Abstract

A ferroelectric liquid crystal (FLC) cell with continuously alignment structure is realized by a polarization hologram method for fabricating a Pancharatnam-Berry (PB) lens, which is employed as a concave/convex lens. The PB phase can be maintained by the optical axis in-plane switching; meanwhile, its diffraction efficiency can be tuned in a certain range by electrically controlling azimuthal angle and optical biaxiality of the smectic helical structure realized by deformed helix ferroelectric liquid crystals. The measured diffraction efficiency of the fabricated device is up to 87% and the response time can be 300μs with a low electric voltage. The FLC PB lens can have potential applications in existing optical devices and the realization of FLC with continuous alignment structure can be further used for other LC-based optical devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fast-response Pancharatnam-Berry phase optical elements based on polymer-stabilized liquid crystal

Sida Li, Yueda Liu, Yan Li, Shuxin Liu, Shuyi Chen, and Yikai Su
Opt. Express 27(16) 22522-22531 (2019)

Enhanced performance configuration for fast-switching deformed helix ferroelectric liquid crystal continuous tunable Lyot filter

A. M. W. Tam, G. Qi, A. K. Srivastava, X. Q. Wang, F. Fan, V. G. Chigrinov, and H. S. Kwok
Appl. Opt. 53(17) 3787-3795 (2014)

Fork gratings based on ferroelectric liquid crystals

Y. Ma, B. Y. Wei, L.Y. Shi, A. K. Srivastava, V. G. Chigrinov, H-S. Kwok, W. Hu, and Y. Q. Lu
Opt. Express 24(6) 5822-5828 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Liu, X. W. Sun, H. T. Dai, J. H. Liu, and K. S. Xu, “Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings,” Opt. Mater. 27(8), 1451–1455 (2005).
    [Crossref]
  2. V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech-House, 1999, pp357).
  3. V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008, pp248).
  4. M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
    [Crossref]
  5. E. Hecht, Optics (Addison Wesley Longman, third Edition, 1998).
  6. A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
    [Crossref]
  7. P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
    [Crossref]
  8. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  9. T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
    [Crossref]
  10. H. Chen, Y. Weng, D. Xu, N. V. Tabiryan, and S. T. Wu, “Beam steering for virtual/augmented reality displays with a cycloidal diffractive waveplate,” Opt. Express 24(7), 7287–7298 (2016).
    [Crossref] [PubMed]
  11. J. Yan, Y. Li, and S.-T. Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36(8), 1404–1406 (2011).
    [Crossref] [PubMed]
  12. G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
    [Crossref]
  13. A. K. Srivastava, W. Hu, V. G. Chigrinov, A. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
    [Crossref]
  14. B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
    [Crossref] [PubMed]
  15. A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
    [Crossref] [PubMed]
  16. Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
    [Crossref] [PubMed]
  17. Q. Guo, Z. Brodzeli, E. P. Pozhidaev, F. Fan, V. G. Chigrinov, H. S. Kwok, L. Silvestri, and F. Ladouceur, “Fast electro-optical mode in photo-aligned reflective deformed helix ferroelectric liquid crystal cells,” Opt. Lett. 37(12), 2343–2345 (2012).
    [Crossref] [PubMed]
  18. E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
    [Crossref] [PubMed]
  19. E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev, V. G. Chigrinov, V. V. Vashchenko, A. I. Krivoshey, M. V. Minchenko, and H.-S. Kwok, “Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals,” Opt. Lett. 39(10), 2900–2903 (2014).
    [Crossref] [PubMed]
  20. J. Kim, Y. Li, M. N. Miskiewicz, C. Oh, M. W. Kudenov, and M. J. Escuti, “Fabrication of ideal geometric-phase holograms with arbitrary wavefronts,” Optica 2(11), 958–964 (2015).
    [Crossref]
  21. F. Fan, T. Du, A. K. Srivastava, W. Lu, V. Chigrinov, and H. S. Kwok, “Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate,” Opt. Express 20(21), 23036–23043 (2012).
    [Crossref] [PubMed]
  22. H. Seiberle, K. Schmitt, and M. Schadt, “Multidomain LCDs and complex optical retarders generated by photo-alignment,” Proc. Eurodisplays 99, 121–125 (1999).
  23. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, sixth edition, 2007).
  24. D. D. Huang, E. P. Pozhidaev, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers,” Displays 25(1), 21–29 (2004).
    [Crossref]
  25. P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
    [Crossref] [PubMed]
  26. P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
    [Crossref]
  27. P. Chen, Y. Q. Lu, and W. Hu, “Beam shaping via photopatterned liquid crystals,” Liq. Cryst. 43(13-15), 2051–2061 (2016).
    [Crossref]
  28. P. Chen, W. Ji, B. Y. Wei, W. Hu, V. G. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107(24), 241102 (2015).
    [Crossref]
  29. S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
    [Crossref]
  30. W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
    [Crossref]

2018 (1)

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

2017 (2)

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

2016 (5)

2015 (5)

2014 (2)

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev, V. G. Chigrinov, V. V. Vashchenko, A. I. Krivoshey, M. V. Minchenko, and H.-S. Kwok, “Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals,” Opt. Lett. 39(10), 2900–2903 (2014).
[Crossref] [PubMed]

2013 (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

2009 (1)

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

2005 (1)

Y. J. Liu, X. W. Sun, H. T. Dai, J. H. Liu, and K. S. Xu, “Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings,” Opt. Mater. 27(8), 1451–1455 (2005).
[Crossref]

2004 (2)

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[Crossref]

D. D. Huang, E. P. Pozhidaev, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers,” Displays 25(1), 21–29 (2004).
[Crossref]

1999 (1)

H. Seiberle, K. Schmitt, and M. Schadt, “Multidomain LCDs and complex optical retarders generated by photo-alignment,” Proc. Eurodisplays 99, 121–125 (1999).

Bartolino, R.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brodzeli, Z.

Carbone, G.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Chen, H.

Chen, J.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Chen, P.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

P. Chen, Y. Q. Lu, and W. Hu, “Beam shaping via photopatterned liquid crystals,” Liq. Cryst. 43(13-15), 2051–2061 (2016).
[Crossref]

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
[Crossref]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. G. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107(24), 241102 (2015).
[Crossref]

P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
[Crossref]

Cheung, H. L.

D. D. Huang, E. P. Pozhidaev, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers,” Displays 25(1), 21–29 (2004).
[Crossref]

Chigrinov, V.

Chigrinov, V. G.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref] [PubMed]

A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref] [PubMed]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. G. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107(24), 241102 (2015).
[Crossref]

E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev, V. G. Chigrinov, V. V. Vashchenko, A. I. Krivoshey, M. V. Minchenko, and H.-S. Kwok, “Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals,” Opt. Lett. 39(10), 2900–2903 (2014).
[Crossref] [PubMed]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
[Crossref] [PubMed]

Q. Guo, Z. Brodzeli, E. P. Pozhidaev, F. Fan, V. G. Chigrinov, H. S. Kwok, L. Silvestri, and F. Ladouceur, “Fast electro-optical mode in photo-aligned reflective deformed helix ferroelectric liquid crystal cells,” Opt. Lett. 37(12), 2343–2345 (2012).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

D. D. Huang, E. P. Pozhidaev, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers,” Displays 25(1), 21–29 (2004).
[Crossref]

Ching, K.-L.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Cui, G.-X.

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Dai, H. T.

Y. J. Liu, X. W. Sun, H. T. Dai, J. H. Liu, and K. S. Xu, “Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings,” Opt. Mater. 27(8), 1451–1455 (2005).
[Crossref]

De Sio, L.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Du, T.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

F. Fan, T. Du, A. K. Srivastava, W. Lu, V. Chigrinov, and H. S. Kwok, “Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate,” Opt. Express 20(21), 23036–23043 (2012).
[Crossref] [PubMed]

Duan, W.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
[Crossref]

Elston, S. J.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Escuti, M. J.

Fan, F.

Ferjani, S.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Fuh, A. Y.-G.

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[Crossref]

Gao, W.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Ge, S. J.

Ge, S.-J.

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
[Crossref]

Gong, S. Q.

Guo, Q.

Ho, Y. L.

D. D. Huang, E. P. Pozhidaev, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers,” Displays 25(1), 21–29 (2004).
[Crossref]

Hu, W.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

P. Chen, Y. Q. Lu, and W. Hu, “Beam shaping via photopatterned liquid crystals,” Liq. Cryst. 43(13-15), 2051–2061 (2016).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref] [PubMed]

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
[Crossref]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. G. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107(24), 241102 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Huang, D. D.

D. D. Huang, E. P. Pozhidaev, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers,” Displays 25(1), 21–29 (2004).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ji, W.

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. G. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107(24), 241102 (2015).
[Crossref]

P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
[Crossref]

Jia, P.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Kim, J.

Kiselev, A.

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Kiselev, A. D.

E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev, V. G. Chigrinov, V. V. Vashchenko, A. I. Krivoshey, M. V. Minchenko, and H.-S. Kwok, “Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals,” Opt. Lett. 39(10), 2900–2903 (2014).
[Crossref] [PubMed]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
[Crossref] [PubMed]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Krivoshey, A. I.

Kudenov, M. W.

Kwok, H. S.

Kwok, H.-S.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev, V. G. Chigrinov, V. V. Vashchenko, A. I. Krivoshey, M. V. Minchenko, and H.-S. Kwok, “Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals,” Opt. Lett. 39(10), 2900–2903 (2014).
[Crossref] [PubMed]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
[Crossref] [PubMed]

Ladouceur, F.

Lee, C.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[Crossref]

Lee, M.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[Crossref]

Lei, T.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Li, G.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Li, T.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Li, Y.

Li, Z.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liang, X.

Lin, J.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, G. N.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liu, J. H.

Y. J. Liu, X. W. Sun, H. T. Dai, J. H. Liu, and K. S. Xu, “Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings,” Opt. Mater. 27(8), 1451–1455 (2005).
[Crossref]

Liu, Y. J.

Y. J. Liu, X. W. Sun, H. T. Dai, J. H. Liu, and K. S. Xu, “Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings,” Opt. Mater. 27(8), 1451–1455 (2005).
[Crossref]

Liu, Z.

Lu, W.

Lu, Y. Q.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

P. Chen, Y. Q. Lu, and W. Hu, “Beam shaping via photopatterned liquid crystals,” Liq. Cryst. 43(13-15), 2051–2061 (2016).
[Crossref]

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref] [PubMed]

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
[Crossref]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref] [PubMed]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. G. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107(24), 241102 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Lu, Y.-Q.

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
[Crossref]

Luo, H.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Ma, L. L.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

S. J. Ge, P. Chen, L. L. Ma, Z. Liu, Z. G. Zheng, D. Shen, W. Hu, and Y. Q. Lu, “Optical array generator based on blue phase liquid crystal dammann grating,” Opt. Mater. Express 6(4), 1087–1092 (2016).
[Crossref]

Ma, Y.

Min, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Minchenko, M. V.

E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev, V. G. Chigrinov, V. V. Vashchenko, A. I. Krivoshey, M. V. Minchenko, and H.-S. Kwok, “Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals,” Opt. Lett. 39(10), 2900–2903 (2014).
[Crossref] [PubMed]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
[Crossref] [PubMed]

Ming, Y.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Miskiewicz, M. N.

Niu, H.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Oh, C.

Pozhidaev, E. P.

E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev, V. G. Chigrinov, V. V. Vashchenko, A. I. Krivoshey, M. V. Minchenko, and H.-S. Kwok, “Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals,” Opt. Lett. 39(10), 2900–2903 (2014).
[Crossref] [PubMed]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
[Crossref] [PubMed]

Q. Guo, Z. Brodzeli, E. P. Pozhidaev, F. Fan, V. G. Chigrinov, H. S. Kwok, L. Silvestri, and F. Ladouceur, “Fast electro-optical mode in photo-aligned reflective deformed helix ferroelectric liquid crystal cells,” Opt. Lett. 37(12), 2343–2345 (2012).
[Crossref] [PubMed]

D. D. Huang, E. P. Pozhidaev, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers,” Displays 25(1), 21–29 (2004).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Raynes, P.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Rubin, S.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Salter, P.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Schadt, M.

H. Seiberle, K. Schmitt, and M. Schadt, “Multidomain LCDs and complex optical retarders generated by photo-alignment,” Proc. Eurodisplays 99, 121–125 (1999).

Schmitt, K.

H. Seiberle, K. Schmitt, and M. Schadt, “Multidomain LCDs and complex optical retarders generated by photo-alignment,” Proc. Eurodisplays 99, 121–125 (1999).

Seiberle, H.

H. Seiberle, K. Schmitt, and M. Schadt, “Multidomain LCDs and complex optical retarders generated by photo-alignment,” Proc. Eurodisplays 99, 121–125 (1999).

Shen, D.

Shi, L. Y.

Silvestri, L.

Srivastava, A. K.

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref] [PubMed]

A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref] [PubMed]

E. P. Pozhidaev, A. K. Srivastava, A. D. Kiselev, V. G. Chigrinov, V. V. Vashchenko, A. I. Krivoshey, M. V. Minchenko, and H.-S. Kwok, “Enhanced orientational Kerr effect in vertically aligned deformed helix ferroelectric liquid crystals,” Opt. Lett. 39(10), 2900–2903 (2014).
[Crossref] [PubMed]

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
[Crossref] [PubMed]

F. Fan, T. Du, A. K. Srivastava, W. Lu, V. Chigrinov, and H. S. Kwok, “Axially symmetric polarization converter made of patterned liquid crystal quarter wave plate,” Opt. Express 20(21), 23036–23043 (2012).
[Crossref] [PubMed]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

Strangi, G.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Sun, X. W.

Y. J. Liu, X. W. Sun, H. T. Dai, J. H. Liu, and K. S. Xu, “Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings,” Opt. Mater. 27(8), 1451–1455 (2005).
[Crossref]

Tabiryan, N. V.

Tam, A. M. W.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Tang, M. J.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Umeton, C.

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

Vashchenko, V. V.

Wang, J. G.

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Wang, J.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[Crossref]

Wang, X.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

A. K. Srivastava, X. Wang, S. Q. Gong, D. Shen, Y. Q. Lu, V. G. Chigrinov, and H. S. Kwok, “Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens,” Opt. Lett. 40(8), 1643–1646 (2015).
[Crossref] [PubMed]

Wei, B. Y.

Y. Ma, B. Y. Wei, L. Y. Shi, A. K. Srivastava, V. G. Chigrinov, H. S. Kwok, W. Hu, and Y. Q. Lu, “Fork gratings based on ferroelectric liquid crystals,” Opt. Express 24(6), 5822–5828 (2016).
[Crossref] [PubMed]

W. Duan, P. Chen, B. Y. Wei, S. J. Ge, X. Liang, W. Hu, and Y. Q. Lu, “Fast-response and high-efficiency optical switch based on dual-frequency liquid crystal polarization grating,” Opt. Mater. Express 6(2), 597–602 (2016).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. G. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107(24), 241102 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Wei, B.-Y.

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
[Crossref]

Wen, S.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Weng, Y.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Wu, S. T.

Wu, S.-T.

Xu, D.

Xu, F.

P. Chen, B.-Y. Wei, W. Ji, S.-J. Ge, W. Hu, F. Xu, V. Chigrinov, and Y.-Q. Lu, “Arbitrary and reconfigurable optical vortex generation: a high-efficiency technique using director-varying liquid crystal fork gratings,” Photon. Res. 3(4), 133–139 (2015).
[Crossref]

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

Xu, K. S.

Y. J. Liu, X. W. Sun, H. T. Dai, J. H. Liu, and K. S. Xu, “Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings,” Opt. Mater. 27(8), 1451–1455 (2005).
[Crossref]

Xu, R.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Xu, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yan, J.

Yu, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yuan, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Zhang, M.

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Zhang, W.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Zhao, C.

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Zheng, Z. G.

Zhu, Z. H.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

ACS Photonics (1)

P. Chen, S.-J. Ge, W. Duan, B.-Y. Wei, G.-X. Cui, W. Hu, and Y.-Q. Lu, “Digitalized geometric phases for parallel optical spin and orbital anguler momentum encoding,” ACS Photonics 4(6), 1333–1338 (2017).
[Crossref]

Adv. Mater. (2)

B. Y. Wei, W. Hu, Y. Ming, F. Xu, S. Rubin, J. G. Wang, V. Chigrinov, and Y. Q. Lu, “Generating switchable and reconfigurable optical vortices via photopatterning of liquid crystals,” Adv. Mater. 26(10), 1590–1595 (2014).
[Crossref] [PubMed]

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30(10), 1705865 (2018).
[Crossref] [PubMed]

Appl. Phys. Lett. (4)

G. Carbone, P. Salter, S. J. Elston, P. Raynes, L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Short pitch cholesteric electro-optical device based on periodic polymer structures,” Appl. Phys. Lett. 95(1), 011102 (2009).
[Crossref]

A. K. Srivastava, W. Hu, V. G. Chigrinov, A. Kiselev, and Y. Q. Lu, “Fast switchable grating based on orthogonal photo alignments of ferroelectric liquid crystals,” Appl. Phys. Lett. 101(3), 031112 (2012).
[Crossref]

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85(24), 5822–5824 (2004).
[Crossref]

P. Chen, W. Ji, B. Y. Wei, W. Hu, V. G. Chigrinov, and Y. Q. Lu, “Generation of arbitrary vector beams with liquid crystal polarization converters and vector-photoaligned q-plates,” Appl. Phys. Lett. 107(24), 241102 (2015).
[Crossref]

Displays (1)

D. D. Huang, E. P. Pozhidaev, V. G. Chigrinov, H. L. Cheung, Y. L. Ho, and H. S. Kwok, “Photo-aligned ferroelectric liquid crystal displays based on azo-dye layers,” Displays 25(1), 21–29 (2004).
[Crossref]

Light Sci. Appl. (1)

T. Lei, M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4(3), e257 (2015).
[Crossref]

Liq. Cryst. (1)

P. Chen, Y. Q. Lu, and W. Hu, “Beam shaping via photopatterned liquid crystals,” Liq. Cryst. 43(13-15), 2051–2061 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Opt. Mater. (1)

Y. J. Liu, X. W. Sun, H. T. Dai, J. H. Liu, and K. S. Xu, “Effect of surfactant on the electro-optical properties of holographic polymer dispersed liquid crystal Bragg gratings,” Opt. Mater. 27(8), 1451–1455 (2005).
[Crossref]

Opt. Mater. Express (2)

Optica (1)

Photon. Res. (1)

Phys. Rev. Appl. (1)

A. M. W. Tam, F. Fan, T. Du, W. Hu, W. Zhang, C. Zhao, X. Wang, K.-L. Ching, G. Li, H. Luo, V. G. Chigrinov, S. Wen, and H.-S. Kwok, “Bifocal Optical-Vortex Lens with Sorting of the Generated nonseparable spin-orbital angular-momentum states,” Phys. Rev. Appl. 7(3), 034010 (2017).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

E. P. Pozhidaev, A. D. Kiselev, A. K. Srivastava, V. G. Chigrinov, H.-S. Kwok, and M. V. Minchenko, “Orientational Kerr effect and phase modulation of light in deformed-helix ferroelectric liquid crystals with subwavelength pitch,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 87(5), 052502 (2013).
[Crossref] [PubMed]

Proc. Eurodisplays (1)

H. Seiberle, K. Schmitt, and M. Schadt, “Multidomain LCDs and complex optical retarders generated by photo-alignment,” Proc. Eurodisplays 99, 121–125 (1999).

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (4)

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications (Oxford University Press, sixth edition, 2007).

V. G. Chigrinov, Liquid Crystal Devices: Physics and Applications (Artech-House, 1999, pp357).

V. G. Chigrinov, V. M. Kozenkov, and H. S. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications (Wiley, 2008, pp248).

E. Hecht, Optics (Addison Wesley Longman, third Edition, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) PBL behaving as convex and concave lens. (b) Schematic drawing of the structure of deformed helix FLC cell. (c) Optical axis rotation under external electric field. (d) Electric induced biaxiality in deformed helix FLC.
Fig. 2
Fig. 2 Experimental setups for realizing (a) smaller F-number switchable FLC PBL cells, (b) same F-number switchable FLC PBL cells. (c) Configuration of a FLC PBL in absence of electric field. (d) Illustration of optical axis distributions in a FLC PBL.
Fig. 3
Fig. 3 Microphotographs of DHFLC PBL (a)-(d) and switchable DHFLC-PBL behaving as (e) convex with respect to LHC and (f) concave lens with respect to RHC, at 10 V. The line scale bar of (a) represents 500μm and line scale bar in (c)-(d) represent 100μm.
Fig. 4
Fig. 4 Diffraction efficiency of DHFLC PBL under (b) 1.5μm cell gap and (c) 5μm cell gap with applied electric field in (a).
Fig. 5
Fig. 5 Display performance for FLC PBL with (a) RHC and (b) LHC incident light.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( x , y ) = cos ( Γ 2 ) [ 1 0 0 1 ] i sin ( Γ 2 ) [ cos [ 2 α ( y , z ) ] sin [ 2 α ( y , z ) ] sin [ 2 α ( y , z ) ] cos [ 2 α ( y , z ) ] ]
E o u t = i exp [ i π ( ± f ) λ r 2 ] |
φ ( z ) = φ 0 ( z ) + φ 1 ( z ) = q 0 z + π 2 16 E E c sin q 0 z
E c = π 2 16 k q 0 2 P s
Δ n e f f ( λ ,   E ) = n 2 n 2 n 2 + ( n 2 n 2 ) sin 2 θ sin 2 φ ( z ) n

Metrics