Abstract

Vertical-emitting optical couplers that convert in-plane guided light to out-of-plane emission are crucial elements for future photonic integrated circuits. However, traditional vertical-coupling elements, such as grating couplers, by default radiate light in both upward and downward directions, leading to a significant reduction of device efficiency. In this paper, we propose to solve this problem using a novel nanopatch antenna array, inspired by patch antenna theories commonly deployed in microwave circuits. The proposed nanopatch array features an up-to-down emission directionality up to 12.91 dBc and a wide operating bandwidth of over 400 nm simultaneously. Compared with a typical waveguide grating antenna, our design shows a significantly higher free-space gain of 24.27 dBi. The unidirectional, efficient, and broadband antenna arrays presented here are promising for a range of integrated photonics applications, including inter-chip photonic interconnects, light ranging and detection, optical communications, and biological imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Super directive Yagi–Uda nanoantennas with an ellipsoid reflector for optimal radiation emission

K. R. Mahmoud, Mohamed Hussein, Mohamed Farhat. O. Hameed, and S. S. A. Obayya
J. Opt. Soc. Am. B 34(10) 2041-2049 (2017)

Design considerations of super-directive nanoantennas for core-shell nanowires

Abdelrahman M. Ghanim, Mohamed Hussein, Mohamed Farhat O. Hameed, and S. S. A. Obayya
J. Opt. Soc. Am. B 35(1) 182-188 (2018)

Array of plasmonic Vivaldi antennas coupled to silicon waveguides for wireless networks through on-chip optical technology - WiNOT

Giovanna Calò, Gaetano Bellanca, Badrul Alam, Ali Emre Kaplan, Paolo Bassi, and Vincenzo Petruzzelli
Opt. Express 26(23) 30267-30277 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Wang, A. Nirmalathas, C. Lim, E. Wong, K. Alameh, H. Li, and E. Skafidas, “High-speed indoor optical wireless communication system employing a silicon integrated photonic circuit,” Opt. Lett. 43(13), 3132–3135 (2018).
    [Crossref] [PubMed]
  2. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  3. C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
    [Crossref] [PubMed]
  4. C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
    [Crossref]
  5. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [Crossref] [PubMed]
  6. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [Crossref]
  7. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  8. J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
    [Crossref] [PubMed]
  9. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
    [Crossref]
  10. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  11. J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
    [Crossref]
  12. K. Shang, C. Qin, Y. Zhang, G. Liu, X. Xiao, S. Feng, and S. J. B. Yoo, “Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view,” Opt. Express 25(17), 19655–19661 (2017).
    [Crossref] [PubMed]
  13. M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42(13), 2563–2566 (2017).
    [Crossref] [PubMed]
  14. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
    [Crossref]
  15. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  16. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
    [Crossref] [PubMed]
  17. M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
    [Crossref] [PubMed]
  18. T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
    [Crossref]
  19. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  20. S. W. Qu and Z. P. Nie, “Plasmonic nanopatch array for optical integrated circuit applications,” Sci. Rep. 3(1), 3172 (2013).
    [Crossref] [PubMed]
  21. H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
    [Crossref]
  22. L. Yousefi and A. C. Foster, “Waveguide-fed optical hybrid plasmonic patch nano-antenna,” Opt. Express 20(16), 18326–18335 (2012).
    [Crossref] [PubMed]
  23. A. Yaacobi and M. R. Watts, “Frequency-chirped subwavelength nanoantennas,” Opt. Lett. 37(23), 4979–4981 (2012).
    [Crossref] [PubMed]
  24. A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Lett. 37(9), 1454–1456 (2012).
    [Crossref] [PubMed]
  25. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
    [Crossref] [PubMed]
  26. M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
    [Crossref] [PubMed]
  27. M. Klemm, “Novel directional nanoantennas for single-emitter sources and wireless nano-links,” Int. J. Opt. 2012, 348306 (2012).
    [Crossref]
  28. F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
    [Crossref]
  29. Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
    [Crossref] [PubMed]
  30. K. Han, V. Yurlov, and N. E. Yu, “Highly directional waveguide grating antenna for optical phased array,” Curr. Appl. Phys. 18(7), 824–828 (2018).
    [Crossref]
  31. S. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express 19(9), 8888–8902 (2011).
    [Crossref] [PubMed]
  32. Y. Song, J. Wang, M. Yan, and M. Qiu, “Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter,” J. Opt. 13(7), 075002 (2011).
    [Crossref]
  33. D. C. Zografopoulos, M. A. Swillam, L. A. Shahada, and R. Beccherelli, “Hybrid electro-optic plasmonic modulators based on directional coupler switches,” Appl. Phys., A Mater. Sci. Process. 122(4), 344 (2016).
    [Crossref]
  34. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
    [Crossref]
  35. F. Bigourdan, F. Marquier, J. P. Hugonin, and J. J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22(3), 2337–2347 (2014).
    [Crossref] [PubMed]
  36. R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
    [Crossref] [PubMed]
  37. G. S. Unal and M. I. Aksun, “Bridging the gap between RF and optical patch antenna analysis via the cavity model,” Sci. Rep. 5(1), 15941 (2015).
    [Crossref] [PubMed]
  38. F. Minkowski, F. Wang, A. Chakrabarty, and Q. H. Wei, “Resonant cavity modes of circular plasmonic patch nanoantennas,” Appl. Phys. Lett. 104(2), 021111 (2014).
    [Crossref]
  39. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  40. A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
    [Crossref] [PubMed]
  41. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [Crossref] [PubMed]
  42. M. Zadka, Y. C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26(3), 2528–2534 (2018).
    [Crossref] [PubMed]
  43. X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
    [Crossref] [PubMed]
  44. G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
    [Crossref]
  45. D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
    [Crossref]

2018 (3)

2017 (5)

2016 (4)

D. C. Zografopoulos, M. A. Swillam, L. A. Shahada, and R. Beccherelli, “Hybrid electro-optic plasmonic modulators based on directional coupler switches,” Appl. Phys., A Mater. Sci. Process. 122(4), 344 (2016).
[Crossref]

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

2015 (2)

G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
[Crossref]

G. S. Unal and M. I. Aksun, “Bridging the gap between RF and optical patch antenna analysis via the cavity model,” Sci. Rep. 5(1), 15941 (2015).
[Crossref] [PubMed]

2014 (4)

F. Minkowski, F. Wang, A. Chakrabarty, and Q. H. Wei, “Resonant cavity modes of circular plasmonic patch nanoantennas,” Appl. Phys. Lett. 104(2), 021111 (2014).
[Crossref]

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

F. Bigourdan, F. Marquier, J. P. Hugonin, and J. J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22(3), 2337–2347 (2014).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

2013 (4)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
[Crossref] [PubMed]

S. W. Qu and Z. P. Nie, “Plasmonic nanopatch array for optical integrated circuit applications,” Sci. Rep. 3(1), 3172 (2013).
[Crossref] [PubMed]

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

2012 (5)

2011 (5)

2010 (5)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

2007 (3)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[Crossref] [PubMed]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

2006 (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

2004 (1)

2002 (2)

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Aksun, M. I.

G. S. Unal and M. I. Aksun, “Bridging the gap between RF and optical patch antenna analysis via the cavity model,” Sci. Rep. 5(1), 15941 (2015).
[Crossref] [PubMed]

Alameh, K.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Ayre, M.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, R.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Beccherelli, R.

D. C. Zografopoulos, M. A. Swillam, L. A. Shahada, and R. Beccherelli, “Hybrid electro-optic plasmonic modulators based on directional coupler switches,” Appl. Phys., A Mater. Sci. Process. 122(4), 344 (2016).
[Crossref]

Bellieres, L.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bigourdan, F.

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Bolten, J.

G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
[Crossref]

Brimont, A.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Byrd, M. J.

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chakrabarty, A.

F. Minkowski, F. Wang, A. Chakrabarty, and Q. H. Wei, “Resonant cavity modes of circular plasmonic patch nanoantennas,” Appl. Phys. Lett. 104(2), 021111 (2014).
[Crossref]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

Chakravarty, S.

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

Chang, Y. C.

Chen, R. T.

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

Chen, X.

Chigrin, D. N.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Cole, D. B.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Covey, J.

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

Csúcs, G.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Dabos, G.

G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
[Crossref]

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

De Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

De Paul, S. M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Deutsch, B.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Dietrich, C. P.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Ding, Y.

Doylend, J. K.

Esteban, R.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Feng, S.

Feshali, A.

Fiore, A.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Förstner, J.

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
[Crossref] [PubMed]

Foster, A. C.

Gan, F.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

García-Meca, C.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Gharib, K.

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
[Crossref] [PubMed]

Giesecke, A. L.

G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
[Crossref]

Greffet, J. J.

F. Bigourdan, F. Marquier, J. P. Hugonin, and J. J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22(3), 2337–2347 (2014).
[Crossref] [PubMed]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Griol, A.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Han, K.

K. Han, V. Yurlov, and N. E. Yu, “Highly directional waveguide grating antenna for optical phased array,” Curr. Appl. Phys. 18(7), 824–828 (2018).
[Crossref]

Heck, J.

Hildebrandt, A.

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
[Crossref] [PubMed]

Höfling, S.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Hofmann, H. F.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Hosseini, A.

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Huang, H.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

Hugonin, J. P.

Hutchison, D. N.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kadoya, Y.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Kamp, M.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Kim, W.

Klemm, M.

M. Klemm, “Novel directional nanoantennas for single-emitter sources and wireless nano-links,” Int. J. Opt. 2012, 348306 (2012).
[Crossref]

Kosako, T.

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

Krauss, T. F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[Crossref] [PubMed]

Kumar, R.

Kwong, D.

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

Kwong, D. L.

Lechago, S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Li, H.

K. Wang, A. Nirmalathas, C. Lim, E. Wong, K. Alameh, H. Li, and E. Skafidas, “High-speed indoor optical wireless communication system employing a silicon integrated photonic circuit,” Opt. Lett. 43(13), 3132–3135 (2018).
[Crossref] [PubMed]

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

Li, W.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

Lim, C.

Linden, S.

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
[Crossref] [PubMed]

Liow, T. Y.

Lipson, M.

Liu, G.

Lo, G. Q.

Losilla, N. S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Marquier, F.

Martí, J.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Mas, S.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Maß, T. W.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Michel, A. K. U.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Minkowski, F.

F. Minkowski, F. Wang, A. Chakrabarty, and Q. H. Wei, “Resonant cavity modes of circular plasmonic patch nanoantennas,” Appl. Phys. Lett. 104(2), 021111 (2014).
[Crossref]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[Crossref] [PubMed]

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Mohanty, A.

Nie, Z. P.

S. W. Qu and Z. P. Nie, “Plasmonic nanopatch array for optical integrated circuit applications,” Sci. Rep. 3(1), 3172 (2013).
[Crossref] [PubMed]

Nirmalathas, A.

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

Ou, H.

Peter, M.

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
[Crossref] [PubMed]

Peucheret, C.

Phare, C. T.

Pleros, N.

G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Poulton, C. V.

Prinzen, A.

G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
[Crossref]

Qin, C.

Qiu, M.

Y. Song, J. Wang, M. Yan, and M. Qiu, “Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter,” J. Opt. 13(7), 075002 (2011).
[Crossref]

Qu, S. W.

S. W. Qu and Z. P. Nie, “Plasmonic nanopatch array for optical integrated circuit applications,” Sci. Rep. 3(1), 3172 (2013).
[Crossref] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Ramsden, J. J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Raval, M.

Roberts, S. P.

Roelkens, G.

Rong, H.

Salinga, M.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Sánchez, L.

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Schlickriede, C.

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
[Crossref] [PubMed]

Schönauer, K.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Schrauwen, J.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[Crossref] [PubMed]

Shahada, L. A.

D. C. Zografopoulos, M. A. Swillam, L. A. Shahada, and R. Beccherelli, “Hybrid electro-optic plasmonic modulators based on directional coupler switches,” Appl. Phys., A Mater. Sci. Process. 122(4), 344 (2016).
[Crossref]

Shang, K.

Sheng, Z.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

Skafidas, E.

Song, Y.

Y. Song, J. Wang, M. Yan, and M. Qiu, “Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter,” J. Opt. 13(7), 075002 (2011).
[Crossref]

Spencer, N. D.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Su, Z.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887–890 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Sun, K.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

Swillam, M. A.

D. C. Zografopoulos, M. A. Swillam, L. A. Shahada, and R. Beccherelli, “Hybrid electro-optic plasmonic modulators based on directional coupler switches,” Appl. Phys., A Mater. Sci. Process. 122(4), 344 (2016).
[Crossref]

Szendro, I.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Taillaert, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[Crossref] [PubMed]

Taubner, T.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Teperik, T. V.

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Textor, M.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Thompson, M. G.

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Lett. 37(9), 1454–1456 (2012).
[Crossref] [PubMed]

Tsang, H. K.

Tsiokos, D.

G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
[Crossref]

Unal, G. S.

G. S. Unal and M. I. Aksun, “Bridging the gap between RF and optical patch antenna analysis via the cavity model,” Sci. Rep. 5(1), 15941 (2015).
[Crossref] [PubMed]

Van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[Crossref] [PubMed]

Van Laere, F.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

F. Van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. Van Thourhout, T. F. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[Crossref]

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Vermeulen, D.

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Vörös, J.

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Wang, F.

F. Minkowski, F. Wang, A. Chakrabarty, and Q. H. Wei, “Resonant cavity modes of circular plasmonic patch nanoantennas,” Appl. Phys. Lett. 104(2), 021111 (2014).
[Crossref]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

Wang, J.

Y. Song, J. Wang, M. Yan, and M. Qiu, “Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter,” J. Opt. 13(7), 075002 (2011).
[Crossref]

Wang, K.

Wang, X.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

Watts, M. R.

Wei, Q. H.

F. Minkowski, F. Wang, A. Chakrabarty, and Q. H. Wei, “Resonant cavity modes of circular plasmonic patch nanoantennas,” Appl. Phys. Lett. 104(2), 021111 (2014).
[Crossref]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wong, E.

Wu, A.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

Wuttig, M.

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Xiao, X.

Xu, X.

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

Yaacobi, A.

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

A. Yaacobi and M. R. Watts, “Frequency-chirped subwavelength nanoantennas,” Opt. Lett. 37(23), 4979–4981 (2012).
[Crossref] [PubMed]

A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Lett. 37(9), 1454–1456 (2012).
[Crossref] [PubMed]

Yan, M.

Y. Song, J. Wang, M. Yan, and M. Qiu, “Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter,” J. Opt. 13(7), 075002 (2011).
[Crossref]

Yoo, S. J. B.

Yousefi, L.

Yu, N. E.

K. Han, V. Yurlov, and N. E. Yu, “Highly directional waveguide grating antenna for optical phased array,” Curr. Appl. Phys. 18(7), 824–828 (2018).
[Crossref]

Yurlov, V.

K. Han, V. Yurlov, and N. E. Yu, “Highly directional waveguide grating antenna for optical phased array,” Curr. Appl. Phys. 18(7), 824–828 (2018).
[Crossref]

Zadka, M.

Zentgraf, T.

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
[Crossref] [PubMed]

Zhang, Y.

K. Shang, C. Qin, Y. Zhang, G. Liu, X. Xiao, S. Feng, and S. J. B. Yoo, “Uniform emission, constant wavevector silicon grating surface emitter for beam steering with ultra-sharp instantaneous field-of-view,” Opt. Express 25(17), 19655–19661 (2017).
[Crossref] [PubMed]

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

Zhu, S.

Zhu, X.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

Zografopoulos, D. C.

D. C. Zografopoulos, M. A. Swillam, L. A. Shahada, and R. Beccherelli, “Hybrid electro-optic plasmonic modulators based on directional coupler switches,” Appl. Phys., A Mater. Sci. Process. 122(4), 344 (2016).
[Crossref]

Zou, S.

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

ACS Photonics (1)

H. Huang, H. Li, W. Li, A. Wu, X. Chen, X. Zhu, Z. Sheng, S. Zou, X. Wang, and F. Gan, “High-efficiency vertical light emission through a compact silicon nanoantenna array,” ACS Photonics 3(3), 324–328 (2016).
[Crossref]

Adv. Opt. Photonics (1)

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photonics 1(3), 438–483 (2009).
[Crossref]

Appl. Phys. Lett. (2)

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q. H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett. 101(2), 023101 (2012).
[Crossref]

F. Minkowski, F. Wang, A. Chakrabarty, and Q. H. Wei, “Resonant cavity modes of circular plasmonic patch nanoantennas,” Appl. Phys. Lett. 104(2), 021111 (2014).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

D. C. Zografopoulos, M. A. Swillam, L. A. Shahada, and R. Beccherelli, “Hybrid electro-optic plasmonic modulators based on directional coupler switches,” Appl. Phys., A Mater. Sci. Process. 122(4), 344 (2016).
[Crossref]

Biomaterials (1)

J. Vörös, J. J. Ramsden, G. Csúcs, I. Szendrő, S. M. De Paul, M. Textor, and N. D. Spencer, “Optical grating coupler biosensors,” Biomaterials 23(17), 3699–3710 (2002).
[Crossref] [PubMed]

Curr. Appl. Phys. (1)

K. Han, V. Yurlov, and N. E. Yu, “Highly directional waveguide grating antenna for optical phased array,” Curr. Appl. Phys. 18(7), 824–828 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Sun, E. Timurdogan, A. Yaacobi, Z. Su, E. S. Hosseini, D. B. Cole, and M. R. Watts, “Large-scale silicon photonic circuits for optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 20(4), 264–278 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Kwong, A. Hosseini, J. Covey, X. Xu, Y. Zhang, S. Chakravarty, and R. T. Chen, “Corrugated waveguide-based optical phased array with crosstalk suppression,” IEEE Photonics Technol. Lett. 26(10), 991–994 (2014).
[Crossref]

Int. J. Opt. (1)

M. Klemm, “Novel directional nanoantennas for single-emitter sources and wireless nano-links,” Int. J. Opt. 2012, 348306 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

Y. Song, J. Wang, M. Yan, and M. Qiu, “Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter,” J. Opt. 13(7), 075002 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and P. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Laser Photonics Rev. (1)

C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, “GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits,” Laser Photonics Rev. 10(6), 870–894 (2016).
[Crossref]

Light Sci. Appl. (1)

C. García-Meca, S. Lechago, A. Brimont, A. Griol, S. Mas, L. Sánchez, L. Bellieres, N. S. Losilla, and J. Martí, “On-chip wireless silicon photonics: from reconfigurable interconnects to lab-on-chip devices,” Light Sci. Appl. 6(9), e17053 (2017).
[Crossref] [PubMed]

Nano Lett. (3)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[Crossref] [PubMed]

M. Peter, A. Hildebrandt, C. Schlickriede, K. Gharib, T. Zentgraf, J. Förstner, and S. Linden, “Directional emission from dielectric leaky-wave nanoantennas,” Nano Lett. 17(7), 4178–4183 (2017).
[Crossref] [PubMed]

A. K. U. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

T. Kosako, Y. Kadoya, and H. F. Hofmann, “Directional control of light by a nano-optical Yagi–Uda antenna,” Nat. Photonics 4(5), 312–315 (2010).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Commun. (1)

G. Dabos, J. Bolten, A. Prinzen, A. L. Giesecke, N. Pleros, and D. Tsiokos, “Perfectly vertical and fully etched SOI grating couplers for TM polarization,” Opt. Commun. 350, 124–127 (2015).
[Crossref]

Opt. Express (5)

Opt. Lett. (9)

Y. Ding, H. Ou, and C. Peucheret, “Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals,” Opt. Lett. 38(15), 2732–2734 (2013).
[Crossref] [PubMed]

A. Yaacobi and M. R. Watts, “Frequency-chirped subwavelength nanoantennas,” Opt. Lett. 37(23), 4979–4981 (2012).
[Crossref] [PubMed]

A. Yaacobi, E. Timurdogan, and M. R. Watts, “Vertical emitting aperture nanoantennas,” Opt. Lett. 37(9), 1454–1456 (2012).
[Crossref] [PubMed]

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42(13), 2563–2566 (2017).
[Crossref] [PubMed]

C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
[Crossref] [PubMed]

K. Wang, A. Nirmalathas, C. Lim, E. Wong, K. Alameh, H. Li, and E. Skafidas, “High-speed indoor optical wireless communication system employing a silicon integrated photonic circuit,” Opt. Lett. 43(13), 3132–3135 (2018).
[Crossref] [PubMed]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[Crossref] [PubMed]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

X. Chen and H. K. Tsang, “Polarization-independent grating couplers for silicon-on-insulator nanophotonic waveguides,” Opt. Lett. 36(6), 796–798 (2011).
[Crossref] [PubMed]

Optica (1)

Phys. Rev. Lett. (2)

M. Danckwerts and L. Novotny, “Optical frequency mixing at coupled gold nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[Crossref] [PubMed]

R. Esteban, T. V. Teperik, and J. J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104(2), 026802 (2010).
[Crossref] [PubMed]

Sci. Rep. (2)

G. S. Unal and M. I. Aksun, “Bridging the gap between RF and optical patch antenna analysis via the cavity model,” Sci. Rep. 5(1), 15941 (2015).
[Crossref] [PubMed]

S. W. Qu and Z. P. Nie, “Plasmonic nanopatch array for optical integrated circuit applications,” Sci. Rep. 3(1), 3172 (2013).
[Crossref] [PubMed]

Science (1)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Structure of the proposed nanopatch array. (a) Illustration of the structure layer by layer. (b) Side view of the device along the yoz symmetric plane. (c) Cross-section view of the device. The inset shows the electric field distribution of the waveguide mode at 1550 nm. The parameters are as follows: W = 0.46, H = 0.24, H1 = 0.3 and T = 0.08, all in μm.
Fig. 2
Fig. 2 (a) and (b). Electric field distributions of the hybrid plasmonic waveguide on the yoz plane with (b) and without (a) the nanoslot. The parameters are as follows: W = 0.46, H = 0.24, T = 0.08, Ws = 0.4, Ls = 0.1 and H1 = 0.2, all in μm. (c) Models used for single element simulation. The dimensions of the waveguide are the same as those in (b) and the other parameters are as follows: Rp = 0.18, H2 = 0.1 and Tp = 0.1, all in μm. The SU-8 substrate between the nanopatch and the silver thin film is set to be transparent to clearly show the nanoslot. (d) Electric field distributions on the yoz plane for the model in (c). The inset shows the Ez distribution on the bottom surface of the nanopatch. In the simulation, a voltage driving source is placed on the top of the nanoslot to excite the nanopatch. The wavelength is 1550 nm.
Fig. 3
Fig. 3 (a) and (b) Ey and Ez distributions on the yoz plane of the proposed nanopatch array with 15 elements along y-axis, at the wavelength of 1550 nm. The parameters are as follows: W = 0.46, H = 0.24, T = 0.08,H1 = 0.2, Ws = 0.4, Ls = H2 = Tp = 0.1 and Dy = 0.85, all in μm. (c) Corresponding Far-field emission pattern on the yoz plane. In the simulation, light is launched into the waveguide from + y direction, i.e., the right side, and a wave port is added to excite the hybrid plasmonic waveguide.
Fig. 4
Fig. 4 (a) A comparison of the near-field distributions between the nanopatch array in Fig. 3 (lower-half panel) and a nanoslot antenna array (upper-half panel) which has all the parameters remaining the same as those in Fig. 3 but with all the nanopatches removed. (b) The far-field emission patterns of the nanopatch array and the nanoslot array. (c) Zoom-in view of the electric field distributions of the nanoslot in the nanoslot array (left-sided panel) and the nanopatch in the nanopatch array (right-sided panel). (d) The electric field intensity distributions under different H2. They are plotted in the same color scale. Other parameters are the same as those in Fig. 3. (e) Far-field gains of the nanopatch array under different H2. Other parameters are the same as those in Fig. 3. (f) Black solid line: radiation efficiency versus H2; Red solid line: overall coupling efficiency into free space versus H2; Blue dashed line: Up-to-down emission directionality versus H2; Green dashed line: antenna gain versus H2.
Fig. 5
Fig. 5 Dependences of the emission rate (ER) upon antenna dimensions. The black solid line: the emission rate versus De of grating antenna; the red solid line with square: the emission rate of nanopatch array versus H2; the green solid line with circle: the emission rate of nanopatch array versus H1; the blue solid line with up-triangle: the emission rate of nanopatch array versus T; the orange solid line with down-triangle: the emission rate of nanopatch array versus Tp. Other parameters are the same as those in Fig. 3. For a certain De, the emission rate of the waveguide grating antenna is obtained by simulating antennas with different lengths and fitting the relation between antenna length and the remaining power P according to P = P0exp(−2αL), where P0, α, L denote the initial power, emission rate and antenna length, respectively. A 1 μm thick silica cladding is added on top of the waveguide grating antenna to make a fair comparison. The inset shows the structure of the waveguide grating antenna. Gp and De represent the grating period and the etching depth, respectively.
Fig. 6
Fig. 6 (a) Near-field distribution on the yoz plane of the waveguide grating antenna with De = 0.053 μm, Gp = 0.682 μm, Dc = 50% and Ns = 18. The width and height of the silicon strip waveguide are 0.45 and 0.28 μm, respectively. In the simulation, TE polarized light is launched into the waveguide from the -y direction. (b) Near-field distribution on the yoz plane of the proposed nanopatch array with 15 elements along the y direction. The parameters are the same as those in Fig. 3. In the simulation, light is launched from the -y direction. (c) and (d) 2-dimensional far-field emission patterns on the upper- and lower-half spaces of the waveguide grating antenna in (a) and the proposed nanopatch array in (b), respectively. (e) Comparisons of the far-field gains on the yoz plane of the waveguide grating antenna and the proposed nanopatch array. The parameters of the waveguide grating antenna are as follows: De = 0.053 μm, Gp = 0.682 μm, Dc = 50% and Ns = 450. The width and height of the silicon strip waveguide are 0.45 and 0.28 μm, respectively. The parameters of the proposed nanopatch array are the same as those in Fig. 3 but with 353 elements. In the simulation, light is launched from the -y direction. The wavelength is 1550 nm.
Fig. 7
Fig. 7 (a) Up-to-down directionality versus wavelength. The parameters are the same as those in Fig. 3. (b) Normalized far-field directivity patterns at various wavelengths.
Fig. 8
Fig. 8 (a) Far-field gain patterns of the waveguide grating antenna on the yoz plane with different De. The period of the grating and the duty cycle are 0.68 μm and 50%, respectively. The width and height of the silicon strip waveguide are 0.45 μm and 0.28 μm, respectively. The wavelength is 1550 nm. (b) Far-field gain patterns of the proposed nanopatch array when ± 0.05 μm deviations are applied to the values of Ws, Ls and Rp in Fig. 3. (c) Far-field gain patterns of the proposed nanopatch array when ± 0.05 μm deviations are applied to the values of H1, H2, T and Tp in Fig. 3. (d) The influences of the misalignments between the nanopatch layer and the nanoslot layer. Red solid line: up-to-down directionality versus the misalignment along x direction. Black solid line: up-to-down directionality versus the misalignment along y direction. The inset shows a schematic illustration of the misalignments. The yellow circles denote the positions of the nanopatches with no misalignments and the dotted circles indicate the positions of the nanopatches when misalignments occur. The other parameters are the same as those in Fig. 3.

Metrics