Abstract

We demonstrate that the Relative Intensity Noise (RIN) of a supercontinuum source can be significantly reduced using the new concept of undertapering, where the fiber is tapered to a diameter that is smaller than the diameter that gives the shortest blue edge, which is typically regarded as the optimum. We show that undertapering allows to control the second zero dispersion wavelength and use it as a soliton barrier to stop the redshifting solitons at a pre-defined wavelength, and thereby strongly reduce the RIN. We demonstrate how undertapering can reduce the spectrally averaged RIN in the optical coherence tomography bands, 500800nm and 11501450nm, by more than a factor two.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Power dependence of supercontinuum noise in uniform and tapered PCFs

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang
Opt. Express 20(3) 2851-2857 (2012)

Mid-infrared supercontinuum generation to 4.5  μm in uniform and tapered ZBLAN step-index fibers by direct pumping at 1064 or 1550  nm

Irnis Kubat, Christian S. Agger, Peter Morten Moselund, and Ole Bang
J. Opt. Soc. Am. B 30(10) 2743-2757 (2013)

Efficient supercontinuum generations in silica suspended core fibers

Libin Fu, Brian K. Thomas, and Liang Dong
Opt. Express 16(24) 19629-19642 (2008)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  2. G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013), 5th ed.
  3. J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
    [Crossref]
  4. X. Shu, L. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).
    [PubMed]
  5. M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
    [Crossref] [PubMed]
  6. D. J. Harper, M. Augustin, A. Lichtenegger, P. Eugui, C. Reyes, M. Glosmann, C. K. Hitzenberger, and B. Baumann, “White light polarization sensitive optical coherence tomography for sub-micron axial resolution and spectroscopic contrast in the murine retina,” Biomed. Opt. Express 9, 2115–2129 (2018).
    [Crossref] [PubMed]
  7. N. M. Israelsen, M. Maria, M. Mogensen, S. Bojesen, M. Jensen, M. Hædersdal, A. Podoleanu, and O. Bang, “The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs,” Biomed. Opt. Express 9, 2240–2265 (2018).
    [Crossref] [PubMed]
  8. M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
    [Crossref]
  9. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [Crossref] [PubMed]
  10. U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
    [Crossref] [PubMed]
  11. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).
  12. U. Moller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
    [Crossref]
  13. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452 (2013).
    [Crossref] [PubMed]
  14. M. Klimczak, B. S. Iwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buzcynski, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
    [Crossref]
  15. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34, 764–775 (2017).
    [Crossref]
  16. I. B. Gonzalo, R. D. Engelsholm, M. P. Sorensen, and O. Bang, “Polarization noise places severe constraints on coherence of all- normal dispersion femtosecond supercontinuum generation,” Sci. Reports 8, 6579 (2018).
  17. J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17, 21497 (2009).
    [Crossref] [PubMed]
  18. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 18–21 (2008).
    [Crossref]
  19. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic crystal fibres,” Nat. Photonics 1, 653–657 (2007).
    [Crossref]
  20. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE journal quantum electronics 23, 1938–1946 (1987).
    [Crossref]
  21. S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
    [Crossref]
  22. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum - group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
    [Crossref]
  23. S. T. Sørensen, C. Larsen, C. Jakobsen, C. L. Thomsen, and O. Bang, “Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources,” Opt. Lett. 39, 1097–1100 (2014).
    [Crossref] [PubMed]
  24. A. Kudlinski, A. K. George, J. C. Knight, J. Travers, A. Rulkov, S. V. Popov, and J. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
    [Crossref] [PubMed]
  25. A. Kudlinski, B. Barviau, A. Leray, C. Spriet, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18, 27445–27454 (2010).
    [Crossref]
  26. S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
    [Crossref] [PubMed]
  27. S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29, 2875–2885 (2012).
    [Crossref]
  28. G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2008).
    [Crossref]
  29. G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
    [Crossref]
  30. T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415 (2000).
    [Crossref]
  31. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
    [Crossref] [PubMed]
  32. K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045 (2004).
    [Crossref] [PubMed]
  33. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
    [Crossref] [PubMed]
  34. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express 12, 6498 (2004).
    [Crossref] [PubMed]
  35. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at approximately 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
    [Crossref] [PubMed]
  36. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [Crossref] [PubMed]
  37. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004).
    [Crossref] [PubMed]
  38. M. Kolesik, E. M. Wright, and J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diamter tapered fibers,” Appl. Phys. B 79, 293–300 (2004).
    [Crossref]
  39. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
    [Crossref] [PubMed]
  40. F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
    [Crossref]
  41. O. Vanvincq, J. C. Travers, and A. Kudlinski, “Conservation of the photon number in the generalized nonlinear Schrödinger equation in axially varying optical fibers,” Phys. Rev. A 84, 063820 (2011).
    [Crossref]
  42. J. Laegsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B 29, 3183–3191 (2012).
    [Crossref]
  43. P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis, Technical University of Denmark (2009).
  44. I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” JOSA B 35, 2102–2110 (2018).
    [Crossref]
  45. E. Gernier, P. Bowen, T. Sylvestre, J. Dudley, P. M. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).
  46. S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).
  47. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
    [Crossref]
  48. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
    [Crossref] [PubMed]
  49. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
    [Crossref]
  50. U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
    [Crossref]
  51. J. Johansen, O. Bang, C. Larsen, T. Feuchter, T. V. Andersen, and C. L. Thomsen, “Microstructured optical fiber, supercontinuum light source comprising microstructured optical fiber and use of such light source,” (2013). US Patent9841557B2.
  52. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
    [Crossref] [PubMed]
  53. I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid infrared supercontinuum generation to 12.5 mum in large NA chalcogenide step-index fibres pumped at 4.5 μm,” Opt. Express 22, 19169–19182 (2014).
    [Crossref] [PubMed]
  54. C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15347 (2017).
    [Crossref] [PubMed]
  55. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
    [Crossref]

2019 (2)

2018 (4)

2017 (5)

2016 (1)

2015 (1)

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

2014 (2)

2013 (2)

U. Moller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452 (2013).
[Crossref] [PubMed]

2012 (6)

2011 (2)

O. Vanvincq, J. C. Travers, and A. Kudlinski, “Conservation of the photon number in the generalized nonlinear Schrödinger equation in axially varying optical fibers,” Phys. Rev. A 84, 063820 (2011).
[Crossref]

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum - group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
[Crossref]

2010 (2)

2009 (3)

2008 (4)

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 18–21 (2008).
[Crossref]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2008).
[Crossref]

F. Poletti and P. Horak, “Description of ultrashort pulse propagation in multimode optical fibers,” J. Opt. Soc. Am. B 25, 1645–1654 (2008).
[Crossref]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at approximately 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
[Crossref] [PubMed]

2007 (3)

J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
[Crossref] [PubMed]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

2004 (4)

2003 (3)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

2002 (1)

2000 (1)

1987 (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE journal quantum electronics 23, 1938–1946 (1987).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

Agger, C. S.

Agrawal, G.

G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013), 5th ed.

Akhmediev, N.

Andersen, P. E.

Andersen, T. V.

Augustin, M.

Bache, M.

M. Klimczak, B. S. Iwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buzcynski, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

Backman, V.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Bang, O.

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
[Crossref]

E. Gernier, P. Bowen, T. Sylvestre, J. Dudley, P. M. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).

I. B. Gonzalo, R. D. Engelsholm, M. P. Sorensen, and O. Bang, “Polarization noise places severe constraints on coherence of all- normal dispersion femtosecond supercontinuum generation,” Sci. Reports 8, 6579 (2018).

I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” JOSA B 35, 2102–2110 (2018).
[Crossref]

N. M. Israelsen, M. Maria, M. Mogensen, S. Bojesen, M. Jensen, M. Hædersdal, A. Podoleanu, and O. Bang, “The value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the dermal papillae and vellus hairs,” Biomed. Opt. Express 9, 2240–2265 (2018).
[Crossref] [PubMed]

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref] [PubMed]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15347 (2017).
[Crossref] [PubMed]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

M. Klimczak, B. S. Iwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buzcynski, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid infrared supercontinuum generation to 12.5 mum in large NA chalcogenide step-index fibres pumped at 4.5 μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

S. T. Sørensen, C. Larsen, C. Jakobsen, C. L. Thomsen, and O. Bang, “Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources,” Opt. Lett. 39, 1097–1100 (2014).
[Crossref] [PubMed]

U. Moller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[Crossref]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29, 2875–2885 (2012).
[Crossref]

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum - group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
[Crossref]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at approximately 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
[Crossref] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[Crossref] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[Crossref] [PubMed]

J. Johansen, O. Bang, C. Larsen, T. Feuchter, T. V. Andersen, and C. L. Thomsen, “Microstructured optical fiber, supercontinuum light source comprising microstructured optical fiber and use of such light source,” (2013). US Patent9841557B2.

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

Barviau, B.

Baumann, B.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE journal quantum electronics 23, 1938–1946 (1987).
[Crossref]

Beckmann, L.

X. Shu, L. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).
[PubMed]

Ben Salem, A.

Benson, T. M.

Biancalana, F.

Birks, T. A.

Bjarklev, A. O.

Bojesen, S.

Bowen, P.

E. Gernier, P. Bowen, T. Sylvestre, J. Dudley, P. M. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

Bravo Gonzalo, I.

Brilland, L.

Broeng, J.

Buzcynski, R.

Caillaud, C.

Chen, S.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Denninger, M.

Dias, F.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Dudley, J.

Dudley, J. M.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[Crossref]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17, 21497 (2009).
[Crossref] [PubMed]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2008).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

Efimov, A.

Eggleton, B. J.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2008).
[Crossref]

Engelsholm, R. D.

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sorensen, and O. Bang, “Polarization noise places severe constraints on coherence of all- normal dispersion femtosecond supercontinuum generation,” Sci. Reports 8, 6579 (2018).

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15347 (2017).
[Crossref] [PubMed]

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

Eugui, P.

Falk, P.

Farries, M.

Fawzi, A. A.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Feehan, J. S.

Feuchter, T.

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref] [PubMed]

J. Johansen, O. Bang, C. Larsen, T. Feuchter, T. V. Andersen, and C. L. Thomsen, “Microstructured optical fiber, supercontinuum light source comprising microstructured optical fiber and use of such light source,” (2013). US Patent9841557B2.

Feurer, T.

Frosz, M. H.

Fuhrberg, P.

Furniss, D.

Genty, G.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[Crossref]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17, 21497 (2009).
[Crossref] [PubMed]

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2008).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

George, A. K.

Gernier, E.

Giessen, H.

Glosmann, M.

Godin, T.

Gonzalo, I. B.

M. Jensen, I. B. Gonzalo, R. D. Engelsholm, M. Maria, N. M. Israelsen, A. Podoleanu, and O. Bang, “Noise of supercontinuum sources in spectral domain optical coherence tomography,” J. Opt. Soc. Am. B 36, A154–A160 (2019).
[Crossref]

I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” JOSA B 35, 2102–2110 (2018).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sorensen, and O. Bang, “Polarization noise places severe constraints on coherence of all- normal dispersion femtosecond supercontinuum generation,” Sci. Reports 8, 6579 (2018).

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

Hædersdal, M.

Hansen, K. P.

Harper, D. J.

Heidt, A. M.

Hilligsoe, K. M.

Hitzenberger, C. K.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE journal quantum electronics 23, 1938–1946 (1987).
[Crossref]

Horak, P.

Israelsen, N. M.

Iwicki, B. S.

Jakobsen, C.

Jalali, B.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 18–21 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Jensen, M.

Johansen, J.

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[Crossref]

J. Johansen, O. Bang, C. Larsen, T. Feuchter, T. V. Andersen, and C. L. Thomsen, “Microstructured optical fiber, supercontinuum light source comprising microstructured optical fiber and use of such light source,” (2013). US Patent9841557B2.

Joly, N. Y.

Judge, A.

Keiding, S.

Kibler, B.

Klimczak, M.

Knight, J. C.

Kolesik, M.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diamter tapered fibers,” Appl. Phys. B 79, 293–300 (2004).
[Crossref]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Koshiba, M.

Kristiansen, R.

Kubat, I.

Kudlinski, A.

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).

Laegsgaard, J.

Lamrini, S.

Larger, L.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).

Larsen, C.

Larsen, J. J.

Leick, L.

Leray, A.

Lichtenegger, A.

Linsenmeier, R. A.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Liu, W.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Maria, M.

Markos, C.

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).

Mogensen, M.

Moller, U.

U. Moller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

Møller, U.

Mølmer, K.

Moloney, J. V.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diamter tapered fibers,” Appl. Phys. B 79, 293–300 (2004).
[Crossref]

Moselund, P. M.

E. Gernier, P. Bowen, T. Sylvestre, J. Dudley, P. M. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36, A161–A167 (2019).

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid infrared supercontinuum generation to 12.5 mum in large NA chalcogenide step-index fibres pumped at 4.5 μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29, 2875–2885 (2012).
[Crossref]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[Crossref]

P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis, Technical University of Denmark (2009).

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

Mussot, A.

Napier, B.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Nielsen, C. K.

Omenetto, F. G.

Paulsen, H. N.

Petersen, C. R.

Podoleanu, A.

Poletti, F.

Popov, S. V.

Price, J. H. V.

Pricking, S.

Pysz, D.

Rao, S. D. S.

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

Reyes, C.

Ropers, C.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 18–21 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Rulkov, A.

Russell, P. S.

Russell, P. S. J.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415 (2000).
[Crossref]

Saitoh, K.

Scholle, K.

Seddon, A. B.

Sheibani, N.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Shu, X.

X. Shu, L. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).
[PubMed]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express 12, 6498 (2004).
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Solli, D. R.

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 18–21 (2008).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Sorensen, M. P.

I. B. Gonzalo, R. D. Engelsholm, M. P. Sorensen, and O. Bang, “Polarization noise places severe constraints on coherence of all- normal dispersion femtosecond supercontinuum generation,” Sci. Reports 8, 6579 (2018).

Sørensen, S. T.

Sorenson, C. M.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Spriet, C.

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).

Sujecki, S.

Sylvestre, T.

Tang, Z.

Taylor, A. J.

Taylor, J.

Taylor, J. R.

Thomsen, C. L.

S. T. Sørensen, C. Larsen, C. Jakobsen, C. L. Thomsen, and O. Bang, “Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources,” Opt. Lett. 39, 1097–1100 (2014).
[Crossref] [PubMed]

S. T. Sørensen, C. Larsen, U. Møller, P. M. Moselund, C. L. Thomsen, and O. Bang, “Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation,” J. Opt. Soc. Am. B 29, 2875–2885 (2012).
[Crossref]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[Crossref]

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum - group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
[Crossref]

J. Johansen, O. Bang, C. Larsen, T. Feuchter, T. V. Andersen, and C. L. Thomsen, “Microstructured optical fiber, supercontinuum light source comprising microstructured optical fiber and use of such light source,” (2013). US Patent9841557B2.

Thrane, L.

Travers, J.

Travers, J. C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

O. Vanvincq, J. C. Travers, and A. Kudlinski, “Conservation of the photon number in the generalized nonlinear Schrödinger equation in axially varying optical fibers,” Phys. Rev. A 84, 063820 (2011).
[Crossref]

J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
[Crossref] [PubMed]

Troles, J.

Vanvincq, O.

O. Vanvincq, J. C. Travers, and A. Kudlinski, “Conservation of the photon number in the generalized nonlinear Schrödinger equation in axially varying optical fibers,” Phys. Rev. A 84, 063820 (2011).
[Crossref]

Wadsworth, W. J.

Ward, J.

Washburn, B. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Weber, H.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE journal quantum electronics 23, 1938–1946 (1987).
[Crossref]

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Wetzel, B.

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452 (2013).
[Crossref] [PubMed]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

Wright, E. M.

M. Kolesik, E. M. Wright, and J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diamter tapered fibers,” Appl. Phys. B 79, 293–300 (2004).
[Crossref]

Yi, J.

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Yulin, A. V.

Zghal, M.

Zhang, H. F.

X. Shu, L. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).
[PubMed]

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Zhou, B.

M. Klimczak, B. S. Iwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buzcynski, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE journal quantum electronics 23, 1938–1946 (1987).
[Crossref]

Appl. Phys. B (3)

G. Genty, J. M. Dudley, and B. J. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194 (2008).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, B. R. Washburn, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in a microstructured fiber,” Appl. Phys. B 77, 269–277 (2003).
[Crossref]

M. Kolesik, E. M. Wright, and J. V. Moloney, “Simulation of femtosecond pulse propagation in sub-micron diamter tapered fibers,” Appl. Phys. B 79, 293–300 (2004).
[Crossref]

Biomed. Opt. Express (2)

Electron. Lett. (1)

U. Moller and O. Bang, “Intensity noise in normal-pumped picosecond supercontinuum generation, where higher-order Raman lines cross into anomalous dispersion regime,” Electron. Lett. 49, 63–65 (2013).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Genty and J. M. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009).
[Crossref]

IEEE journal quantum electronics (1)

P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE journal quantum electronics 23, 1938–1946 (1987).
[Crossref]

J. Biomed. Opt. (1)

X. Shu, L. Beckmann, and H. F. Zhang, “Visible-light optical coherence tomography: a review,” J. Biomed. Opt. 22, 121707 (2017).
[PubMed]

J. Opt. Soc. Am. B (6)

JOSA B (1)

I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” JOSA B 35, 2102–2110 (2018).
[Crossref]

Light. Sci. & Appl. (1)

J. Yi, W. Liu, S. Chen, V. Backman, N. Sheibani, C. M. Sorenson, A. A. Fawzi, R. A. Linsenmeier, and H. F. Zhang, “Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation,” Light. Sci. & Appl. 4, e334 (2015).
[Crossref]

Nat. Photonics (1)

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic crystal fibres,” Nat. Photonics 1, 653–657 (2007).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref] [PubMed]

Opt. Express (15)

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express 12, 6498 (2004).
[Crossref] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005).
[Crossref] [PubMed]

C. R. Petersen, R. D. Engelsholm, C. Markos, L. Brilland, C. Caillaud, J. Troles, and O. Bang, “Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers,” Opt. Express 25, 15336–15347 (2017).
[Crossref] [PubMed]

J. M. Dudley, G. Genty, F. Dias, B. Kibler, and N. Akhmediev, “Modulation instability, Akhmediev Breathers and continuous wave supercontinuum generation,” Opt. Express 17, 21497 (2009).
[Crossref] [PubMed]

S. Pricking and H. Giessen, “Tailoring the soliton and supercontinuum dynamics by engineering the profile of tapered fibers,” Opt. Express 18, 20151–20163 (2010).
[Crossref] [PubMed]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. Ben Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452 (2013).
[Crossref] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005).
[Crossref] [PubMed]

S. T. Sørensen, U. Møller, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, T. V. Andersen, C. L. Thomsen, and O. Bang, “Deep-blue supercontinnum sources with optimum taper profiles - verification of GAM,” Opt. Express 20, 10635–10645 (2012).
[Crossref]

K. M. Hilligsoe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045 (2004).
[Crossref] [PubMed]

U. Møller, S. T. Sørensen, C. Jakobsen, J. Johansen, P. M. Moselund, C. L. Thomsen, and O. Bang, “Power dependence of supercontinuum noise in uniform and tapered PCFs,” Opt. Express 20, 2851–2857 (2012).
[Crossref] [PubMed]

I. Kubat, C. S. Agger, U. Møller, A. B. Seddon, Z. Tang, S. Sujecki, T. M. Benson, D. Furniss, S. Lamrini, K. Scholle, P. Fuhrberg, B. Napier, M. Farries, J. Ward, P. M. Moselund, and O. Bang, “Mid infrared supercontinuum generation to 12.5 mum in large NA chalcogenide step-index fibres pumped at 4.5 μm,” Opt. Express 22, 19169–19182 (2014).
[Crossref] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. Travers, A. Rulkov, S. V. Popov, and J. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006).
[Crossref] [PubMed]

J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007).
[Crossref] [PubMed]

M. Klimczak, B. S. Iwicki, B. Zhou, M. Bache, D. Pysz, O. Bang, and R. Buzcynski, “Coherent supercontinuum bandwidth limitations under femtosecond pumping at 2 μm in all-solid soft glass photonic crystal fibers,” Opt. Express 24, 29406–29416 (2016).
[Crossref]

A. Kudlinski, B. Barviau, A. Leray, C. Spriet, and A. Mussot, “Control of pulse-to-pulse fluctuations in visible supercontinuum,” Opt. Express 18, 27445–27454 (2010).
[Crossref]

Opt. Fiber Technol. (1)

U. Møller, S. T. Sørensen, C. Larsen, P. M. Moselund, C. Jakobsen, J. Johansen, C. L. Thomsen, and O. Bang, “Optimum PCF tapers for blue-enhanced supercontinuum sources,” Opt. Fiber Technol. 18, 304–314 (2012).
[Crossref]

Opt. Lett. (8)

S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum - group-acceleration matching,” Opt. Lett. 36, 816–818 (2011).
[Crossref]

T. A. Birks, W. J. Wadsworth, and P. S. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415 (2000).
[Crossref]

M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739–1741 (2004).
[Crossref] [PubMed]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002).
[Crossref]

S. T. Sørensen, C. Larsen, C. Jakobsen, C. L. Thomsen, and O. Bang, “Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources,” Opt. Lett. 39, 1097–1100 (2014).
[Crossref] [PubMed]

M. Maria, I. Bravo Gonzalo, T. Feuchter, M. Denninger, P. M. Moselund, L. Leick, O. Bang, and A. Podoleanu, “Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography,” Opt. Lett. 42, 4744–4747 (2017).
[Crossref] [PubMed]

J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117 (2009).
[Crossref] [PubMed]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, “Broadband light generation at approximately 1300 nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett. 33, 621–623 (2008).
[Crossref] [PubMed]

Phys. Rev. A (1)

O. Vanvincq, J. C. Travers, and A. Kudlinski, “Conservation of the photon number in the generalized nonlinear Schrödinger equation in axially varying optical fibers,” Phys. Rev. A 84, 063820 (2011).
[Crossref]

Phys. Rev. Lett. (2)

D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 18–21 (2008).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental Noise Limitations to Supercontinuum Generation in Microstructure Fiber,” Phys. Rev. Lett. 90, 113904 (2003).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017).
[Crossref]

Sci. Reports (2)

I. B. Gonzalo, R. D. Engelsholm, M. P. Sorensen, and O. Bang, “Polarization noise places severe constraints on coherence of all- normal dispersion femtosecond supercontinuum generation,” Sci. Reports 8, 6579 (2018).

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Reports 2, 882 (2012).

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Other (4)

S. D. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, O. Bang, and M. Bache, “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint arXiv:1812.03877 (2018).

G. Agrawal, Nonlinear Fiber Optics (Elsevier, 2013), 5th ed.

J. Johansen, O. Bang, C. Larsen, T. Feuchter, T. V. Andersen, and C. L. Thomsen, “Microstructured optical fiber, supercontinuum light source comprising microstructured optical fiber and use of such light source,” (2013). US Patent9841557B2.

P. M. Moselund, “Long-pulse supercontinuum light sources,” Ph.D. thesis, Technical University of Denmark (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a+b) Fiber dispersion (D), total loss and Group Velocity (GV) normalized to the speed of light for PCFs with 10 rings of holes in a hexagonal structure with a fixed hole diameter to pitch ratio of 0.52 and varying pitch. The 4 loss curves are all black. (c) Predicted spectral SC edges versus pitch found by GV matching the blue edge to the red edge (marked with diamonds and black lines in (b)), with the red edge being defined as the minimum of either the second ZDW or the loss edge (2300 nm) [21]. The colored area marks the area of undertapering. (d) Illustration of the length scales LS, LT and LW of the investigated tapers.
Fig. 2
Fig. 2 Simulated ensemble averaged PSD and RIN evolution in various fibers shown on the left side. Straight: Untapered 3.3 µm pitch for Ls = 10 m Blue: Fiber tapered from 3.3 µm to 2.5 µm pitch, with Ls = 1.1 m, LT = 0.5 m and LW = 0.4 m. Early: Fiber tapered from 3.3 µm to 1.5 µm pitch, with Ls = 0.1 m, LT = 0.5 m and LW = 1.4 m Late: Fiber tapered from 3.3 µm to 1.5 µm pitch, with Ls = 1.1 m, LT = 0.5 m and LW = 0.4 m. Note that for all cases the RIN is only shown when the PSD is higher than −20 dBm/nm. The scaling has been chosen to best show the noise in the NIR OCT band. Near the spectral edge the RIN can reach values in excess of 100%
Fig. 3
Fig. 3 PSD and RIN at the output the four cases shown in Fig. 2. The green and red areas mark the spectral ranges that are of interest for visible and near infrared OCT.
Fig. 4
Fig. 4 Integrated power and weighted RIN for the two OCT bands shown in Fig. 3 (red=NIR, green=VIS). (a+b) Evolution versus propagation distance for all four cases shown in Fig. 2. (c+d) Output values versus degree of tapering (pitch in the waist) for the Late design. The fiber has an initial pitch of 3.3 µm and is then tapered to the pitch on the graph, with Ls = 1.1 m, LT = 0.5 m and LW = 0.4 m. Thus 1.5 µm and 2.5 µm correspond to the Late and Blue designs shown in the previous figures. The colored area marks the region of undertapering.
Fig. 5
Fig. 5 Spectrograms for a single shot at different propagation distances in the Late fiber design: (a) z = 1.50 m , (b) z = 1.52 m , (c) z = 1.54 m and (d) z = 1.6 m . The spectrogram function used a 60 fs standard deviation, unnormalized gaussian envelope with an even 60 fs spacing in time. The white dashed lines denote zero dispersion wavelengths.
Fig. 6
Fig. 6 The figure showns spectrograms for a single shot at different propagation distances in the Early fiber design: (a) z = 0.56 m , (b) z = 0.58 m , (c) z = 0.60 m and (d) z = 0.62 m . Spectrogram parameters are the same as those reported in Fig. 5.

Tables (1)

Tables Icon

Table 1 Specifications of the pump laser used in all simulations. The pump pulse is assumed to be Gaussian shaped with no chirp. The specifications are for the pulse power envelope, P(t).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

R I N ( λ ) λ 1 λ 2 λ 1 λ 2 P S D ( λ ) R I N ( λ ) d λ λ 1 λ 2 P S D ( λ ) d λ .
R I N ( λ ) = E n 2 ( λ ) E n ( λ ) 2 E n ( λ ) 2
z [ [ exp   ( i ϕ ( Ω , z ) ) ] * C ˜ ( Ω , z ) ] = i γ ( Ω , z ) [ exp   ( i ϕ ( Ω , z ) ) ] * F [ F 1 [ C ˜ ( Ω , z ) K ( Ω , z ) ] F 1 [ R ˜ ( Ω ) F [ F 1 [ C ˜ ( Ω , z ) K ( Ω , z ) ] * F 1 [ C ˜ ( Ω , z ) K ( Ω , z ) ] ] ] ] ,
γ ( Ω , z ) = 3 16 ϵ 0 Ω χ ˜ x x x x ( 3 ) K ( Ω , z ) E ^ * ( Ω 0 , x , y , z ) E ^ ( Ω 0 , x , y , z ) E ^ * ( Ω 0 , x , y , z ) E ^ ( Ω 0 , x , y , z ) d x d y ,
K ( Ω , z ) = [ [ E ^ * ( Ω , x , y , z ) E ^ ( Ω , x , y , z ) E ^ * ( Ω , x , y , z ) E ^ ( Ω , x , y , z ) ] d x d y [ E ^ * ( Ω 0 , x , y , z ) E ^ ( Ω 0 , x , y , z ) E ^ * ( Ω 0 , x , y , z ) E ^ ( Ω 0 , x , y , z ) ] d x d y ] 1 4 ,

Metrics