Abstract

A novel millimeter-wave synergetic optoelectronic oscillator based on regenerative frequency-dividing oscillation and phase-locking techniques is proposed and experimentally demonstrated. The regenerative frequency-dividing oscillator is embedded for millimeter-wave frequency division, and then synergistically oscillates with the optoelectronic oscillator (OEO) due to injection-locking effect. The phase-locking stabilization technique is skillfully utilized in millimeter-wave OEO via commercial analog phase shifter. As a result, a 40-GHz signal is generated featuring low phase noise, high stability and low spurs. The single-sideband phase noise is about −117 dBc/Hz at 10-kHz offset frequency and the spurious suppression ratio reaches more than 80 dBc. The measured overlapping Allan deviation of the proposed synergetic OEO reaches lower than 10−13 at 1024-s averaging time, which is five orders of magnitude lower than free-running millimeter-wave OEO.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency-demultiplication OEO for stable millimeter-wave signal generation utilizing phase-locked frequency-quadrupling

Jingliang Liu, Anni Liu, Zhonghan Wu, Yiran Gao, Jian Dai, Yuanan Liu, and Kun Xu
Opt. Express 26(21) 27358-27367 (2018)

Study on low-phase-noise optoelectronic oscillator and high-sensitivity phase noise measurement system

Jun Hong, An-min Liu, and Jian Guo
J. Opt. Soc. Am. A 30(8) 1557-1562 (2013)

Triple band frequency generator based on an optoelectronic oscillator with low phase noise

Zenghui Chen, Jian Dai, Yue Zhou, Feifei Yin, Tian Zhang, Jianqiang Li, Yitang Dai, and Kun Xu
Opt. Express 25(17) 20749-20756 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
    [Crossref]
  2. B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
    [Crossref] [PubMed]
  3. X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source,” Photon. Res. 6(5), B30–B36 (2018).
    [Crossref]
  4. W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
    [Crossref]
  5. S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
    [Crossref]
  6. J. Yao, “Optoelectronic oscillators for high speed and high resolution optical sensing,” J. Lightwave Technol. 35(16), 3489–3497 (2017).
    [Crossref]
  7. B. Nakarmi, S. Pan, and Y. H. Won, “Microwave Frequency Generation, Switching and Controlling Using Single-Mode FP-LDs,” J. Lightwave Technol. 36(19), 4273–4281 (2018).
    [Crossref]
  8. X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
    [Crossref]
  9. L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
    [Crossref]
  10. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  11. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
    [Crossref]
  12. K. Saleh and Y. K. Chembo, “On the phase noise performance of microwave and millimeter-wave signals generated with versatile Kerr optical frequency combs,” Opt. Express 24(22), 25043–25056 (2016).
    [Crossref] [PubMed]
  13. D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in proceeding of IEEE Conference on International Frequency Control Symposium (2008), pp. 811–814.
    [Crossref]
  14. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  15. X. Xu, J. Dai, Y. Dai, F. Yin, Y. Zhou, J. Li, J. Yin, Q. Wang, and K. Xu, “Broadband and wide-range feedback tuning scheme for phase-locked loop stabilization of tunable optoelectronic oscillators,” Opt. Lett. 40(24), 5858–5861 (2015).
    [Crossref] [PubMed]
  16. E. N. Fokoua, M. N. Petrovich, T. Bradley, and R. Slavík, “How to make the propagation time through an optical fiber fully insensitive to temperature variation,” Optica 4(6), 659–668 (2017).
    [Crossref]
  17. D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the optoelectronic oscillator,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly (2002), pp. 580–583.
  18. Y. Zhang, D. Hou, and J. Zhao, “Long-term frequency stabilization of an optoelectronic oscillator using phase-locked loop,” J. Lightwave Technol. 32(13), 2408–2414 (2014).
    [Crossref]
  19. Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
    [Crossref]
  20. D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
    [Crossref]
  21. E. Rubiola, M. Olivier, and J. Groslambert, “Phase noise in the regenerative frequency dividers,” IEEE Trans. Instrum. Meas. 41(3), 353–360 (1992).
    [Crossref]
  22. B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004).
    [Crossref]

2018 (5)

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
[Crossref]

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

X. Xu, J. Wu, T. G. Nguyen, T. Moein, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, “Photonic microwave true time delays for phased array antennas using a 49 GHz FSR integrated optical micro-comb source,” Photon. Res. 6(5), B30–B36 (2018).
[Crossref]

B. Nakarmi, S. Pan, and Y. H. Won, “Microwave Frequency Generation, Switching and Controlling Using Single-Mode FP-LDs,” J. Lightwave Technol. 36(19), 4273–4281 (2018).
[Crossref]

2017 (4)

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

E. N. Fokoua, M. N. Petrovich, T. Bradley, and R. Slavík, “How to make the propagation time through an optical fiber fully insensitive to temperature variation,” Optica 4(6), 659–668 (2017).
[Crossref]

J. Yao, “Optoelectronic oscillators for high speed and high resolution optical sensing,” J. Lightwave Technol. 35(16), 3489–3497 (2017).
[Crossref]

2016 (1)

2015 (1)

2014 (2)

W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Y. Zhang, D. Hou, and J. Zhao, “Long-term frequency stabilization of an optoelectronic oscillator using phase-locked loop,” J. Lightwave Technol. 32(13), 2408–2414 (2014).
[Crossref]

2012 (1)

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

2011 (2)

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

2010 (1)

2004 (1)

B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004).
[Crossref]

1996 (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

1992 (1)

E. Rubiola, M. Olivier, and J. Groslambert, “Phase noise in the regenerative frequency dividers,” IEEE Trans. Instrum. Meas. 41(3), 353–360 (1992).
[Crossref]

Alexandre, C.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Anderson, D. A.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

Aryanfar, F.

W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Bai, Y.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Bouchand, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Bradley, T.

Capmany, J.

Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
[Crossref]

Chembo, Y. K.

Chen, W.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Chu, S. T.

Cooke, C. M.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

Dai, J.

Dai, Y.

Datta, S.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Eliyahu, D.

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in proceeding of IEEE Conference on International Frequency Control Symposium (2008), pp. 811–814.
[Crossref]

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the optoelectronic oscillator,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly (2002), pp. 580–583.

Feng, Y. Y.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Fokoua, E. N.

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Gao, C.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Giunta, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Gordon, J. A.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

Groslambert, J.

E. Rubiola, M. Olivier, and J. Groslambert, “Phase noise in the regenerative frequency dividers,” IEEE Trans. Instrum. Meas. 41(3), 353–360 (1992).
[Crossref]

Hänsel, W.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Hao, T.

Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
[Crossref]

Holloway, C. L.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

Holzwarth, R.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Hou, D.

Jian, D.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

Jiang, Y.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Joshi, A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Kamran, A.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the optoelectronic oscillator,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly (2002), pp. 580–583.

Kim, Y.

W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Le Coq, Y.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Lee, B.

W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Lezius, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Li, J.

Li, M.

Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
[Crossref]

Li, T. C.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Li, W.

Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
[Crossref]

Little, B. E.

Liu, A.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

Liu, J.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

Liu, S.

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

Liu, Y.

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
[Crossref]

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

Lours, M.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Maleki, L.

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in proceeding of IEEE Conference on International Frequency Control Symposium (2008), pp. 811–814.
[Crossref]

Miao, J.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Mitchell, A.

Moein, T.

Morandotti, R.

Moss, D. J.

Nakarmi, B.

Nguyen, T. G.

Nicolodi, D.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Olivier, M.

E. Rubiola, M. Olivier, and J. Groslambert, “Phase noise in the regenerative frequency dividers,” IEEE Trans. Instrum. Meas. 41(3), 353–360 (1992).
[Crossref]

Pan, S.

Park, J.

W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Petrovich, M. N.

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Raithel, G.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

Razavi, B.

B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004).
[Crossref]

Roh, W.

W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Rubiola, E.

E. Rubiola, M. Olivier, and J. Groslambert, “Phase noise in the regenerative frequency dividers,” IEEE Trans. Instrum. Meas. 41(3), 353–360 (1992).
[Crossref]

Saleh, K.

Santarelli, G.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Sariri, K.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the optoelectronic oscillator,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly (2002), pp. 580–583.

Seidel, D.

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in proceeding of IEEE Conference on International Frequency Control Symposium (2008), pp. 811–814.
[Crossref]

Seol, J. Y.

W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

Simons, M. T.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

Slavík, R.

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Tokhmakhian, M.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the optoelectronic oscillator,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly (2002), pp. 580–583.

Tremblin, P. A.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Wang, B.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Wang, H.

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

Wang, L. J.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Wang, Q.

Wilson, P. F.

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

Won, Y. H.

Wu, J.

Xie, X.

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Xu, K.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

X. Xu, J. Dai, Y. Dai, F. Yin, Y. Zhou, J. Li, J. Yin, Q. Wang, and K. Xu, “Broadband and wide-range feedback tuning scheme for phase-locked loop stabilization of tunable optoelectronic oscillators,” Opt. Lett. 40(24), 5858–5861 (2015).
[Crossref] [PubMed]

Xu, X.

Yao, J.

Yao, X. S.

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

Yao, Z.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

Yin, F.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

X. Xu, J. Dai, Y. Dai, F. Yin, Y. Zhou, J. Li, J. Yin, Q. Wang, and K. Xu, “Broadband and wide-range feedback tuning scheme for phase-locked loop stabilization of tunable optoelectronic oscillators,” Opt. Lett. 40(24), 5858–5861 (2015).
[Crossref] [PubMed]

Yin, J.

Zhang, J. W.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Zhang, S.

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

Zhang, T.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

Zhang, X.

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

Zhang, Y.

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

Y. Zhang, D. Hou, and J. Zhao, “Long-term frequency stabilization of an optoelectronic oscillator using phase-locked loop,” J. Lightwave Technol. 32(13), 2408–2414 (2014).
[Crossref]

Zhao, J.

Zhou, Y.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

X. Xu, J. Dai, Y. Dai, F. Yin, Y. Zhou, J. Li, J. Yin, Q. Wang, and K. Xu, “Broadband and wide-range feedback tuning scheme for phase-locked loop stabilization of tunable optoelectronic oscillators,” Opt. Lett. 40(24), 5858–5861 (2015).
[Crossref] [PubMed]

Zhu, N.

Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
[Crossref]

Zhu, X.

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Ziyan, Z.

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

Zou, X.

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

IEEE Commun. Mag. (1)

W. Roh, J. Y. Seol, J. Park, B. Lee, Y. Kim, and F. Aryanfar, “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results,” IEEE Commun. Mag. 52(2), 106–113 (2014).
[Crossref]

IEEE J. Quantum Electron. (1)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

IEEE J. Solid-State Circuits (1)

B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits 39(9), 1415–1424 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Jian, Z. Ziyan, Z. Yao, J. Liu, A. Liu, T. Zhang, F. Yin, Y. Zhou, Y. Liu, and K. Xu, “Stabilized Optoelectronic Oscillator With Enlarged Frequency-Drift Compensation Range,” IEEE Photonics Technol. Lett. 30(14), 1289–1292 (2018).
[Crossref]

IEEE Trans. Electromagn. Compat. (1)

C. L. Holloway, M. T. Simons, J. A. Gordon, P. F. Wilson, C. M. Cooke, D. A. Anderson, and G. Raithel, “Atom-based rf electric field metrology: From self-calibrated measurements to subwavelength and near-field imaging,” IEEE Trans. Electromagn. Compat. 59(2), 717–728 (2017).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

E. Rubiola, M. Olivier, and J. Groslambert, “Phase noise in the regenerative frequency dividers,” IEEE Trans. Instrum. Meas. 41(3), 353–360 (1992).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

X. Zou, S. Zhang, H. Wang, H. Wang, X. Zhang, Y. Zhang, S. Liu, and Y. Liu, “Stepwise Frequency-Shifted Optical Heterodyne for Flexible and Ultra-wide Frequency Microwave Down-Conversion,” IEEE Trans. Microw. Theory Tech. 66(7), 3557–3563 (2018).
[Crossref]

J. Lightwave Technol. (4)

Light Sci. Appl. (1)

Y. Liu, T. Hao, W. Li, J. Capmany, N. Zhu, and M. Li, “Observation of parity-time symmetry in microwave photonics,” Light Sci. Appl. 7(1), 38 (2018).
[Crossref]

Nat. Photonics (3)

L. Maleki, “The optoelectronic oscillator,” Nat. Photonics 5(12), 728–730 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultra-stable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P. A. Tremblin, G. Santarelli, R. Holzwarth, and Y. Le Coq, “Photonic microwave signals with zeptosecond-level absolute timing noise,” Nat. Photonics 11(1), 44–47 (2017).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Optica (1)

Photon. Res. (1)

Sci. Rep. (1)

B. Wang, C. Gao, W. Chen, J. Miao, X. Zhu, Y. Bai, J. W. Zhang, Y. Y. Feng, T. C. Li, and L. J. Wang, “Precise and continuous time and frequency synchronization at the 5× 10-19 accuracy level,” Sci. Rep. 2(1), 556 (2012).
[Crossref] [PubMed]

Other (2)

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the optoelectronic oscillator,” in proceeding of IEEE Conference on International Frequency Control Symposium and PDA Exhibition Jointly (2002), pp. 580–583.

D. Eliyahu, D. Seidel, and L. Maleki, “Phase noise of a high performance OEO and an ultra-low noise floor cross-correlation microwave photonic homodyne system,” in proceeding of IEEE Conference on International Frequency Control Symposium (2008), pp. 811–814.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic diagram of the proposed millimeter-wave synergetic OEO. MZM: Mach-Zehnder modulator; DSF: dispersion-shifted fiber; PD: photodetector; LNA: low noise amplifier; Att: attenuator; PS: phase shifter; PC: power combiner; FD: frequency divider; VCPS: voltage-controlled phase shifter; PID: proportional-integral-derivative regulator module; FS: frequency synthesizer; FM: frequency multiplier; Ref: microwave reference; RFDO: regenerative frequency-dividing oscillator; RF: radio frequency; LO: local oscillation; IF: intermediate frequency.
Fig. 2
Fig. 2 (a) Electrical spectrum of the self-oscillation signal from the RFDO. (b) Electrical spectrum of the injection-locked signal from the RFDO. (c) Single-sideband (SSB) phase noise of the output microwave signals from the RFDO. Red line: self-oscillation. Yellow line: injection-locking. (d) The injection-locked range of the RFDO.
Fig. 3
Fig. 3 Phase shift response of the analog phase shifter with different bias voltage. Blue line: operating frequency at 40 GHz; Red line: operating frequency at 10 GHz; Green line: equivalent operating frequency at 40 GHz. PS: phase shifter.
Fig. 4
Fig. 4 Electrical spectra of the generated 40 GHz signals from (a) free-running conventional OEO and (b) PLL-based synergetic OEO.
Fig. 5
Fig. 5 (a) SSB phase noise of the 40-GHz millimeter-wave signals generated from PLL-based synergetic OEO (green line), the free-running synergetic OEO (red line), the free-running conventional OEO (blue line) and commercial microwave source (orange line). (b) Overlapping Allan deviation of the 40-GHz millimeter-wave signals generated from the proposed PLL-based (green line) and free-running synergetic optoelectronic oscillators (blue line),respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f i n ( t ) = A cos ( ω c t + ε sin ( ω c t ) ) = A ( cos ω c t + ε 2 [ cos ( ω c ω s ) t cos ( ω c ω s ) t ] ) . f o u t ( t ) = I F D A cos ( ( ω c / N ) t + ε N sin ( ω c t ) ) = I F D A ( cos ( ( ω c / N ) t + ε 2 N [ cos ( ω c / N ω s ) t cos ( ω c / N ω s ) t ] ) .
V o = I F M I F D I P S A cos ( ω c t + ϕ + N φ N t h ) .

Metrics