
    [Crossref] [PubMed]
  31. D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130, 2193–2198 (1963).
    [Crossref]
  32. A. Pucci, “IR spectroscopy of adsorbates on ultrathin metal films,” Phys. Status Solidi (b) 242, 2704–2713 (2005).
    [Crossref]
  33. C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
    [Crossref]

2018 (2)

A. John-Herpin, A. Tittl, and H. Altug, “Quantifying the limits of detection of surface-enhanced infrared spectroscopy with grating order-coupled nanogap antennas,” ACS Photonics 5, 4117–4124 (2018).
[Crossref]

E. Pfitzner, H. Seki, R. Schlesinger, K. Ataka, and J. Heberle, “Disc antenna enhanced infrared spectroscopy: From self-assembled monolayers to membrane proteins,” ACS Sensors 3, 984–991 (2018).
[Crossref] [PubMed]

2017 (2)

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117, 5110–5145 (2017).
[Crossref] [PubMed]

T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7, 39–79 (2017).
[Crossref]

2016 (3)

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

J. Lazar, R. R. Rosencrantz, L. Elling, and U. Schnakenberg, “Simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance in a microfluidic chip: New insights into the spatial origin of the signal,” Anal. Chem. 88, 9590–9596 (2016).
[Crossref] [PubMed]

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, and A. Dana, “Universal infrared absorption spectroscopy using uniform electromagnetic enhancement,” ACS Photonics 3, 337–342 (2016).
[Crossref]

2015 (8)

J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
[Crossref] [PubMed]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. Meunier, “Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” Analyst 139, 596–602 (2015).
[Crossref]

T. W. W. Maß and T. Taubner, “Incident angle-tuning of infrared antenna array resonances for molecular sensing,” ACS Photonics 2, 1498–1504 (2015).
[Crossref]

J. W. Petefish and A. C. Hillier, “Multipitched diffraction gratings for surface plasmon resonance-enhanced infrared reflection absorption spectroscopy,” Anal. Chem. 87, 10862–10870 (2015).
[Crossref] [PubMed]

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
[Crossref]

2014 (3)

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

J. W. Petefish and A. C. Hillier, “Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance,” Anal. Chem. 86, 2610–2617 (2014).
[Crossref] [PubMed]

J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, “Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography,” Opt. Express 22, 14425–14432 (2014).
[Crossref] [PubMed]

2013 (5)

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21, 9005–9010 (2013).
[Crossref] [PubMed]

M. Reininghaus, D. Wortmann, Z. Cao, J. M. Hoffmann, and T. Taubner, “Fabrication and spectral tuning of standing gold infrared antennas using single fs-laser pulses,” Opt. Express 21, 32176 (2013).
[Crossref]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

2012 (1)

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett. 101, 193105 (2012).
[Crossref]

2011 (1)

2009 (2)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

2008 (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

2005 (1)

A. Pucci, “IR spectroscopy of adsorbates on ultrathin metal films,” Phys. Status Solidi (b) 242, 2704–2713 (2005).
[Crossref]

1963 (1)

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130, 2193–2198 (1963).
[Crossref]

Adato, R.

V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 19, 11202 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Aizpurua, J.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Alabastri, A.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Altug, H.

A. John-Herpin, A. Tittl, and H. Altug, “Quantifying the limits of detection of surface-enhanced infrared spectroscopy with grating order-coupled nanogap antennas,” ACS Photonics 5, 4117–4124 (2018).
[Crossref]

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 19, 11202 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Amsden, J. J.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Ataka, K.

E. Pfitzner, H. Seki, R. Schlesinger, K. Ataka, and J. Heberle, “Disc antenna enhanced infrared spectroscopy: From self-assembled monolayers to membrane proteins,” ACS Sensors 3, 984–991 (2018).
[Crossref] [PubMed]

Ayas, S.

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, and A. Dana, “Universal infrared absorption spectroscopy using uniform electromagnetic enhancement,” ACS Photonics 3, 337–342 (2016).
[Crossref]

Bajoni, D.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Bakan, G.

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, and A. Dana, “Universal infrared absorption spectroscopy using uniform electromagnetic enhancement,” ACS Photonics 3, 337–342 (2016).
[Crossref]

Bartal, G.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Berreman, D. W.

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130, 2193–2198 (1963).
[Crossref]

Boker, A.

J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
[Crossref] [PubMed]

Brown, L. V.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Buchenauer, A.

Cao, Z.

Celebi, K.

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, and A. Dana, “Universal infrared absorption spectroscopy using uniform electromagnetic enhancement,” ACS Photonics 3, 337–342 (2016).
[Crossref]

Chalmers, J. M.

J. M. Chalmers and P. R. Griffiths, Handbook of vibrational spectroscopy (John Wiley & Sons, 2002), 2nd ed.

Chen, K.

Chigrin, D. N.

Chirumamilla, M.

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

Cornelius, T. W.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Cubukcu, E.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Dallaire, A.-M.

S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. Meunier, “Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” Analyst 139, 596–602 (2015).
[Crossref]

Dana, A.

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, and A. Dana, “Universal infrared absorption spectroscopy using uniform electromagnetic enhancement,” ACS Photonics 3, 337–342 (2016).
[Crossref]

De Angelis, F.

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

De Haseth, J. A.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, 2007), 2nd ed.
[Crossref]

Dipalo, M.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Doré-Mathieu, L.

S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. Meunier, “Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” Analyst 139, 596–602 (2015).
[Crossref]

Dregely, D.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Duan, H.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Elling, L.

J. Lazar, R. R. Rosencrantz, L. Elling, and U. Schnakenberg, “Simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance in a microfluidic chip: New insights into the spatial origin of the signal,” Anal. Chem. 88, 9590–9596 (2016).
[Crossref] [PubMed]

J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
[Crossref] [PubMed]

Erramilli, S.

V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 19, 11202 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Etezadi, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

García-Etxarri, A.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Gerbert, D.

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Giessen, H.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117, 5110–5145 (2017).
[Crossref] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Griffiths, P. R.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, 2007), 2nd ed.
[Crossref]

J. M. Chalmers and P. R. Griffiths, Handbook of vibrational spectroscopy (John Wiley & Sons, 2002), 2nd ed.

Halas, N. J.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Härtling, T.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Hartung, A.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Hauer, B.

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett. 101, 193105 (2012).
[Crossref]

Heberle, J.

E. Pfitzner, H. Seki, R. Schlesinger, K. Ataka, and J. Heberle, “Disc antenna enhanced infrared spectroscopy: From self-assembled monolayers to membrane proteins,” ACS Sensors 3, 984–991 (2018).
[Crossref] [PubMed]

Hillier, A. C.

J. W. Petefish and A. C. Hillier, “Multipitched diffraction gratings for surface plasmon resonance-enhanced infrared reflection absorption spectroscopy,” Anal. Chem. 87, 10862–10870 (2015).
[Crossref] [PubMed]

J. W. Petefish and A. C. Hillier, “Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance,” Anal. Chem. 86, 2610–2617 (2014).
[Crossref] [PubMed]

Hoffmann, J. M.

J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, “Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography,” Opt. Express 22, 14425–14432 (2014).
[Crossref] [PubMed]

M. Reininghaus, D. Wortmann, Z. Cao, J. M. Hoffmann, and T. Taubner, “Fabrication and spectral tuning of standing gold infrared antennas using single fs-laser pulses,” Opt. Express 21, 32176 (2013).
[Crossref]

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett. 101, 193105 (2012).
[Crossref]

Hong, M. K.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Huck, C.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117, 5110–5145 (2017).
[Crossref] [PubMed]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
[Crossref]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Ibach, H.

H. Ibach and H. Lüth, Festkörperphysik (Springer, 2009), 7th ed.

Janssen, H.

Jeys, T. H.

John-Herpin, A.

A. John-Herpin, A. Tittl, and H. Altug, “Quantifying the limits of detection of surface-enhanced infrared spectroscopy with grating order-coupled nanogap antennas,” ACS Photonics 5, 4117–4124 (2018).
[Crossref]

Kaplan, D. L.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Karim, S.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Katzmann, J.

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

King, N.

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Latendresse, V.

S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. Meunier, “Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” Analyst 139, 596–602 (2015).
[Crossref]

Lazar, J.

J. Lazar, R. R. Rosencrantz, L. Elling, and U. Schnakenberg, “Simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance in a microfluidic chip: New insights into the spatial origin of the signal,” Anal. Chem. 88, 9590–9596 (2016).
[Crossref] [PubMed]

J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
[Crossref] [PubMed]

Liberman, V.

Limaj, O.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

Lüth, H.

H. Ibach and H. Lüth, Festkörperphysik (Springer, 2009), 7th ed.

Malerba, M.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Maß, T. W. W.

T. W. W. Maß and T. Taubner, “Incident angle-tuning of infrared antenna array resonances for molecular sensing,” ACS Photonics 2, 1498–1504 (2015).
[Crossref]

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Mayerhöfer, T. G.

T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7, 39–79 (2017).
[Crossref]

Mertiri, A.

Messina, G. C.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Meunier, M.

S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. Meunier, “Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” Analyst 139, 596–602 (2015).
[Crossref]

Miele, E.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Neubrech, F.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117, 5110–5145 (2017).
[Crossref] [PubMed]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
[Crossref]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Nguyen, V. H.

Nordlander, P.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Oh, S.-H.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

Omenetto, F. G.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Ozgur, E.

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, and A. Dana, “Universal infrared absorption spectroscopy using uniform electromagnetic enhancement,” ACS Photonics 3, 337–342 (2016).
[Crossref]

Park, H.

J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
[Crossref] [PubMed]

Park, Y.-S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Patrini, M.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Patskovsky, S.

S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. Meunier, “Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” Analyst 139, 596–602 (2015).
[Crossref]

Petefish, J. W.

J. W. Petefish and A. C. Hillier, “Multipitched diffraction gratings for surface plasmon resonance-enhanced infrared reflection absorption spectroscopy,” Anal. Chem. 87, 10862–10870 (2015).
[Crossref] [PubMed]

J. W. Petefish and A. C. Hillier, “Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance,” Anal. Chem. 86, 2610–2617 (2014).
[Crossref] [PubMed]

Pfitzner, E.

E. Pfitzner, H. Seki, R. Schlesinger, K. Ataka, and J. Heberle, “Disc antenna enhanced infrared spectroscopy: From self-assembled monolayers to membrane proteins,” ACS Sensors 3, 984–991 (2018).
[Crossref] [PubMed]

Popp, J.

T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7, 39–79 (2017).
[Crossref]

Proietti Zaccaria, R.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Pucci, A.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117, 5110–5145 (2017).
[Crossref] [PubMed]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
[Crossref]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

A. Pucci, “IR spectroscopy of adsorbates on ultrathin metal films,” Phys. Status Solidi (b) 242, 2704–2713 (2005).
[Crossref]

Reininghaus, M.

Richter, J.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Rodrigo, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

Rosencrantz, R. R.

J. Lazar, R. R. Rosencrantz, L. Elling, and U. Schnakenberg, “Simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance in a microfluidic chip: New insights into the spatial origin of the signal,” Anal. Chem. 88, 9590–9596 (2016).
[Crossref] [PubMed]

J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
[Crossref] [PubMed]

Schlesinger, R.

E. Pfitzner, H. Seki, R. Schlesinger, K. Ataka, and J. Heberle, “Disc antenna enhanced infrared spectroscopy: From self-assembled monolayers to membrane proteins,” ACS Sensors 3, 984–991 (2018).
[Crossref] [PubMed]

Schnakenberg, U.

J. Lazar, R. R. Rosencrantz, L. Elling, and U. Schnakenberg, “Simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance in a microfluidic chip: New insights into the spatial origin of the signal,” Anal. Chem. 88, 9590–9596 (2016).
[Crossref] [PubMed]

J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
[Crossref] [PubMed]

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21, 9005–9010 (2013).
[Crossref] [PubMed]

Seki, H.

E. Pfitzner, H. Seki, R. Schlesinger, K. Ataka, and J. Heberle, “Disc antenna enhanced infrared spectroscopy: From self-assembled monolayers to membrane proteins,” ACS Sensors 3, 984–991 (2018).
[Crossref] [PubMed]

Sobhani, H.

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Taubner, T.

T. W. W. Maß and T. Taubner, “Incident angle-tuning of infrared antenna array resonances for molecular sensing,” ACS Photonics 2, 1498–1504 (2015).
[Crossref]

J. M. Hoffmann, H. Janssen, D. N. Chigrin, and T. Taubner, “Enhanced infrared spectroscopy using small-gap antennas prepared with two-step evaporation nanosphere lithography,” Opt. Express 22, 14425–14432 (2014).
[Crossref] [PubMed]

T. Wang, V. H. Nguyen, A. Buchenauer, U. Schnakenberg, and T. Taubner, “Surface enhanced infrared spectroscopy with gold strip gratings,” Opt. Express 21, 9005–9010 (2013).
[Crossref] [PubMed]

M. Reininghaus, D. Wortmann, Z. Cao, J. M. Hoffmann, and T. Taubner, “Fabrication and spectral tuning of standing gold infrared antennas using single fs-laser pulses,” Opt. Express 21, 32176 (2013).
[Crossref]

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett. 101, 193105 (2012).
[Crossref]

Tittl, A.

A. John-Herpin, A. Tittl, and H. Altug, “Quantifying the limits of detection of surface-enhanced infrared spectroscopy with grating order-coupled nanogap antennas,” ACS Photonics 5, 4117–4124 (2018).
[Crossref]

Toma, A.

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
[Crossref]

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Vogelgesang, R.

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Vogt, J.

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
[Crossref]

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

Wang, T.

Weber, K.

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117, 5110–5145 (2017).
[Crossref] [PubMed]

Wittenberg, N. J.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

Wortmann, D.

Yang, X.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

Yanik, A. A.

V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 19, 11202 (2011).
[Crossref] [PubMed]

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Yin, X.

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Yoo, D.

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

Zhang, S.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Zhang, X.

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

Zhao, K.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

Zheng, B. Y.

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

Zilio, P.

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

ACS Nano (1)

C. Huck, F. Neubrech, J. Vogt, A. Toma, D. Gerbert, J. Katzmann, T. Härtling, and A. Pucci, “Surface-enhanced infrared spectroscopy using nanometer-sized gaps,” ACS Nano 8, 4908–4914 (2014).
[Crossref] [PubMed]

ACS Photonics (4)

A. John-Herpin, A. Tittl, and H. Altug, “Quantifying the limits of detection of surface-enhanced infrared spectroscopy with grating order-coupled nanogap antennas,” ACS Photonics 5, 4117–4124 (2018).
[Crossref]

T. W. W. Maß and T. Taubner, “Incident angle-tuning of infrared antenna array resonances for molecular sensing,” ACS Photonics 2, 1498–1504 (2015).
[Crossref]

S. Ayas, G. Bakan, E. Ozgur, K. Celebi, and A. Dana, “Universal infrared absorption spectroscopy using uniform electromagnetic enhancement,” ACS Photonics 3, 337–342 (2016).
[Crossref]

C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, “Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared,” ACS Photonics 2, 497–505 (2015).
[Crossref]

ACS Sensors (1)

E. Pfitzner, H. Seki, R. Schlesinger, K. Ataka, and J. Heberle, “Disc antenna enhanced infrared spectroscopy: From self-assembled monolayers to membrane proteins,” ACS Sensors 3, 984–991 (2018).
[Crossref] [PubMed]

Anal. Chem. (3)

J. W. Petefish and A. C. Hillier, “Multipitched diffraction gratings for surface plasmon resonance-enhanced infrared reflection absorption spectroscopy,” Anal. Chem. 87, 10862–10870 (2015).
[Crossref] [PubMed]

J. W. Petefish and A. C. Hillier, “Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance,” Anal. Chem. 86, 2610–2617 (2014).
[Crossref] [PubMed]

J. Lazar, R. R. Rosencrantz, L. Elling, and U. Schnakenberg, “Simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance in a microfluidic chip: New insights into the spatial origin of the signal,” Anal. Chem. 88, 9590–9596 (2016).
[Crossref] [PubMed]

Analyst (1)

S. Patskovsky, V. Latendresse, A.-M. Dallaire, L. Doré-Mathieu, and M. Meunier, “Combined surface plasmon resonance and impedance spectroscopy systems for biosensing,” Analyst 139, 596–602 (2015).
[Crossref]

Appl. Phys. Lett. (2)

E. Cubukcu, S. Zhang, Y.-S. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95, 043113 (2009).
[Crossref]

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett. 101, 193105 (2012).
[Crossref]

Chem. Rev. (1)

F. Neubrech, C. Huck, K. Weber, A. Pucci, and H. Giessen, “Surface-enhanced infrared spectroscopy using resonant nanoantennas,” Chem. Rev. 117, 5110–5145 (2017).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, “Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties,” J. Am. Chem. Soc. 135, 3688–3695 (2013).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

J. M. Hoffmann, X. Yin, J. Richter, A. Hartung, T. W. W. Maß, and T. Taubner, “Low-cost infrared resonant structures for surface-enhanced infrared absorption spectroscopy in the fingerprint region from 3 to 13 μm,” J. Phys. Chem. C 117, 11311–11316 (2013).
[Crossref]

Macromol. Rapid Commun. (1)

J. Lazar, H. Park, R. R. Rosencrantz, A. Boker, L. Elling, and U. Schnakenberg, “Evaluating the thickness of multivalent glycopolymer brushes for lectin binding,” Macromol. Rapid Commun. 36, 1472–1478 (2015).
[Crossref] [PubMed]

Nano Lett. (2)

L. V. Brown, X. Yang, K. Zhao, B. Y. Zheng, P. Nordlander, and N. J. Halas, “Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA),” Nano Lett. 15, 1272–1280 (2015).
[Crossref] [PubMed]

O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, and H. Altug, “Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes,” Nano Lett. 16, 1502–1508 (2016).
[Crossref] [PubMed]

Nanophotonics (1)

T. G. Mayerhöfer and J. Popp, “Periodic array-based substrates for surface-enhanced infrared spectroscopy,” Nanophotonics 7, 39–79 (2017).
[Crossref]

Nat. Commun. (1)

D. Dregely, F. Neubrech, H. Duan, R. Vogelgesang, and H. Giessen, “Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures,” Nat. Commun. 4, 2237 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Chem. Chem. Phys. (1)

J. Vogt, C. Huck, F. Neubrech, A. Toma, D. Gerbert, and A. Pucci, “Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals,” Phys. Chem. Chem. Phys. 17, 21169–21175 (2015).
[Crossref]

Phys. Rev. (1)

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130, 2193–2198 (1963).
[Crossref]

Phys. Rev. Lett. (1)

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101, 157403 (2008).
[Crossref] [PubMed]

Phys. Status Solidi (b) (1)

A. Pucci, “IR spectroscopy of adsorbates on ultrathin metal films,” Phys. Status Solidi (b) 242, 2704–2713 (2005).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U. S. A. 106, 19227–19232 (2009).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Malerba, A. Alabastri, E. Miele, P. Zilio, M. Patrini, D. Bajoni, G. C. Messina, M. Dipalo, A. Toma, R. Proietti Zaccaria, and F. De Angelis, “3D vertical nanostructures for enhanced infrared plasmonics,” Sci. Rep. 5, 16436 (2015).
[Crossref] [PubMed]

Other (3)

H. Ibach and H. Lüth, Festkörperphysik (Springer, 2009), 7th ed.

J. M. Chalmers and P. R. Griffiths, Handbook of vibrational spectroscopy (John Wiley & Sons, 2002), 2nd ed.

P. R. Griffiths and J. A. De Haseth, Fourier Transform Infrared Spectrometry (John Wiley & Sons, 2007), 2nd ed.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Cross-sectional view (x-z-plane) of a gold strip grating on a CaF2 substrate with indicated parameters: grating period p, gap g, strip width w and strip height h. An oblique incidence is indicated by the polar angle θ. The electric field vector is in the plane of incidence. (b) Illustration of the fundamental charge carrier oscillation in the grating stripes with indicated coordinate system. (c) Grating analysis (top panel) of gold strip grating reflectance measurement (bottom panel). The calculated spectral positions of the grating resonances at the average polar angle of incidence (θ = 17°) are related to measured reflectance peaks.
Fig. 2
Fig. 2 (a) Numerical simulations of the local near-field enhancement spectra at 1 nm distance (green arrow) from single gold structures with varying width w on a CaF2 substrate. The width w = 1 μm and the height h = 35 nm of the gold structures remain constant. (b) Numerical simulations of the local near-field enhancement of infinitely extended gold stripes with varying strip widths w. The resonances redshift with increasing w.
Fig. 3
Fig. 3 Strip width w variation of gold strip gratings having a fixed period p = 1.95 μm. (a) SEM images of gold strip gratings on a CaF2 substrate. (b) Measured reflectance spectra. The green shaded bar marks the spectral region of CH2 vibrational modes. (c) Comparison of simulated local field enhancement spectra at 1 nm distance from the stripes for a single stripe (dashed curves) and a grating (solid curves) for two different strip widths. (d) Simulated reflectance spectra with the geometries deduced from the experimental structures presented in (a). The dashed vertical lines mark spectral positions of the grating resonances corresponding to the air and CaF2 half-spaces.
Fig. 4
Fig. 4 (a) Sketch of an MHDA SAM on a thin gold film. (b) Sketch of an MHDA SAM on a gold strip grating. The molecules are only bound to the gold stripes. (c) Exemplary reflectance spectrum of an MHDA covered gold strip grating with period p = 1.95 μm and strip width w = 1.17 μm. Vertical dashed lines mark the symmetric and asymmetric CH2 stretch vibrations. A cubic spline interpolation (red) is used to extract the vibrational signals. The green shaded regions are omitted for the interpolation.
Fig. 5
Fig. 5 (a) Measured reflectance difference spectra for MHDA covered gold strip gratings having different strip widths w and a constant period p = 1.95 μm. (b) Simulated local field enhancement at 1 nm distance from strips (see red arrow) with different widths w at ν̃ = 2918 cm−1. (c) Vibrational signals of the symmetric (blue) and asymmetric (red) CH2 stretch vibrations extracted from the reflectance difference spectra of gratings with different strip widths w.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k scat , = k inc , + G ,
λ ( j 0 ) = p ( n scat | j | n inc sin ( θ inc ) j ) ,

Metrics