Abstract

We report an external cavity diamond Raman laser operating at 2.52 μm, pumped by a 1.89 μm Tm:LiYF4 (YLF) laser. The maximum pulse energy at 2.52 μm is 1.67 mJ for 4.4 mJ of pump, yielding a conversion efficiency of 38%. The best slope efficiency is ~60% and the Raman pulse duration is between 11 and 15 ns for ~33 ns pump pulse duration. The peak power at 2.52 μm is >100 kW. This demonstration of a Thulium laser pumped diamond Raman laser paves the way for accessing the industrially important wavelength region of ~2.5 μm.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Investigating diamond Raman lasers at the 100 W level using quasi-continuous-wave pumping

Robert J. Williams, Ondrej Kitzler, Aaron McKay, and Richard P. Mildren
Opt. Lett. 39(14) 4152-4155 (2014)

Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm

Alexander Sabella, James A. Piper, and Richard P. Mildren
Opt. Lett. 39(13) 4037-4040 (2014)

Modelling and optimization of continuous-wave external cavity Raman lasers

Ondrej Kitzler, Aaron McKay, David J. Spence, and Richard P. Mildren
Opt. Express 23(7) 8590-8602 (2015)

References

  • View by:
  • |
  • |
  • |

  1. International Organization for Standardization, “Optics and photonics–Spectral bands,” in ISO 20473:2007 (International Organization for Standardization, 2007).
  2. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2008).
  3. A. K. Majumdar and J. C. Ricklin, Free-Space Laser Communications. Principles and Advances (Springer, 2008).
  4. R. Klein, Laser Welding of Plastics: Materials, Processes and Industrial Applications (Wiley‐VCH, 2012).
  5. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  6. S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
    [Crossref]
  7. T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
    [Crossref]
  8. O. Kuzucu, “Watt-level, mid-infrared output from a BaWO4 external-cavity Raman laser at 2.6 μm,” Opt. Lett. 40(21), 5078–5081 (2015).
    [Crossref] [PubMed]
  9. J. Zhao, X. Zhang, X. Guo, X. Bao, L. Li, and J. Cui, “Diode-pumped actively Q-switched Tm, Ho:GdVO4/BaWO4 intracavity Raman laser at 2533 nm,” Opt. Lett. 38(8), 1206–1208 (2013).
    [Crossref] [PubMed]
  10. Z. Bai, R. J. Williams, O. Kitzler, S. Sarang, D. J. Spence, and R. P. Mildren, “302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement,” Opt. Express 26(16), 19797–19803 (2018).
    [Crossref] [PubMed]
  11. R. Casula, J. P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4 µm continuous-wave diamond Raman laser,” Opt. Express 25(25), 31377–31383 (2017).
    [Crossref] [PubMed]
  12. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  13. M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  14. D. L. N. Kallepalli, N. R. Desai, and V. R. Soma, “Fabrication and optical characterization of microstructures in poly(methylmethacrylate) and poly(dimethylsiloxane) using femtosecond pulses for photonic and microfluidic applications,” Appl. Opt. 49(13), 2475–2489 (2010).
    [Crossref]
  15. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
    [Crossref] [PubMed]
  16. V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
    [Crossref]
  17. I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” in SPIE Security + Defence (SPIE, 2010), .
    [Crossref]
  18. C. A. Klein, “Laser-induced damage to diamond: dielectric breakdown and BHG scaling,” in Laser-Induced Damage in Optical Materials: 1994 (SPIE, 1995), pp. 517–530.
  19. S. Reilly, V. G. Savitski, H. Liu, S. Reid, D. Gibson, H. Dhillon, S. O. Robbie, E. Gu, M. D. Dawson, A. Bennett, and A. J. Kemp, “Laser induced damage threshold of CVD-grown single crystal diamond surfaces with various surface finishes,” in Advanced Solid State Lasers (Optical Society of America, 2015), ATu2A.6.
  20. R. P. Mildren, “Intrinsic optical properties of diamond,” in Optical Engineering of Diamond (Wiley, 2013).
  21. A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm,” Opt. Lett. 39(13), 4037–4040 (2014).
    [Crossref] [PubMed]
  22. A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High average power Thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
    [Crossref]
  23. R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).
  24. K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
    [Crossref]
  25. K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
    [Crossref]
  26. D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
    [Crossref]
  27. J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
    [Crossref]
  28. D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
    [Crossref]
  29. J. Lin, H. M. Pask, A. J. Lee, and D. J. Spence, “Study of relaxation oscillations in continuous-wave intracavity Raman lasers,” Opt. Express 18(11), 11530–11536 (2010).
    [Crossref] [PubMed]
  30. A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
    [Crossref]

2018 (2)

Z. Bai, R. J. Williams, O. Kitzler, S. Sarang, D. J. Spence, and R. P. Mildren, “302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement,” Opt. Express 26(16), 19797–19803 (2018).
[Crossref] [PubMed]

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High average power Thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

2017 (2)

2016 (1)

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
[Crossref]

2015 (2)

O. Kuzucu, “Watt-level, mid-infrared output from a BaWO4 external-cavity Raman laser at 2.6 μm,” Opt. Lett. 40(21), 5078–5081 (2015).
[Crossref] [PubMed]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

2014 (2)

A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm,” Opt. Lett. 39(13), 4037–4040 (2014).
[Crossref] [PubMed]

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2013 (3)

J. Zhao, X. Zhang, X. Guo, X. Bao, L. Li, and J. Cui, “Diode-pumped actively Q-switched Tm, Ho:GdVO4/BaWO4 intracavity Raman laser at 2533 nm,” Opt. Lett. 38(8), 1206–1208 (2013).
[Crossref] [PubMed]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

2012 (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

2010 (3)

2007 (2)

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

2006 (2)

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
[Crossref]

1999 (1)

Bai, Z.

Bao, X.

Basiev, T. T.

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
[Crossref]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref] [PubMed]

Basieva, M. N.

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
[Crossref]

Bradford, J. D.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High average power Thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Casula, R.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Cook, J.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High average power Thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Cui, J.

Dawson, M. D.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

Desai, N. R.

Doroshenko, M. E.

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
[Crossref]

Fedorov, V. V.

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
[Crossref]

Friel, I.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” in SPIE Security + Defence (SPIE, 2010), .
[Crossref]

Gapontsev, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
[Crossref]

Geoghegan, S. L.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” in SPIE Security + Defence (SPIE, 2010), .
[Crossref]

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Guina, M.

Guo, X.

Hase, M.

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Hastie, J. E.

R. Casula, J. P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4 µm continuous-wave diamond Raman laser,” Opt. Express 25(25), 31377–31383 (2017).
[Crossref] [PubMed]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

Ishioka, K.

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Jaksch, D.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Kallepalli, D. L. N.

Kemp, A. J.

R. Casula, J. P. Penttinen, A. J. Kemp, M. Guina, and J. E. Hastie, “1.4 µm continuous-wave diamond Raman laser,” Opt. Express 25(25), 31377–31383 (2017).
[Crossref] [PubMed]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

Kitajima, M.

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Kitzler, O.

Klein, C. A.

C. A. Klein, “Laser-induced damage to diamond: dielectric breakdown and BHG scaling,” in Laser-Induced Damage in Optical Materials: 1994 (SPIE, 1995), pp. 517–530.

Kuzucu, O.

Lee, A. J.

Lee, K. C.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Li, L.

Lin, J.

Lorenz, V. O.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Mildren, R. P.

Mirov, M.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
[Crossref]

Mirov, S.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
[Crossref]

Mirov, S. B.

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
[Crossref]

Moskalev, I.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
[Crossref]

Nunn, J.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Osiko, V. V.

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
[Crossref]

T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, “Comparative spontaneous Raman spectroscopy of crystals for Raman lasers,” Appl. Opt. 38(3), 594–598 (1999).
[Crossref] [PubMed]

Parrotta, D. C.

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

Pask, H. M.

Penttinen, J. P.

Petek, H.

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

Piper, J. A.

Powell, R. C.

Prawer, S.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Reilly, S.

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

Reim, K.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Richardson, M. C.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High average power Thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Sabella, A.

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

A. Sabella, J. A. Piper, and R. P. Mildren, “Diamond Raman laser with continuously tunable output from 3.38 to 3.80 μm,” Opt. Lett. 39(13), 4037–4040 (2014).
[Crossref] [PubMed]

Sarang, S.

Savitski, V. G.

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

Scarsbrook, G. A.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” in SPIE Security + Defence (SPIE, 2010), .
[Crossref]

Shah, L.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High average power Thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Sincore, A.

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High average power Thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

Smolsky, V.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
[Crossref]

Sobol, A. A.

Soma, V. R.

Spence, D. J.

Z. Bai, R. J. Williams, O. Kitzler, S. Sarang, D. J. Spence, and R. P. Mildren, “302 W quasi-continuous cascaded diamond Raman laser at 1.5 microns with large brightness enhancement,” Opt. Express 26(16), 19797–19803 (2018).
[Crossref] [PubMed]

D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

J. Lin, H. M. Pask, A. J. Lee, and D. J. Spence, “Study of relaxation oscillations in continuous-wave intracavity Raman lasers,” Opt. Express 18(11), 11530–11536 (2010).
[Crossref] [PubMed]

Spizzirri, P.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Sussman, B. J.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Twitchen, D. J.

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” in SPIE Security + Defence (SPIE, 2010), .
[Crossref]

Vasilyev, S.

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
[Crossref]

Walmsley, I. A.

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

Williams, R. J.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zhang, X.

Zhao, J.

Zverev, P. G.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. Ishioka, M. Hase, M. Kitajima, and H. Petek, “Coherent optical phonons in diamond,” Appl. Phys. Lett. 89(23), 231916 (2006).
[Crossref]

C. R. Phys. (1)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Diamond Related Materials (1)

K. C. Lee, B. J. Sussman, J. Nunn, V. O. Lorenz, K. Reim, D. Jaksch, I. A. Walmsley, P. Spizzirri, and S. Prawer, “Comparing phonon dephasing lifetimes in diamond using transient coherent ultrafast phonon spectroscopy,” Diamond Related Materials 19(10), 1289–1295 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

A. Sabella, D. J. Spence, and R. P. Mildren, “Pump–probe measurements of the Raman gain coefficient in crystals using multi-longitudinal-mode beams,” IEEE J. Quantum Electron. 51(12), 1–8 (2015).
[Crossref]

V. G. Savitski, S. Reilly, and A. J. Kemp, “Steady-state Raman gain in diamond as a function of pump wavelength,” IEEE J. Quantum Electron. 49(2), 218–223 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (4)

M. N. Zervas and C. A. Codemard, “High power fiber lasers: a review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

A. Sincore, J. D. Bradford, J. Cook, L. Shah, and M. C. Richardson, “High average power Thulium-doped silica fiber lasers: review of systems and concepts,” IEEE J. Sel. Top. Quantum Electron. 24(3), 1–8 (2018).
[Crossref]

J. A. Piper and H. M. Pask, “Crystalline Raman lasers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 692–704 (2007).
[Crossref]

D. C. Parrotta, A. J. Kemp, M. D. Dawson, and J. E. Hastie, “Multiwatt, continuous-wave, tunable diamond Raman laser with intracavity frequency-doubling to the visible region,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1400108 (2013).
[Crossref]

Laser Phys. Lett. (1)

T. T. Basiev, M. N. Basieva, M. E. Doroshenko, V. V. Fedorov, V. V. Osiko, and S. B. Mirov, “Stimulated Raman scattering in mid IR spectral range 2.31–2.75–3.7 μm in BaWO4 crystal under 1.9 and 1.56 μm pumping,” Laser Phys. Lett. 3(1), 17–20 (2006).
[Crossref]

Laser Tech. J. (1)

S. Vasilyev, I. Moskalev, M. Mirov, V. Smolsky, S. Mirov, and V. Gapontsev, “Recent breakthroughs in solid-state mid-IR saser sechnology,” Laser Tech. J. 13(4), 24–27 (2016).
[Crossref]

Nat. Photonics (1)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Prog. Quantum Electron. (1)

D. J. Spence, “Spectral effects of stimulated Raman scattering in crystals,” Prog. Quantum Electron. 51, 1–45 (2017).
[Crossref]

Other (9)

R. Paschotta, Encyclopedia of Laser Physics and Technology (Wiley-VCH, 2008).

International Organization for Standardization, “Optics and photonics–Spectral bands,” in ISO 20473:2007 (International Organization for Standardization, 2007).

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2008).

A. K. Majumdar and J. C. Ricklin, Free-Space Laser Communications. Principles and Advances (Springer, 2008).

R. Klein, Laser Welding of Plastics: Materials, Processes and Industrial Applications (Wiley‐VCH, 2012).

I. Friel, S. L. Geoghegan, D. J. Twitchen, and G. A. Scarsbrook, “Development of high quality single crystal diamond for novel laser applications,” in SPIE Security + Defence (SPIE, 2010), .
[Crossref]

C. A. Klein, “Laser-induced damage to diamond: dielectric breakdown and BHG scaling,” in Laser-Induced Damage in Optical Materials: 1994 (SPIE, 1995), pp. 517–530.

S. Reilly, V. G. Savitski, H. Liu, S. Reid, D. Gibson, H. Dhillon, S. O. Robbie, E. Gu, M. D. Dawson, A. Bennett, and A. J. Kemp, “Laser induced damage threshold of CVD-grown single crystal diamond surfaces with various surface finishes,” in Advanced Solid State Lasers (Optical Society of America, 2015), ATu2A.6.

R. P. Mildren, “Intrinsic optical properties of diamond,” in Optical Engineering of Diamond (Wiley, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Layout of the experimental setup, including both the Tm:YLF pump laser and diamond Raman laser.
Fig. 2
Fig. 2 Energy transfer characteristics for both output coupling levels used for the DRL with (a) 75 mm lens and (b) 100 mm lens. (c) – the conversion efficiency from pump to Raman energy as a function of the incident peak intensity for both lenses and output coupling levels used. Solid and dashed lines in (a) and (b) are the results of linear fits to the experimental data for the 20% (solid line) and 6.5% (dashed line) output mirrors.
Fig. 3
Fig. 3 Temporal pulse profiles for incident pump, single-pass depleted pump and Stokes oscillation for (a) ~0.3 mJ DRL output pulse energy and (b) ~1 mJ DRL output pulse energy.
Fig. 4
Fig. 4 Time averaged spectra of Tm:YLF pump and DRL collected with a monochromator.
Fig. 5
Fig. 5 Absorption coefficient of diamond from 2.5 to 15 µm measured by FTIR. Inset shows zoomed in view of the absorption coefficient in the vicinity of 2.5 to 3 µm.

Tables (1)

Tables Icon

Table 1 Effective Raman gain coefficient and threshold peak intensity

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R 1 R 2 exp( 2 g R I P l2αl )1

Metrics