Abstract

A long-range surface plasmon resonance (LRSPR) sensor based on GK570/Silver coated hollow fiber (HF) with an asymmetric layer structure is proposed. A set of proposed sensors with different layer thicknesses were fabricated by the liquid phase coating method. Both theoretical and experimental analyses were carried out to evaluate the performances of the fabricated sensors, such as sensitivity, figure of merit (FOM) and detection range. The theoretical results based on the ray modal agreed well with the experimental results. The highest experimentally obtained sensitivity and FOM were over 12500 nm/RIU and 150 RIU−1, respectively. The FOM was approximately ten times that of the HF SPR sensor. Moreover, compared to the HF LRSPR sensor with a symmetric layer structure, the proposed sensor has a much larger sensitivity and an approximately double FOM without sacrificing other advantages of the HF LRSPR sensor.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index

Bing-Hong Liu, Yong-Xiang Jiang, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi
Opt. Express 21(26) 32349-32357 (2013)

Sensing self-referenced fiber optic long-range surface plasmon resonance sensor based on electronic coupling between surface plasmon polaritons

Jian-Ying Jing, Qi Zhu, Zhe-Xin Dai, Si-Yuan Li, Qi Wang, and Wan-Ming Zhao
Appl. Opt. 58(23) 6329-6334 (2019)

Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit

Yong-Xiang Jiang, Bing-Hong Liu, Xiao-Song Zhu, Xiao-Li Tang, and Yi-Wei Shi
Opt. Lett. 40(5) 744-747 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  2. M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
    [Crossref] [PubMed]
  3. Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
    [Crossref]
  4. P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
    [Crossref]
  5. R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys., A Mater. Sci. Process. 124(3), 235 (2018).
    [Crossref]
  6. B. D. Gupta and R. Kant, “Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures,” Opt. Laser Technol. 101, 144–161 (2018).
    [Crossref]
  7. E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
    [Crossref] [PubMed]
  8. R. K. Gangwar and V. K. Singh, “Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor,” Plasmonics 12(5), 1367–1372 (2017).
    [Crossref]
  9. S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, and Y. Wang, “Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber,” Opt. Express 26(4), 3988–3994 (2018).
    [Crossref] [PubMed]
  10. Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
    [Crossref]
  11. X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics J. 10(2), 1–9 (2018).
    [Crossref]
  12. M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
    [Crossref] [PubMed]
  13. M. Navarro-Cía, M. S. Vitiello, C. M. Bledt, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band,” Opt. Express 21(20), 23748–23755 (2013).
    [Crossref] [PubMed]
  14. A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system,” Appl. Phys. Express 10(7), 072503 (2017).
    [Crossref]
  15. J. Y. Wei, Y. Q. Wei, X. S. Zhu, and Y. W. Shi, “Miniaturization of hollow waveguide cell for spectroscopic gas sensing,” Sens. Actuators B Chem. 243, 254–261 (2017).
    [Crossref]
  16. B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
    [Crossref] [PubMed]
  17. P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface plasmon resonance sensor based on Ethylene Tetra-Fluoro-Ethylene hollow fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
    [Crossref] [PubMed]
  18. Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
    [Crossref] [PubMed]
  19. M. Lu, W. Peng, Q. Liu, Y. Liu, L. Li, Y. Liang, and J. F. Masson, “Dual channel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements,” Opt. Express 25(8), 8563–8570 (2017).
    [Crossref] [PubMed]
  20. X. Zhang, X. S. Zhu, and Y. W. Shi, “Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure,” Opt. Express 26(1), 130–140 (2018).
    [Crossref] [PubMed]
  21. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
    [Crossref]
  22. J. Y. Jing, Q. Wang, W. M. Zhao, and B. T. Wang, “Long-range surface plasmon resonance and its sensing applications: A review,” Opt. Lasers Eng. 112, 103–118 (2019).
    [Crossref]
  23. L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
    [Crossref]
  24. L. M. Wu, J. Guo, H. L. Xu, X. Y. Dai, and Y. J. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
    [Crossref]
  25. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
    [Crossref]
  26. X. Zhang, X. S. Zhu, and Y. W. Shi, “Fabrication and performance investigation of the EVA/Ag coated hollow fiber,” Opt. Laser Technol. 111, 802–809 (2019).
    [Crossref]

2019 (2)

J. Y. Jing, Q. Wang, W. M. Zhao, and B. T. Wang, “Long-range surface plasmon resonance and its sensing applications: A review,” Opt. Lasers Eng. 112, 103–118 (2019).
[Crossref]

X. Zhang, X. S. Zhu, and Y. W. Shi, “Fabrication and performance investigation of the EVA/Ag coated hollow fiber,” Opt. Laser Technol. 111, 802–809 (2019).
[Crossref]

2018 (7)

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys., A Mater. Sci. Process. 124(3), 235 (2018).
[Crossref]

B. D. Gupta and R. Kant, “Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures,” Opt. Laser Technol. 101, 144–161 (2018).
[Crossref]

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics J. 10(2), 1–9 (2018).
[Crossref]

X. Zhang, X. S. Zhu, and Y. W. Shi, “Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure,” Opt. Express 26(1), 130–140 (2018).
[Crossref] [PubMed]

S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, and Y. Wang, “Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber,” Opt. Express 26(4), 3988–3994 (2018).
[Crossref] [PubMed]

M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
[Crossref] [PubMed]

2017 (4)

R. K. Gangwar and V. K. Singh, “Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor,” Plasmonics 12(5), 1367–1372 (2017).
[Crossref]

M. Lu, W. Peng, Q. Liu, Y. Liu, L. Li, Y. Liang, and J. F. Masson, “Dual channel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements,” Opt. Express 25(8), 8563–8570 (2017).
[Crossref] [PubMed]

A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system,” Appl. Phys. Express 10(7), 072503 (2017).
[Crossref]

J. Y. Wei, Y. Q. Wei, X. S. Zhu, and Y. W. Shi, “Miniaturization of hollow waveguide cell for spectroscopic gas sensing,” Sens. Actuators B Chem. 243, 254–261 (2017).
[Crossref]

2016 (3)

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

L. M. Wu, J. Guo, H. L. Xu, X. Y. Dai, and Y. J. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

2015 (3)

Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
[Crossref] [PubMed]

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface plasmon resonance sensor based on Ethylene Tetra-Fluoro-Ethylene hollow fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

2014 (1)

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

2013 (3)

2009 (1)

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

2008 (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

1989 (1)

Abbott, D.

Ahmed, R.

Berini, P.

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Bledt, C. M.

Cao, S.

Chen, P.

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface plasmon resonance sensor based on Ethylene Tetra-Fluoro-Ethylene hollow fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

Couture, M.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Dai, X. Y.

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

L. M. Wu, J. Guo, H. L. Xu, X. Y. Dai, and Y. J. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

Deng, Z. Q.

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Dinovitser, A.

Ebendorff-Heidepriem, H.

M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
[Crossref] [PubMed]

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Fan, D. Y.

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

François, A.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Gangwar, R. K.

R. K. Gangwar and V. K. Singh, “Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor,” Plasmonics 12(5), 1367–1372 (2017).
[Crossref]

Guo, J.

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

L. M. Wu, J. Guo, H. L. Xu, X. Y. Dai, and Y. J. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

Gupta, B. D.

B. D. Gupta and R. Kant, “Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures,” Opt. Laser Technol. 101, 144–161 (2018).
[Crossref]

Harrington, J. A.

He, J.

He, Y. J.

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface plasmon resonance sensor based on Ethylene Tetra-Fluoro-Ethylene hollow fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Hongo, A.

Huang, Y.

Islam, M. S.

Iwai, K.

A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system,” Appl. Phys. Express 10(7), 072503 (2017).
[Crossref]

Jha, R.

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

Jia, P.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Jiang, L. Y.

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Jiang, Y. X.

Jing, J. Y.

J. Y. Jing, Q. Wang, W. M. Zhao, and B. T. Wang, “Long-range surface plasmon resonance and its sensing applications: A review,” Opt. Lasers Eng. 112, 103–118 (2019).
[Crossref]

Kant, R.

B. D. Gupta and R. Kant, “Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures,” Opt. Laser Technol. 101, 144–161 (2018).
[Crossref]

Katagiri, T.

A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system,” Appl. Phys. Express 10(7), 072503 (2017).
[Crossref]

Klantsataya, E.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Kumar, R.

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys., A Mater. Sci. Process. 124(3), 235 (2018).
[Crossref]

Kushwaha, A. S.

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys., A Mater. Sci. Process. 124(3), 235 (2018).
[Crossref]

Li, J.

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Li, L.

Liang, Y.

Liao, C.

Ling, Z. T.

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Liu, B. H.

Liu, B. L.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics J. 10(2), 1–9 (2018).
[Crossref]

Liu, Q.

Liu, Y.

Liu, Z. H.

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Lu, M.

Lu, Y.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics J. 10(2), 1–9 (2018).
[Crossref]

Maharana, P. K.

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

Masson, J. F.

Matsuura, Y.

A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system,” Appl. Phys. Express 10(7), 072503 (2017).
[Crossref]

Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6(3), 423–427 (1989).
[Crossref]

Melzer, J. E.

Mishra, H.

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys., A Mater. Sci. Process. 124(3), 235 (2018).
[Crossref]

Mitrofanov, O.

Miyagi, M.

Monro, T. M.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

Navarro-Cía, M.

Ng, B. W.-H.

Padhy, P.

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

Peng, W.

Rifat, A. A.

Saito, M.

Seki, A.

A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system,” Appl. Phys. Express 10(7), 072503 (2017).
[Crossref]

Shao, Y.

Shi, Y. W.

X. Zhang, X. S. Zhu, and Y. W. Shi, “Fabrication and performance investigation of the EVA/Ag coated hollow fiber,” Opt. Laser Technol. 111, 802–809 (2019).
[Crossref]

X. Zhang, X. S. Zhu, and Y. W. Shi, “Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure,” Opt. Express 26(1), 130–140 (2018).
[Crossref] [PubMed]

J. Y. Wei, Y. Q. Wei, X. S. Zhu, and Y. W. Shi, “Miniaturization of hollow waveguide cell for spectroscopic gas sensing,” Sens. Actuators B Chem. 243, 254–261 (2017).
[Crossref]

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface plasmon resonance sensor based on Ethylene Tetra-Fluoro-Ethylene hollow fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
[Crossref] [PubMed]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

Singh, V. K.

R. K. Gangwar and V. K. Singh, “Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor,” Plasmonics 12(5), 1367–1372 (2017).
[Crossref]

Srivastava, M.

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys., A Mater. Sci. Process. 124(3), 235 (2018).
[Crossref]

Srivastava, S. K.

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys., A Mater. Sci. Process. 124(3), 235 (2018).
[Crossref]

Sultana, J.

Tang, X. L.

Vitiello, M. S.

Wang, B. T.

J. Y. Jing, Q. Wang, W. M. Zhao, and B. T. Wang, “Long-range surface plasmon resonance and its sensing applications: A review,” Opt. Lasers Eng. 112, 103–118 (2019).
[Crossref]

Wang, Q.

J. Y. Jing, Q. Wang, W. M. Zhao, and B. T. Wang, “Long-range surface plasmon resonance and its sensing applications: A review,” Opt. Lasers Eng. 112, 103–118 (2019).
[Crossref]

Wang, Y.

Wei, J. Y.

J. Y. Wei, Y. Q. Wei, X. S. Zhu, and Y. W. Shi, “Miniaturization of hollow waveguide cell for spectroscopic gas sensing,” Sens. Actuators B Chem. 243, 254–261 (2017).
[Crossref]

Wei, Y. Q.

J. Y. Wei, Y. Q. Wei, X. S. Zhu, and Y. W. Shi, “Miniaturization of hollow waveguide cell for spectroscopic gas sensing,” Sens. Actuators B Chem. 243, 254–261 (2017).
[Crossref]

Wu, L. M.

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

L. M. Wu, J. Guo, H. L. Xu, X. Y. Dai, and Y. J. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

Wu, T.

Xiang, Y. J.

L. M. Wu, J. Guo, H. L. Xu, X. Y. Dai, and Y. J. Xiang, “Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes,” Photon. Res. 4(6), 262–266 (2016).
[Crossref]

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

Xu, H. L.

Yang, J.

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Yang, X. C.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics J. 10(2), 1–9 (2018).
[Crossref]

Yang, X. H.

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Yao, J. Q.

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics J. 10(2), 1–9 (2018).
[Crossref]

Yuan, L. B.

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Zhang, F.

Zhang, J. Z.

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Zhang, L.

Zhang, X.

X. Zhang, X. S. Zhu, and Y. W. Shi, “Fabrication and performance investigation of the EVA/Ag coated hollow fiber,” Opt. Laser Technol. 111, 802–809 (2019).
[Crossref]

X. Zhang, X. S. Zhu, and Y. W. Shi, “Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure,” Opt. Express 26(1), 130–140 (2018).
[Crossref] [PubMed]

Zhang, Y.

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Zhang, Y. X.

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Zhao, S. S.

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Zhao, W. M.

J. Y. Jing, Q. Wang, W. M. Zhao, and B. T. Wang, “Long-range surface plasmon resonance and its sensing applications: A review,” Opt. Lasers Eng. 112, 103–118 (2019).
[Crossref]

Zhao, Y.

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Zhu, X. S.

X. Zhang, X. S. Zhu, and Y. W. Shi, “Fabrication and performance investigation of the EVA/Ag coated hollow fiber,” Opt. Laser Technol. 111, 802–809 (2019).
[Crossref]

X. Zhang, X. S. Zhu, and Y. W. Shi, “Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure,” Opt. Express 26(1), 130–140 (2018).
[Crossref] [PubMed]

J. Y. Wei, Y. Q. Wei, X. S. Zhu, and Y. W. Shi, “Miniaturization of hollow waveguide cell for spectroscopic gas sensing,” Sens. Actuators B Chem. 243, 254–261 (2017).
[Crossref]

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface plasmon resonance sensor based on Ethylene Tetra-Fluoro-Ethylene hollow fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

Y. X. Jiang, B. H. Liu, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40(5), 744–747 (2015).
[Crossref] [PubMed]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

Zhu, Z. D.

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Adv. Opt. Photonics (1)

P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photonics 1(3), 484–588 (2009).
[Crossref]

Appl. Phys. Express (1)

A. Seki, K. Iwai, T. Katagiri, and Y. Matsuura, “Sensitivity improvement of optical fiber acoustic probe for all-optical photoacoustic imaging system,” Appl. Phys. Express 10(7), 072503 (2017).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. Kumar, A. S. Kushwaha, M. Srivastava, H. Mishra, and S. K. Srivastava, “Enhancement in sensitivity of graphene-based zinc oxide assisted bimetallic surface plasmon resonance (SPR) biosensor,” Appl. Phys., A Mater. Sci. Process. 124(3), 235 (2018).
[Crossref]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

IEEE Photonics J. (2)

X. C. Yang, Y. Lu, B. L. Liu, and J. Q. Yao, “High sensitivity hollow fiber temperature sensor based on surface plasmon resonance and liquid filling,” IEEE Photonics J. 10(2), 1–9 (2018).
[Crossref]

L. M. Wu, Z. T. Ling, L. Y. Jiang, J. Guo, X. Y. Dai, Y. J. Xiang, and D. Y. Fan, “Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor,” IEEE Photonics J. 8(2), 1–9 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (6)

M. Lu, W. Peng, Q. Liu, Y. Liu, L. Li, Y. Liang, and J. F. Masson, “Dual channel multilayer-coated surface plasmon resonance sensor for dual refractive index range measurements,” Opt. Express 25(8), 8563–8570 (2017).
[Crossref] [PubMed]

X. Zhang, X. S. Zhu, and Y. W. Shi, “Improving the performance of hollow fiber surface plasssmon resonance sensor with one dimensional photonic crystal structure,” Opt. Express 26(1), 130–140 (2018).
[Crossref] [PubMed]

M. S. Islam, J. Sultana, A. A. Rifat, R. Ahmed, A. Dinovitser, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Express 26(23), 30347–30361 (2018).
[Crossref] [PubMed]

M. Navarro-Cía, M. S. Vitiello, C. M. Bledt, J. E. Melzer, J. A. Harrington, and O. Mitrofanov, “Terahertz wave transmission in flexible polystyrene-lined hollow metallic waveguides for the 2.5-5 THz band,” Opt. Express 21(20), 23748–23755 (2013).
[Crossref] [PubMed]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

S. Cao, Y. Shao, Y. Wang, T. Wu, L. Zhang, Y. Huang, F. Zhang, C. Liao, J. He, and Y. Wang, “Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber,” Opt. Express 26(4), 3988–3994 (2018).
[Crossref] [PubMed]

Opt. Laser Technol. (2)

B. D. Gupta and R. Kant, “Recent advances in surface plasmon resonance based fiber optic chemical and biosensors utilizing bulk and nanostructures,” Opt. Laser Technol. 101, 144–161 (2018).
[Crossref]

X. Zhang, X. S. Zhu, and Y. W. Shi, “Fabrication and performance investigation of the EVA/Ag coated hollow fiber,” Opt. Laser Technol. 111, 802–809 (2019).
[Crossref]

Opt. Lasers Eng. (1)

J. Y. Jing, Q. Wang, W. M. Zhao, and B. T. Wang, “Long-range surface plasmon resonance and its sensing applications: A review,” Opt. Lasers Eng. 112, 103–118 (2019).
[Crossref]

Opt. Lett. (1)

Photon. Res. (1)

Phys. Chem. Chem. Phys. (1)

M. Couture, S. S. Zhao, and J. F. Masson, “Modern surface plasmon resonance for bioanalytics and biophysics,” Phys. Chem. Chem. Phys. 15(27), 11190–11216 (2013).
[Crossref] [PubMed]

Plasmonics (1)

R. K. Gangwar and V. K. Singh, “Highly sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor,” Plasmonics 12(5), 1367–1372 (2017).
[Crossref]

Sens. Actuators B Chem. (4)

J. Y. Wei, Y. Q. Wei, X. S. Zhu, and Y. W. Shi, “Miniaturization of hollow waveguide cell for spectroscopic gas sensing,” Sens. Actuators B Chem. 243, 254–261 (2017).
[Crossref]

Y. Zhao, Z. Q. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

P. K. Maharana, R. Jha, and P. Padhy, “On the electric field enhancement and performance of SPR gas sensor based on graphene for visible and near infrared,” Sens. Actuators B Chem. 207, 117–122 (2015).
[Crossref]

Z. H. Liu, X. H. Yang, Y. Zhang, Y. X. Zhang, Z. D. Zhu, X. H. Yang, J. Z. Zhang, J. Yang, and L. B. Yuan, “Hollow fiber SPR sensor available for microfluidic chip,” Sens. Actuators B Chem. 265, 211–216 (2018).
[Crossref]

Sensors (Basel) (2)

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(1), 1–23 (2016).
[Crossref] [PubMed]

P. Chen, Y. J. He, X. S. Zhu, and Y. W. Shi, “Surface plasmon resonance sensor based on Ethylene Tetra-Fluoro-Ethylene hollow fiber,” Sensors (Basel) 15(11), 27917–27929 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the asymmetric HF LRSPR sensor. (a) 3D structure. (b) Lengthwise section with the ray transmission model and cross section.
Fig. 2
Fig. 2 Schematic diagram of the experimental setup.
Fig. 3
Fig. 3 Comparison between the measured and theoretical spectra. (a) SPR spectra of a 35nm thick silver-coated HF. (b) Transmission spectra of a 425nm thick GK570/Ag HF.
Fig. 4
Fig. 4 The transmission spectra of the GK570/Ag HF sensors with different layer thicknesses. (a) Ag 35nm, GK570 270nm. (b) Ag 35nm, GK570 425nm. (c) Ag 34nm, GK570 610nm. (d) Comparison between measured (solid lines) and theoretical (dashed and dash-dot lines) transmission spectra. The black curves (270nm), red curves (425nm) and blue curves (610nm) are shown for the RI of 1.5046, 1.4879 and 1.4773, respectively.
Fig. 5
Fig. 5 RW versus sensed RI for three sensors. (a) Ag 35nm, GK570 270nm. (b) Ag 35nm, GK570 425nm. (c) Ag 34nm, GK570 610nm. (d) Sensitivities of three sensors.
Fig. 6
Fig. 6 Comparison between asymmetric HF LRSPR sensors with different dielectric layer thickness. (a) FWHM. (b) FOM.
Fig. 7
Fig. 7 (a) Normalized transmission spectra of the GK570/Ag HF sensor with 60nm thick silver and 420nm thick GK570 layers. (b) Sensitivity and FOM of the sensor. (c) Dispersion curves of LRSPP and SRSPP for different silver layer thickness. (d) The enlarged dispersion curves of LRSPP and SRSPP for 60nm silver layer at the RWs of the LRSPR and SRSPR dips in the spectrum of RI = 1.5721 in Fig. 7(a). The shadow region shows the lights transmitted in the sensor that dominate the transmission spectrum. (e) The distribution of the normal electric field in the asymmetric IMI structure at 564nm and 757nm. (f) The distribution of the tangential electric field in the asymmetric IMI structure at 564nm and 757nm.

Tables (1)

Tables Icon

Table 1 Major performance of three fabricated sensors

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P 0 ( φ )exp( φ 2 φ 0 2 ),
P= θ cr π/2 P 0 ( θ ) R p ( θ ) N( θ ) dθ,
T= θ cr π/2 P 0 ( θ ) R p ( θ ) N( θ ) dθ θ cr π/2 P 0 ( θ ) dθ .
ε( λ )= ε r +i ε i =1 λ 2 λ c λ p 2 ( λ c +iλ ) ,
S= Δ λ res Δ n s ,
FOM= S FWHM .

Metrics