Abstract

To realize fast detection of trace hazardous chemicals, a SERS substrate with the structure of a blackberry-like silver/graphene oxide nanoparticle cluster (Ag/GO NPC) has been designed and prepared through a quick capillarity-assistant self-assembly technology in this paper. Benefitting from the abundant “hot spots” and active oxygen sites brought by this Ag/GO NPC, the substrate shows good Raman performance for malachite green (MG), a common abusive germicide in aquaculture, with lowest limit of detection below 0.1 µg/L (3.48 × 10−10 mol/L). Detailed analyses are taken on both the formation process and enhancement mechanism of this SERS substrate, and the finite-difference time-domain simulations are utilized as well to prove our hypotheses. Further constructing this structure on polyethylene terephthalate (PET) film, a translucent flexible SERS substrate can be obtained, realizing a fast in situ detection of trace MG in the fishpond subsequently. In consideration of the facile preparation process, good SERS enhancement and affordable materials (PET, Cu, Ag and GO, etc.), this substrate presents high cost performance and a promising application prospect.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure

C Zhang, S Z Jiang, Y Y Huo, A H Liu, S C Xu, X Y Liu, Z C Sun, Y Y Xu, Z Li, and B Y Man
Opt. Express 23(19) 24811-24821 (2015)

High-performance 3D flexible SERS substrate based on graphene oxide/silver nanoparticles/pyramid PMMA

Xianwu Xiu, Yu Guo, Chonghui Li, Zhen Li, Dazhen Li, Chuanwei Zang, Shouzhen Jiang, Aihua Liu, Baoyuan Man, and Chao Zhang
Opt. Mater. Express 8(4) 844-857 (2018)

Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering

Chonghui Li, Aihua Liu, Chao Zhang, Minghong Wang, Zhen Li, Shicai Xu, Shouzhen Jiang, Jing Yu, Cheng Yang, and Baoyuan Man
Opt. Express 25(17) 20631-20641 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
    [Crossref] [PubMed]
  2. W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
    [Crossref] [PubMed]
  3. D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
    [Crossref] [PubMed]
  4. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  5. M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
    [Crossref] [PubMed]
  6. K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
    [Crossref]
  7. P. M. Radjenovic and L. J. Hardwick, “Time-resolved SERS study of the oxygen reduction reaction in ionic liquid electrolytes for non-aqueous lithium-oxygen cells,” Faraday Discuss. 206, 379–392 (2018).
    [Crossref] [PubMed]
  8. S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
    [Crossref]
  9. C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
    [Crossref] [PubMed]
  10. J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
    [Crossref] [PubMed]
  11. S. Yang, X. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U.S.A. 113(2), 268–273 (2016).
    [Crossref] [PubMed]
  12. C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
    [Crossref] [PubMed]
  13. X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
    [Crossref]
  14. S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
    [Crossref]
  15. G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
    [Crossref]
  16. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [Crossref] [PubMed]
  17. J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
    [Crossref]
  18. M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
    [Crossref]
  19. S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
    [Crossref] [PubMed]
  20. D. S. Kim, A. Honglawan, S. Yang, and D. K. Yoon, “Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template,” ACS Appl. Mater. Interfaces 9(8), 7787–7792 (2017).
    [Crossref] [PubMed]
  21. Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
    [Crossref] [PubMed]
  22. J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
    [Crossref] [PubMed]
  23. C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
    [Crossref] [PubMed]
  24. M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).
  25. W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
    [Crossref]
  26. L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
    [Crossref]
  27. Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
    [Crossref] [PubMed]
  28. A. J. Caires, R. P. Vaz, C. Fantini, and L. O. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
    [Crossref] [PubMed]
  29. L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
    [Crossref] [PubMed]
  30. P. B. Johnson and R. W. Christy, “Optical cnstants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  31. I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
    [Crossref]
  32. J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
    [Crossref]
  33. P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization,” J. Mater. Chem. 6(4), 573–577 (1996).
    [Crossref]
  34. Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
    [Crossref] [PubMed]
  35. N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
    [Crossref]
  36. E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
    [Crossref] [PubMed]
  37. S. C. Hsieh, P. Y. Lin, and L. Y. Chu, “Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces,” J. Phys. Chem. C 118(23), 12500–12505 (2014).
    [Crossref]
  38. Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
    [Crossref]
  39. T. Yang, H. Yang, S. J. Zhen, and C. Z. Huang, “Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates,” ACS Appl. Mater. Interfaces 7(3), 1586–1594 (2015).
    [Crossref] [PubMed]
  40. E. Z. Tan, P. G. Yin, T. T. You, H. Wang, and L. Guo, “Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection,” ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012).
    [Crossref] [PubMed]
  41. D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J. K. Wang, “Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates,” Opt. Express 19(5), 4337–4345 (2011).
    [Crossref] [PubMed]
  42. K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).
  43. W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

2018 (8)

P. M. Radjenovic and L. J. Hardwick, “Time-resolved SERS study of the oxygen reduction reaction in ionic liquid electrolytes for non-aqueous lithium-oxygen cells,” Faraday Discuss. 206, 379–392 (2018).
[Crossref] [PubMed]

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref] [PubMed]

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

2017 (10)

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

D. S. Kim, A. Honglawan, S. Yang, and D. K. Yoon, “Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template,” ACS Appl. Mater. Interfaces 9(8), 7787–7792 (2017).
[Crossref] [PubMed]

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref] [PubMed]

2016 (4)

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yang, X. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U.S.A. 113(2), 268–273 (2016).
[Crossref] [PubMed]

N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
[Crossref]

2015 (5)

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

T. Yang, H. Yang, S. J. Zhen, and C. Z. Huang, “Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates,” ACS Appl. Mater. Interfaces 7(3), 1586–1594 (2015).
[Crossref] [PubMed]

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

A. J. Caires, R. P. Vaz, C. Fantini, and L. O. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref] [PubMed]

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

2014 (3)

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

S. C. Hsieh, P. Y. Lin, and L. Y. Chu, “Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces,” J. Phys. Chem. C 118(23), 12500–12505 (2014).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

2013 (1)

J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
[Crossref]

2012 (3)

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

E. Z. Tan, P. G. Yin, T. T. You, H. Wang, and L. Guo, “Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection,” ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012).
[Crossref] [PubMed]

2011 (2)

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

D. Z. Lin, Y. P. Chen, P. J. Jhuang, J. Y. Chu, J. T. Yeh, and J. K. Wang, “Optimizing electromagnetic enhancement of flexible nano-imprinted hexagonally patterned surface-enhanced Raman scattering substrates,” Opt. Express 19(5), 4337–4345 (2011).
[Crossref] [PubMed]

2009 (1)

Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

2008 (1)

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

2007 (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

2002 (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

1999 (1)

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

1996 (1)

P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization,” J. Mater. Chem. 6(4), 573–577 (1996).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical cnstants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abdul-Karim, N.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Ajayan, P. M.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Alfonso-Garcia, A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

An, J.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Apkarian, V. A.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

Banik, M.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

Bazan, G. C.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Ben-Jaber, S.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Bjerneld, E. J.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Borjesson, L.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Braun, A.

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

Caires, A. J.

A. J. Caires, R. P. Vaz, C. Fantini, and L. O. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref] [PubMed]

Chen, C.

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

Chen, H.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Chen, J.

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref] [PubMed]

Chen, L. X.

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

Chen, Q.

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Chen, W.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Chen, Y.

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

Chen, Y. P.

Chen, Z.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Chiang, N. H.

N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
[Crossref]

Choi, Y.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical cnstants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, J. Y.

Chu, L. Y.

S. C. Hsieh, P. Y. Lin, and L. Y. Chu, “Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces,” J. Phys. Chem. C 118(23), 12500–12505 (2014).
[Crossref]

Cortés, E.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Coste, S. C.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Crampton, K. T.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Dai, X.

S. Yang, X. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U.S.A. 113(2), 268–273 (2016).
[Crossref] [PubMed]

Dai, Z. G.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Deng, H. B.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Dey, S.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Dikin, D. A.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Ding, S. Y.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

Dou, J.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Duvauchelle, N.

P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization,” J. Mater. Chem. 6(4), 573–577 (1996).
[Crossref]

Elhsissen, K. T.

P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization,” J. Mater. Chem. 6(4), 573–577 (1996).
[Crossref]

El-Khoury, P. Z.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Eom, G.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Fan, Y.

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

Fantini, C.

A. J. Caires, R. P. Vaz, C. Fantini, and L. O. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref] [PubMed]

Fast, A. S.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Felts, A. M.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Fishman, D. A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Fu, Q.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Gao, D. X.

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

Giannini, V.

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

Guarrottxena, N.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Guarrotxena, N.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

Gui, X.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Guo, L.

E. Z. Tan, P. G. Yin, T. T. You, H. Wang, and L. Guo, “Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection,” ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012).
[Crossref] [PubMed]

Guo, Y.

Hardwick, L. J.

P. M. Radjenovic and L. J. Hardwick, “Time-resolved SERS study of the oxygen reduction reaction in ionic liquid electrolytes for non-aqueous lithium-oxygen cells,” Faraday Discuss. 206, 379–392 (2018).
[Crossref] [PubMed]

Hersam, M. C.

N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
[Crossref]

Honglawan, A.

D. S. Kim, A. Honglawan, S. Yang, and D. K. Yoon, “Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template,” ACS Appl. Mater. Interfaces 9(8), 7787–7792 (2017).
[Crossref] [PubMed]

Hsieh, S. C.

S. C. Hsieh, P. Y. Lin, and L. Y. Chu, “Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces,” J. Phys. Chem. C 118(23), 12500–12505 (2014).
[Crossref]

Huang, C. Z.

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref] [PubMed]

T. Yang, H. Yang, S. J. Zhen, and C. Z. Huang, “Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates,” ACS Appl. Mater. Interfaces 7(3), 1586–1594 (2015).
[Crossref] [PubMed]

Huang, S.

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

Huh, Y. M.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Hulkko, E.

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Huo, Y. Y.

Hwang, A.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Hwang, J. H.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Ice, N. F.

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Jeon, K. S.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Jeong, J.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Jhuang, P. J.

Ji, F.

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Jiang, C. Z.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Jiang, N.

N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
[Crossref]

Jiang, S.

Jiang, S. Z.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical cnstants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joyner, J.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Jung, I.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Kall, M.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Kang, T.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Kim, B.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Kim, D.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Kim, D. H.

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

Kim, D. S.

D. S. Kim, A. Honglawan, S. Yang, and D. K. Yoon, “Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template,” ACS Appl. Mater. Interfaces 9(8), 7787–7792 (2017).
[Crossref] [PubMed]

Kim, H.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Kim, J.

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Kim, S.

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

Kuo, L.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Kurouski, D.

N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
[Crossref]

Kwon, S.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Ladani, F. T.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Ladeira, L. O.

A. J. Caires, R. P. Vaz, C. Fantini, and L. O. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref] [PubMed]

Lee, M.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Lei, F. C.

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

Lei, W.

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

Lei, Y.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Li, B. W.

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

Li, C.

Li, C. H.

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

Li, H.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Li, X.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Li, Y. F.

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref] [PubMed]

Li, Z.

Liang, B.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Liao, J. D.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Lim, D. K.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Lim, E. K.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Lin, D. Z.

Lin, P. Y.

S. C. Hsieh, P. Y. Lin, and L. Y. Chu, “Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces,” J. Phys. Chem. C 118(23), 12500–12505 (2014).
[Crossref]

Lin, Z.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Liu, A.

Liu, A. H.

Liu, B. H.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Liu, D.

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

Liu, M.

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

Liu, Q.

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Liu, X.

J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
[Crossref]

Liu, X. Y.

Liu, Y.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Lombardi, J. R.

Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Lou, J.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Luo, B.

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Luo, S. C.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Ma, X. H.

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

Madison, L. R.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Maier, S. A.

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Man, B.

Man, B. Y.

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

McAnally, M. O.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Moon, J.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Moskovits, M.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

Mun, C.

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

Nag, A.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Nam, J. M.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Negru, B.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Pan, J.

Park, S. G.

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

Parkin, I. P.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Pelton, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Peng, Q. Q.

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

Peveler, W. J.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Piner, R.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Potma, E. O.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Pozzi, E. A.

N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
[Crossref]

Qu, L.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Quesada-Cabrera, R.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Radjenovic, P. M.

P. M. Radjenovic and L. J. Hardwick, “Time-resolved SERS study of the oxygen reduction reaction in ionic liquid electrolytes for non-aqueous lithium-oxygen cells,” Faraday Discuss. 206, 379–392 (2018).
[Crossref] [PubMed]

Ratner, M. A.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Ren, J. F.

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

Rodriguez Perez, A.

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

Rodriguez-Perez, A.

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Ruan, W. D.

Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Rugg, B. K.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Ruoff, R. S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Schatz, G. C.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Seideman, T.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Seo, M. K.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Shao, W. J.

J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
[Crossref]

Si, H.

Si, S. Y.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Silvert, P. Y.

P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization,” J. Mater. Chem. 6(4), 573–577 (1996).
[Crossref]

Sivashanmugan, K.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Son, H. Y.

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

Song, W.

Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Song, X.

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Song, Y.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Sotelo-Vazquez, C.

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Sprague-Klein, E. A.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Stankovich, S.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Stogin, B. B.

S. Yang, X. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U.S.A. 113(2), 268–273 (2016).
[Crossref] [PubMed]

Suh, Y. D.

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Sun, Q. Q.

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

Sun, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Sun, Z. C.

Tan, E. Z.

E. Z. Tan, P. G. Yin, T. T. You, H. Wang, and L. Guo, “Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection,” ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012).
[Crossref] [PubMed]

Tang, Z.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Tian, Z. Q.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

Urbina, R. H.

P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization,” J. Mater. Chem. 6(4), 573–577 (1996).
[Crossref]

Vajtai, R.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Van Duyne, R. P.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
[Crossref]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Vaupel, M.

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Vaz, R. P.

A. J. Caires, R. P. Vaz, C. Fantini, and L. O. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref] [PubMed]

Vijayakrishnan, V.

P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization,” J. Mater. Chem. 6(4), 573–577 (1996).
[Crossref]

Wang, F. B.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Wang, H.

E. Z. Tan, P. G. Yin, T. T. You, H. Wang, and L. Guo, “Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection,” ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012).
[Crossref] [PubMed]

Wang, H. J.

J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
[Crossref]

Wang, J.

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

Wang, J. K.

Wang, L.

Wang, M.

Wang, N.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Wang, P.

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref] [PubMed]

Wang, W.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Wang, Y. Q.

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

Wang, Y. X.

Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Wasielewski, M. R.

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

Wei, D.

Wei, Y. S.

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Wong, T. S.

S. Yang, X. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U.S.A. 113(2), 268–273 (2016).
[Crossref] [PubMed]

Wu, A. G.

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

Wu, J.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Wu, M.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Wu, T.

Wu, W.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Wu, Y.

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref] [PubMed]

Xia, Y.

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Xiao, X. F.

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

Xiao, X. H.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Xiu, X.

Xu, H.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Xu, H. X.

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Xu, J.

Xu, R.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Xu, S.

Xu, S. C.

Xu, X. L.

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
[Crossref]

Xu, Y. Y.

Yadav, T. P.

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Yampolsky, S.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Yan, W.

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref] [PubMed]

Yang, C.

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

Yang, H.

T. Yang, H. Yang, S. J. Zhen, and C. Z. Huang, “Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates,” ACS Appl. Mater. Interfaces 7(3), 1586–1594 (2015).
[Crossref] [PubMed]

Yang, J. X.

Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Yang, L.

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref] [PubMed]

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref] [PubMed]

Yang, M. S.

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

Yang, S.

D. S. Kim, A. Honglawan, S. Yang, and D. K. Yoon, “Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template,” ACS Appl. Mater. Interfaces 9(8), 7787–7792 (2017).
[Crossref] [PubMed]

S. Yang, X. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U.S.A. 113(2), 268–273 (2016).
[Crossref] [PubMed]

Yang, S. Y.

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

Yang, T.

T. Yang, H. Yang, S. J. Zhen, and C. Z. Huang, “Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates,” ACS Appl. Mater. Interfaces 7(3), 1586–1594 (2015).
[Crossref] [PubMed]

Yao, C. K.

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Yeh, J. T.

Yin, P. G.

E. Z. Tan, P. G. Yin, T. T. You, H. Wang, and L. Guo, “Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection,” ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012).
[Crossref] [PubMed]

Yoon, D. K.

D. S. Kim, A. Honglawan, S. Yang, and D. K. Yoon, “Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template,” ACS Appl. Mater. Interfaces 9(8), 7787–7792 (2017).
[Crossref] [PubMed]

You, E. M.

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

You, T. T.

E. Z. Tan, P. G. Yin, T. T. You, H. Wang, and L. Guo, “Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection,” ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012).
[Crossref] [PubMed]

Yu, J.

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
[Crossref]

Yuan, X. B.

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

Zeytunyan, A.

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

Zhan, Z.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Zhang, C.

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

J. Xu, C. Li, H. Si, X. Zhao, L. Wang, S. Jiang, D. Wei, J. Yu, X. Xiu, and C. Zhang, “3D SERS substrate based on Au-Ag bi-metal nanoparticles/MoS2 hybrid with pyramid structure,” Opt. Express 26(17), 21546–21557 (2018).
[Crossref] [PubMed]

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

Y. Guo, J. Yu, C. Li, Z. Li, J. Pan, A. Liu, B. Man, T. Wu, X. Xiu, and C. Zhang, “SERS substrate based on the flexible hybrid of polydimethylsiloxane and silver colloid decorated with silver nanoparticles,” Opt. Express 26(17), 21784–21796 (2018).
[Crossref] [PubMed]

C. Li, A. Liu, C. Zhang, M. Wang, Z. Li, S. Xu, S. Jiang, J. Yu, C. Yang, and B. Man, “Ag gyrus-nanostructure supported on graphene/Au film with nanometer gap for ideal surface enhanced Raman scattering,” Opt. Express 25(17), 20631–20641 (2017).
[Crossref] [PubMed]

C. Zhang, S. Z. Jiang, Y. Y. Huo, A. H. Liu, S. C. Xu, X. Y. Liu, Z. C. Sun, Y. Y. Xu, Z. Li, and B. Y. Man, “SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure,” Opt. Express 23(19), 24811–24821 (2015).
[Crossref] [PubMed]

Zhang, Q.

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Zhang, W.

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

Zhang, X. G.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Zhang, X. L.

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Zhao, B.

Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

Zhao, C.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Zhao, X.

Zhen, S. J.

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref] [PubMed]

T. Yang, H. Yang, S. J. Zhen, and C. Z. Huang, “Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates,” ACS Appl. Mater. Interfaces 7(3), 1586–1594 (2015).
[Crossref] [PubMed]

Zheng, X.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Zheng, Y.

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Zhou, H.

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

Zhou, Y.

J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (5)

C. Yang, Y. Chen, D. Liu, C. Chen, J. Wang, Y. Fan, S. Huang, and W. Lei, “Nanocavity-in-multiple nanogap plasmonic coupling effects from vertical sandwich-like Au@Al2O3@Au arrays for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 10(9), 8317–8323 (2018).
[Crossref] [PubMed]

D. S. Kim, A. Honglawan, S. Yang, and D. K. Yoon, “Arrangement and SERS applications of nanoparticle clusters using liquid crystalline template,” ACS Appl. Mater. Interfaces 9(8), 7787–7792 (2017).
[Crossref] [PubMed]

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly reproducible and sensitive SERS substrates with Ag inter-nanoparticle gaps of 5 nm fabricated by ultrathin aluminum mask technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

T. Yang, H. Yang, S. J. Zhen, and C. Z. Huang, “Hydrogen-bond-mediated in situ fabrication of AgNPs/agar/PAN electrospun nanofibers as reproducible SERS substrates,” ACS Appl. Mater. Interfaces 7(3), 1586–1594 (2015).
[Crossref] [PubMed]

E. Z. Tan, P. G. Yin, T. T. You, H. Wang, and L. Guo, “Three dimensional design of large-scale TiO(2) nanorods scaffold decorated by silver nanoparticles as SERS sensor for ultrasensitive malachite green detection,” ACS Appl. Mater. Interfaces 4(7), 3432–3437 (2012).
[Crossref] [PubMed]

ACS Nano (1)

M. Banik, P. Z. El-Khoury, A. Nag, A. Rodriguez-Perez, N. Guarrottxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman trajectories on a nano-dumbbell: transition from field to charge transfer plasmons as the spheres fuse,” ACS Nano 6(11), 10343–10354 (2012).
[Crossref] [PubMed]

Adv. Funct. Mater. (3)

S. G. Park, C. Mun, X. F. Xiao, A. Braun, S. Kim, V. Giannini, S. A. Maier, and D. H. Kim, “Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps,” Adv. Funct. Mater. 27(41), 1703376 (2017).
[Crossref]

G. Eom, H. Kim, A. Hwang, H. Y. Son, Y. Choi, J. Moon, D. Kim, M. Lee, E. K. Lim, J. Jeong, Y. M. Huh, M. K. Seo, T. Kang, and B. Kim, “Nanogap-rich Au nanowire SERS sensor for ultrasensitive telomerase activity detection: application to gastric and breast cancer tissues diagnosis,” Adv. Funct. Mater. 27(37), 1701832 (2017).
[Crossref]

L. Qu, N. Wang, H. Xu, W. Wang, Y. Liu, L. Kuo, T. P. Yadav, J. Wu, J. Joyner, Y. Song, H. Li, J. Lou, R. Vajtai, and P. M. Ajayan, “Gold nanoparticles and g-C3N4-intercalated graphene oxide membrane for recyclable surface enhanced Raman scattering,” Adv. Funct. Mater. 27(31), 1701714 (2017).
[Crossref]

Adv. Mater. (1)

W. Yan, L. Yang, J. Chen, Y. Wu, P. Wang, and Z. Li, “In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility,” Adv. Mater. 29(36), 1702893 (2017).
[Crossref] [PubMed]

Adv. Mater. Interfaces (1)

J. Yu, M. S. Yang, C. Zhang, S. Y. Yang, Q. Q. Sun, M. Liu, Q. Q. Peng, X. L. Xu, B. Y. Man, and F. C. Lei, “Capillarity-assistant assembly: a fast preparation of 3D pomegranate-like Ag nanoparticle clusters on CuO nanowires and its applications in SERS,” Adv. Mater. Interfaces 5(19), 1800672 (2018).
[Crossref]

Adv. Opt. Mater. (1)

W. Chen, X. Gui, Y. Zheng, B. Liang, Z. Lin, C. Zhao, H. Chen, Z. Chen, X. Li, and Z. Tang, “Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy,” Adv. Opt. Mater. 5(6), 1600715 (2017).
[Crossref]

Anal. Methods-Uk (1)

W. Zhang, B. W. Li, L. X. Chen, Y. Q. Wang, D. X. Gao, X. H. Ma, and A. G. Wu, “Brushing, a simple way to fabricate SERS active paper substrates,” Anal. Methods-Uk 6(7), 2066–2071 (2014).

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Yu, W. J. Shao, Y. Zhou, H. J. Wang, X. Liu, and X. L. Xu, “Nano Ag-enhanced energy conversion efficiency in standard commercial pc-Si solar cells and numerical simulations with finite difference time domain method,” Appl. Phys. Lett. 103(20), 203904 (2013).
[Crossref]

Biol. Chem. (1)

M. S. Yang, J. Yu, F. C. Lei, H. Zhou, Y. S. Wei, B. Y. Man, C. Zhang, C. H. Li, J. F. Ren, and X. B. Yuan, ““Synthesis of low-cost 3D-porous ZnO/Ag SERS-active substrate with ultrasensitive and repeatable detectability,” Sensor. Actuat,” Biol. Chem. 256, 268–275 (2018).

Chem. Phys. Lett. (1)

N. Jiang, D. Kurouski, E. A. Pozzi, N. H. Chiang, M. C. Hersam, and R. P. Van Duyne, “Tip-enhanced Raman spectroscopy: from concepts to practical applications,” Chem. Phys. Lett. 659, 16–24 (2016).
[Crossref]

Chem. Soc. Rev. (1)

S. Y. Ding, E. M. You, Z. Q. Tian, and M. Moskovits, “Electromagnetic theories of surface-enhanced Raman spectroscopy,” Chem. Soc. Rev. 46(13), 4042–4076 (2017).
[Crossref] [PubMed]

Faraday Discuss. (1)

P. M. Radjenovic and L. J. Hardwick, “Time-resolved SERS study of the oxygen reduction reaction in ionic liquid electrolytes for non-aqueous lithium-oxygen cells,” Faraday Discuss. 206, 379–392 (2018).
[Crossref] [PubMed]

J. Am. Chem. Soc. (1)

E. A. Sprague-Klein, B. Negru, L. R. Madison, S. C. Coste, B. K. Rugg, A. M. Felts, M. O. McAnally, M. Banik, V. A. Apkarian, M. R. Wasielewski, M. A. Ratner, T. Seideman, G. C. Schatz, and R. P. Van Duyne, “Photoinduced plasmon-driven chemistry in trans-1,2-bis(4-pyridyl)ethylene gold nanosphere oligomers,” J. Am. Chem. Soc. 140(33), 10583–10592 (2018).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

A. J. Caires, R. P. Vaz, C. Fantini, and L. O. Ladeira, “Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes-gold nanorods hybrids,” J. Colloid Interface Sci. 455, 78–82 (2015).
[Crossref] [PubMed]

J. Mater. Chem. (1)

P. Y. Silvert, R. H. Urbina, N. Duvauchelle, V. Vijayakrishnan, and K. T. Elhsissen, “Preparation of colloidal silver dispersions by the polyol process. 1. Synthesis and characterization,” J. Mater. Chem. 6(4), 573–577 (1996).
[Crossref]

J. Phys. Chem. C (5)

S. C. Hsieh, P. Y. Lin, and L. Y. Chu, “Improved performance of solution-phase surface-enhanced Raman scattering at Ag/CuO nanocomposite surfaces,” J. Phys. Chem. C 118(23), 12500–12505 (2014).
[Crossref]

Y. X. Wang, W. Song, W. D. Ruan, J. X. Yang, B. Zhao, and J. R. Lombardi, “SERS spectroscopy used to study an adsorbate on a nanoscale thin film of CuO coated with Ag,” J. Phys. Chem. C 113(19), 8065–8069 (2009).
[Crossref]

K. T. Crampton, A. Zeytunyan, A. S. Fast, F. T. Ladani, A. Alfonso-Garcia, M. Banik, S. Yampolsky, D. A. Fishman, E. O. Potma, and V. A. Apkarian, “Ultrafast coherent Raman scattering at plasmonic nanojunctions,” J. Phys. Chem. C 120(37), 20943–20953 (2016).
[Crossref]

M. Banik, A. Nag, P. Z. El-Khoury, A. Rodriguez Perez, N. Guarrotxena, G. C. Bazan, and V. A. Apkarian, “Surface-enhanced Raman scattering of a single nanodumbbell: dibenzyldithio-linked silver nanospheres,” J. Phys. Chem. C 116(18), 10415–10423 (2012).
[Crossref]

I. Jung, M. Vaupel, M. Pelton, R. Piner, D. A. Dikin, S. Stankovich, J. An, and R. S. Ruoff, “J. An and R. S. Ruoff, “Characterization of thermally reduced graphene oxide by imaging ellipsometry,” J. Phys. Chem. C 112(23), 8499–8506 (2008).
[Crossref]

Nano Lett. (1)

J. Kim, X. Song, F. Ji, B. Luo, N. F. Ice, Q. Liu, Q. Zhang, and Q. Chen, “Polymorphic assembly from beveled gold triangular nanoprisms,” Nano Lett. 17(5), 3270–3275 (2017).
[Crossref] [PubMed]

Nanoscale (1)

L. Yang, S. J. Zhen, Y. F. Li, and C. Z. Huang, “Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker,” Nanoscale 10(25), 11942–11947 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Ben-Jaber, W. J. Peveler, R. Quesada-Cabrera, E. Cortés, C. Sotelo-Vazquez, N. Abdul-Karim, S. A. Maier, and I. P. Parkin, “Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules,” Nat. Commun. 7(1), 12189 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

D. K. Lim, K. S. Jeon, J. H. Hwang, H. Kim, S. Kwon, Y. D. Suh, and J. M. Nam, “Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap,” Nat. Nanotechnol. 6(7), 452–460 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

S. Yampolsky, D. A. Fishman, S. Dey, E. Hulkko, M. Banik, E. O. Potma, and V. A. Apkarian, “Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering,” Nat. Photonics 8(8), 650–656 (2014).
[Crossref]

Opt. Express (5)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical cnstants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Yang, X. Dai, B. B. Stogin, and T. S. Wong, “Ultrasensitive surface-enhanced Raman scattering detection in common fluids,” Proc. Natl. Acad. Sci. U.S.A. 113(2), 268–273 (2016).
[Crossref] [PubMed]

Science (1)

Y. Sun and Y. Xia, “Shape-controlled synthesis of gold and silver nanoparticles,” Science 298(5601), 2176–2179 (2002).
[Crossref] [PubMed]

Sensor. Actuat. Biol. Chem. (1)

K. Sivashanmugan, J. D. Liao, B. H. Liu, C. K. Yao, and S. C. Luo, “Ag nanoclusters on ZnO nanodome array as hybrid SERS-active substrate for trace detection of malachite green,” Sensor. Actuat. Biol. Chem. 207, 430–436 (2015).

Small (1)

X. G. Zhang, Z. G. Dai, S. Y. Si, X. L. Zhang, W. Wu, H. B. Deng, F. B. Wang, X. H. Xiao, and C. Z. Jiang, “Ultrasensitive SERS substrate integrated with uniform subnanometer scale “hot spots” created by a graphene spacer for the detection of mercury ions,” Small 13(9), 1603347 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Preparation process of the blackberry-like Ag/GO NPCs: I. preparation on flexible PET film; II. preparation on Cu foil.
Fig. 2
Fig. 2 (a) mechanism of the capillarity-assistant self-assembly technology; (b) SEM image of the CuO NWs; (c) close-up figure of (b); (d) SEM image of the Ag/GO NPCs on CuO NWs, and the inset in (d) is the photograph of the Ag/GO NPCs SERS substrate; (e) TEM image of the Ag/GO NPC; (f1)-(f4) EDS mappings of elements of C, Ag, O and Cu; (g) XRD pattern of the Ag/GO NPCs prepared on Cu foil.
Fig. 3
Fig. 3 (a) EDS of the SERS substrate with Ag/GO NPCs; (b) absorbance of the suspension of Ag NPs and GO NFs
Fig. 4
Fig. 4 (a) Raman spectra of MG (100 mg/L) on different substrates; (b) Raman spectra of MG (100 mg/L) on Ag/GO NPCs with different amounts of GO; (c) and (d) are the intensity changes of peak 1618 cm−1, 1590 cm−1 and 1178 cm−1 in the spectra in (a) and (b) respectively; (e) the influence of GO on SERS enhancement; (f) simulated electric field distributions for Ag/GO NPCs with different nanogaps.
Fig. 5
Fig. 5 (a) Raman spectra of MG on Ag/GO NPCs with different concentrations; (b) linear fitting for the intensity changes of peak 1618 cm−1, 1590 cm−1 and 1178 cm−1; (c) the intensity changes of some characteristic peaks of MG tested on twenty-five different points on Ag/GO NPCs; (d) Raman mapping with area of 400 µm2 for peak 1618 cm−1; (e) Raman spectra of MG tested on different days in one week; (f) intensity changes of Raman spectra of MG on Ag/GO NPCs with ten different batches.
Fig. 6
Fig. 6 (a) Raman spectra of MG obtained by two different adding ways; (b) morphology details of the Ag/GO NPCs; (c)-(e) blocking effect for probe molecules by GO under two different adding ways.
Fig. 7
Fig. 7 Changes of intensity ratios of some characteristic peaks between the two different adding ways.
Fig. 8
Fig. 8 (a) photograph of the translucent flexible SERS substrate of Ag/GO NPCs; (b) and (c) in situ Raman detection of MG; (d) schematic of the in situ detection; (e) Raman spectra of MG with different concentrations by in situ detection; (f) Raman spectra of fishpond water.
Fig. 9
Fig. 9 (a) and (b) are the SEM images of the CuO NWs and Ag/GO NPCs respectively, both of which are prepared on PET film; (c) front detection and (d) back detection of Raman spectra of MG on translucent flexible SERS substrate of Ag/GO NPCs with different concentrations (from 100 µg/L to 0.1 µg/L); (e) the intensity changes (1618 cm−1) under different concentration by the two detection ways; (f) linear fitting for the intensity changes of peak 1618 cm−1, 1590 cm−1 and 1178 cm−1 (in situ detection by the PET).

Tables (1)

Tables Icon

Table 1 Comparisons of SERS performance of Ag/GO NPCs and other known substrates

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ m = i=1 n ( S i S ¯ ) 2 n( n1 )
EF = ( I SERS N SERS ) ( I RS N RS ) = N RS N SERS × I SERS I RS
N RS N SERS = C RS × V RS × N A ×( A RS Laser A RS Dry ) C SERS × V SERS × N A ×( A SERS Laser A SERS Dry )
EF= I SERS I RS × C RS C SERS
EF T = EF Loc × EF Rad
EF Loc | E Loc ( ω 0 ) E 0 ( ω 0 ) | 2
EF Rad | E Loc ( ω R ) E 0 ( ω R ) | 2
EF T | E Loc E 0 | 4

Metrics