Abstract

Direct optical force measurement is a versatile method used in optical tweezers experiments, providing accurate measurements of forces for a wide range of particles and trapping beams. It is based on the detection of the change of the momentum of light scattered by a trapped object. A digital micromirror device can be used to selectively reflect light in different directions using an appropriately defined mask. We have developed position-sensitive masked detection (PSMD) for measuring transverse (radial) and axial forces. The method is comparable in performance to the fastest split detectors, while maintaining the linearity and customizability similar to duo-lateral position-sensitive detectors (PSD) and cameras. We show an order of magnitude increase in the bandwidth compared to a conventional PSD for radial forces. We measure axial force and verify the measurement using the Stokes drag for the particle. Combining both detectors (PSMD and PSD), we can perform full 3-D optical force measurements in real time.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Direct measurement of axial optical forces

Gregor Thalhammer, Lisa Obmascher, and Monika Ritsch-Marte
Opt. Express 23(5) 6112-6129 (2015)

Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy

Graham M Gibson, Jonathan Leach, Stephen Keen, Amanda J Wright, and Miles J Padgett
Opt. Express 16(19) 14561-14570 (2008)

Force detection in optical tweezers using backscattered light

J. H. G. Huisstede, K. O. van der Werf, M. L. Bennink, and V. Subramaniam
Opt. Express 13(4) 1113-1123 (2005)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  2. E.-L. Florin, A. Pralle, E. Stelzer, and J. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
    [Crossref]
  3. K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instruments 75, 594–612 (2004).
    [Crossref]
  4. S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
    [Crossref]
  5. W. H. Wright, G. J. Sonek, and M. W. Berns, “Parametric study of the forces on microspheres held by optical tweezers,” Appl. Opt. 33, 1735–1748 (1994).
    [Crossref] [PubMed]
  6. H. Felgner, O. Müller, and M. Schliwa, “Calibration of light forces in optical tweezers,” Appl. Opt. 34, 977–982 (1995).
    [Crossref] [PubMed]
  7. S. B. Smith, Y. Cui, and C. Bustamante, “[7] optical-trap force transducer that operates by direct measurement of light momentum,” in Biophotonics, Part B (Academic Press, 2003), pp. 134–162.
    [Crossref]
  8. A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express 20, 12270–12291 (2012).
    [Crossref] [PubMed]
  9. C. J. Bustamante and S. B. Smith, “Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis,” U.S. Patents 7133132 (2006).
  10. A. Farré and M. Montes-Usategui, “A force detection technique for single-beam optical traps based on direct measurement of light momentum changes,” Opt. Express 18, 11955–11968 (2010).
    [Crossref] [PubMed]
  11. G. Thalhammer, L. Obmascher, and M. Ritsch-Marte, “Direct measurement of axial optical forces,” Opt. Express 23, 6112–6129 (2015).
    [Crossref] [PubMed]
  12. E. Abbe, “VII.-on the estimation of aperture in the microscope,” J. Royal Microsc. Soc. 1, 388–423 (1881).
    [Crossref]
  13. L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10, 1064 (2015).
    [Crossref] [PubMed]
  14. S. Cui and Y. C. Soh, “The effect of spot size on linearity improvement of tetra-lateral position sensitive detector,” Opt. Quantum Electron. 42, 721 (2011).
    [Crossref]
  15. R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
    [Crossref]
  16. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
    [Crossref] [PubMed]
  17. A. Farré, F. Marsà, and M. Montes-Usategui, “Beyond the hookean spring model: Direct measurement of optical forces through light momentum changes,” in Optical Tweezers: Methods and Protocols, A. Gennerich, ed. (Springer, 2017), pp. 41–76.
    [Crossref]
  18. G. D. Houser and E. Garmire, “Balanced detection technique to measure small changes in transmission,” Appl. Opt. 33, 1059–1062 (1994).
    [Crossref] [PubMed]
  19. P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (2013).
    [Crossref]
  20. M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
    [Crossref]
  21. S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss,” Science 343, 1493–1496 (2014).
    [Crossref] [PubMed]
  22. J. S. Dana Dudley and Walter M. Duncan, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 498512 (2003).
  23. G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3, 1136–1143 (2016).
    [Crossref]
  24. A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
    [Crossref]
  25. L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Commun. Technol. 12, 162–165 (1964).
    [Crossref]
  26. R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9, 724 (2012).
    [Crossref] [PubMed]
  27. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
    [Crossref]
  28. A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
    [Crossref]
  29. K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instruments 77, 063106 (2006).
    [Crossref]

2017 (1)

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

2016 (2)

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3, 1136–1143 (2016).
[Crossref]

2015 (2)

G. Thalhammer, L. Obmascher, and M. Ritsch-Marte, “Direct measurement of axial optical forces,” Opt. Express 23, 6112–6129 (2015).
[Crossref] [PubMed]

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10, 1064 (2015).
[Crossref] [PubMed]

2014 (1)

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss,” Science 343, 1493–1496 (2014).
[Crossref] [PubMed]

2013 (2)

P. C. D. Hobbs, “Ultrasensitive laser measurements without tears,” Appl. Opt. 36, 903–920 (2013).
[Crossref]

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

2012 (2)

2011 (2)

S. Cui and Y. C. Soh, “The effect of spot size on linearity improvement of tetra-lateral position sensitive detector,” Opt. Quantum Electron. 42, 721 (2011).
[Crossref]

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

2010 (1)

2008 (1)

2007 (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

2006 (2)

K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instruments 77, 063106 (2006).
[Crossref]

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

2004 (1)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instruments 75, 594–612 (2004).
[Crossref]

2003 (1)

J. S. Dana Dudley and Walter M. Duncan, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 498512 (2003).

1998 (1)

E.-L. Florin, A. Pralle, E. Stelzer, and J. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

1995 (1)

1994 (2)

1986 (1)

1964 (1)

L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Commun. Technol. 12, 162–165 (1964).
[Crossref]

1881 (1)

E. Abbe, “VII.-on the estimation of aperture in the microscope,” J. Royal Microsc. Soc. 1, 388–423 (1881).
[Crossref]

Abbe, E.

E. Abbe, “VII.-on the estimation of aperture in the microscope,” J. Royal Microsc. Soc. 1, 388–423 (1881).
[Crossref]

Ashkin, A.

Bachor, H.-A.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Baker, M.

Berg-Sørensen, K.

K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instruments 77, 063106 (2006).
[Crossref]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instruments 75, 594–612 (2004).
[Crossref]

Berns, M. W.

Bjorkholm, J. E.

Bowen, W. P.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Branczyk, A. M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

Bui, A. A.

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

Bustamante, C.

S. B. Smith, Y. Cui, and C. Bustamante, “[7] optical-trap force transducer that operates by direct measurement of light momentum,” in Biophotonics, Part B (Academic Press, 2003), pp. 134–162.
[Crossref]

Bustamante, C. J.

C. J. Bustamante and S. B. Smith, “Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis,” U.S. Patents 7133132 (2006).

Chavez, I.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

Chu, S.

Cui, S.

S. Cui and Y. C. Soh, “The effect of spot size on linearity improvement of tetra-lateral position sensitive detector,” Opt. Quantum Electron. 42, 721 (2011).
[Crossref]

Cui, Y.

S. B. Smith, Y. Cui, and C. Bustamante, “[7] optical-trap force transducer that operates by direct measurement of light momentum,” in Biophotonics, Part B (Academic Press, 2003), pp. 134–162.
[Crossref]

Dana Dudley, J. S.

J. S. Dana Dudley and Walter M. Duncan, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 498512 (2003).

Daria, V.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Davis, M. J.

Duncan, Walter M.

J. S. Dana Dudley and Walter M. Duncan, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 498512 (2003).

Dziedzic, J. M.

Farré, A.

Felgner, H.

Florin, E.-L.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

E.-L. Florin, A. Pralle, E. Stelzer, and J. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Flyvbjerg, H.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instruments 77, 063106 (2006).
[Crossref]

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instruments 75, 594–612 (2004).
[Crossref]

Friedrich, L.

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10, 1064 (2015).
[Crossref] [PubMed]

Garmire, E.

Gauthier, G.

Gibson, G. M.

Gibson, L. J.

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

Hage, B.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

Hobbs, P. C. D.

Hörber, J.

E.-L. Florin, A. Pralle, E. Stelzer, and J. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Houser, G. D.

Howard, J.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Huang, R.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

Janousek, J.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Jeney, S.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

Jülicher, F.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Kashchuk, A. V.

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

Keen, S.

Kheifets, S.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss,” Science 343, 1493–1496 (2014).
[Crossref] [PubMed]

Knittel, J.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

Leach, J.

Lenton, I.

Lenton, I. C.

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

Li, T.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss,” Science 343, 1493–1496 (2014).
[Crossref] [PubMed]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

Lukic, B.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

Marsà, F.

A. Farré, F. Marsà, and M. Montes-Usategui, “Optimized back-focal-plane interferometry directly measures forces of optically trapped particles,” Opt. Express 20, 12270–12291 (2012).
[Crossref] [PubMed]

A. Farré, F. Marsà, and M. Montes-Usategui, “Beyond the hookean spring model: Direct measurement of optical forces through light momentum changes,” in Optical Tweezers: Methods and Protocols, A. Gennerich, ed. (Springer, 2017), pp. 41–76.
[Crossref]

Melin, K.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss,” Science 343, 1493–1496 (2014).
[Crossref] [PubMed]

Montes-Usategui, M.

Müller, O.

Neely, T. W.

Nieminen, T. A.

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

Obmascher, L.

Padgett, M. J.

Parry, N. M.

Parthasarathy, R.

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9, 724 (2012).
[Crossref] [PubMed]

Pavone, F. S.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Peterman, E. J. G.

K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instruments 77, 063106 (2006).
[Crossref]

Pralle, A.

E.-L. Florin, A. Pralle, E. Stelzer, and J. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Preece, D.

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

Raizen, M. G.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss,” Science 343, 1493–1496 (2014).
[Crossref] [PubMed]

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

Ritsch-Marte, M.

Rohrbach, A.

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10, 1064 (2015).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

G. Gauthier, I. Lenton, N. M. Parry, M. Baker, M. J. Davis, H. Rubinsztein-Dunlop, and T. W. Neely, “Direct imaging of a digital-micromirror device for configurable microscopic optical potentials,” Optica 3, 1136–1143 (2016).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

Schäffer, E.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Schliwa, M.

Schmidt, C. F.

K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instruments 77, 063106 (2006).
[Crossref]

Schuchman, L.

L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Commun. Technol. 12, 162–165 (1964).
[Crossref]

Simha, A.

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss,” Science 343, 1493–1496 (2014).
[Crossref] [PubMed]

Smith, S. B.

S. B. Smith, Y. Cui, and C. Bustamante, “[7] optical-trap force transducer that operates by direct measurement of light momentum,” in Biophotonics, Part B (Academic Press, 2003), pp. 134–162.
[Crossref]

C. J. Bustamante and S. B. Smith, “Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis,” U.S. Patents 7133132 (2006).

Soh, Y. C.

S. Cui and Y. C. Soh, “The effect of spot size on linearity improvement of tetra-lateral position sensitive detector,” Opt. Quantum Electron. 42, 721 (2011).
[Crossref]

Sonek, G. J.

Stelzer, E.

E.-L. Florin, A. Pralle, E. Stelzer, and J. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

Stilgoe, A. B.

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

Taute, K. M.

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

Taylor, M. A.

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Thalhammer, G.

Tolic-Nørrelykke, S. F.

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Weber, T.

K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instruments 77, 063106 (2006).
[Crossref]

Wright, A. J.

Wright, W. H.

Zhang, S.

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

Appl. Opt. (4)

Appl. Phys. A (1)

E.-L. Florin, A. Pralle, E. Stelzer, and J. Hörber, “Photonic force microscope calibration by thermal noise analysis,” Appl. Phys. A 66, S75–S78 (1998).
[Crossref]

IEEE Trans. Commun. Technol. (1)

L. Schuchman, “Dither signals and their effect on quantization noise,” IEEE Trans. Commun. Technol. 12, 162–165 (1964).
[Crossref]

J. Opt. (1)

A. B. Stilgoe, A. V. Kashchuk, D. Preece, and H. Rubinsztein-Dunlop, “An interpretation and guide to single-pass beam shaping methods using SLMs and DMDs,” J. Opt. 18, 065609 (2016).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A: Pure Appl. Opt. 9, S196 (2007).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

A. A. Bui, A. B. Stilgoe, I. C. Lenton, L. J. Gibson, A. V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, and T. A. Nieminen, “Theory and practice of simulation of optical tweezers,” J. Quant. Spectrosc. Radiat. Transf. 195, 66–75 (2017).
[Crossref]

J. Royal Microsc. Soc. (1)

E. Abbe, “VII.-on the estimation of aperture in the microscope,” J. Royal Microsc. Soc. 1, 388–423 (1881).
[Crossref]

Nat. Methods (1)

R. Parthasarathy, “Rapid, accurate particle tracking by calculation of radial symmetry centers,” Nat. Methods 9, 724 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Friedrich and A. Rohrbach, “Surface imaging beyond the diffraction limit with optically trapped spheres,” Nat. Nanotechnol. 10, 1064 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

M. A. Taylor, J. Janousek, V. Daria, J. Knittel, B. Hage, H.-A. Bachor, and W. P. Bowen, “Biological measurement beyond the quantum limit,” Nat. Photonics 7, 229–233 (2013).
[Crossref]

Nat. Phys. (1)

R. Huang, I. Chavez, K. M. Taute, B. Lukić, S. Jeney, M. G. Raizen, and E.-L. Florin, “Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid,” Nat. Phys. 7, 576 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

S. Cui and Y. C. Soh, “The effect of spot size on linearity improvement of tetra-lateral position sensitive detector,” Opt. Quantum Electron. 42, 721 (2011).
[Crossref]

Optica (1)

Proc. SPIE (1)

J. S. Dana Dudley and Walter M. Duncan, “Emerging digital micromirror device (dmd) applications,” Proc. SPIE 4985, 498512 (2003).

Rev. Sci. Instrum. (1)

S. F. Tolić-Nørrelykke, E. Schäffer, J. Howard, F. S. Pavone, F. Jülicher, and H. Flyvbjerg, “Calibration of optical tweezers with positional detection in the back focal plane,” Rev. Sci. Instrum. 77, 103101 (2006).
[Crossref]

Rev. Sci. Instruments (2)

K. Berg-Sørensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instruments 75, 594–612 (2004).
[Crossref]

K. Berg-Sørensen, E. J. G. Peterman, T. Weber, C. F. Schmidt, and H. Flyvbjerg, “Power spectrum analysis for optical tweezers. II: Laser wavelength dependence of parasitic filtering, and how to achieve high bandwidth,” Rev. Sci. Instruments 77, 063106 (2006).
[Crossref]

Science (1)

S. Kheifets, A. Simha, K. Melin, T. Li, and M. G. Raizen, “Observation of Brownian Motion in Liquids at Short Times: Instantaneous Velocity and Memory Loss,” Science 343, 1493–1496 (2014).
[Crossref] [PubMed]

Other (3)

C. J. Bustamante and S. B. Smith, “Light-force sensor and method for measuring axial optical-trap forces from changes in light momentum along an optic axis,” U.S. Patents 7133132 (2006).

S. B. Smith, Y. Cui, and C. Bustamante, “[7] optical-trap force transducer that operates by direct measurement of light momentum,” in Biophotonics, Part B (Academic Press, 2003), pp. 134–162.
[Crossref]

A. Farré, F. Marsà, and M. Montes-Usategui, “Beyond the hookean spring model: Direct measurement of optical forces through light momentum changes,” in Optical Tweezers: Methods and Protocols, A. Gennerich, ed. (Springer, 2017), pp. 41–76.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic representation of position-sensitive masked detection. M is a reflective filter with a specific spatially varying transmittance function; PD1 and PD2 are photodetectors, respectively detecting signals, ST and SR.
Fig. 2
Fig. 2 Setup for optical trapping. DM1 and DM2 are dichroic mirrors used to separate the laser beam from the illumination. An objective (NA 1.2, water immersion) creates an optical trap and a condenser (NA 1.35, silicon oil immersion) collects the scattered light. Lenses L1 and L2 image the back focal plane of the condenser on the PSD and DMD.
Fig. 3
Fig. 3 Power spectrum densities of the radial optical force acting on a trapped silica microparticle ø1.70μm. The bandwidth of measurement for each experiment was chosen such that the noise floor meets the optical trap signals. The effect of surface capacitance on the PSD measurement can be seen with a rapid fall to the noise floor at about 7.5kHz.
Fig. 4
Fig. 4 a) The axial force distribution for different amplitude mask sizes. The thick black line corresponds to the correct pattern size. b) Change in the measured standard deviation for different sizes of the pattern.
Fig. 5
Fig. 5 Axial Stokes drag force measurements of the spherical silica particle (ø1.70μm) using PSMD. The corresponding velocities are [10, 20, 30, 40, 50, 60, 70, 80, 90, 100] μm/s. Error bars are the standard deviations of the Brownian motion of the particle.
Fig. 6
Fig. 6 3-D optical force measurements of the silica microparticle (ø1.70μm) stuck to the slide. a). Radial component of the optical force Fy. To match the simulation and experiment the plane with a maximum radial force was chosen for both cases. b). Axial force in the same plane as a. c). The comparison of the measured and calculated 3-D distribution of the total optical force.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

F = ( F x F y F z ) = H C A ( I ( x , y ) x d x d y I ( x , y ) y d x d y I ( x , y ) C A 2 ( x 2 + y 2 ) d x d y ) F 0 ,
( X ; Y ) = ( I ( x , y ) x d x d y I ( x , y ) d x d y ; I ( x , y ) y d x d y I ( x , y ) d x d y ) .
S PSD = S PSD + S PSD = G L L I ( x , y ) x d x d y ,
S SD = ( S SD a + S SD b ) ( S SD c + S SD d ) = G ( 0 L I ( x , y ) d x d y L 0 I ( x , y ) d x d y ) ,
I T ( x , y ) = I ( x , y ) M ( x , y ) , I R ( x , y ) = I ( x , y ) ( 1 M ( x , y ) ) .
S T = G I T ( x , y ) d x d y , S R = G I R ( x , y ) d x d y ,
S = S T S R .
M rad = 1 C A k rad x + 1 2 ,
( S x ( V ) , S y ( V ) ) = 2 k rad 1 C A G ( I ( x , y ) x d x d y , I ( x , y ) y d x d y ) ,
( F x , F y ) = H 2 k rad G ( ( S x ( V ) S x 0 ( V ) ) , ( S y ( V ) S y 0 ( V ) ) ) .
( F x , F y ) = H ˜ k rad ( ( S x ( V ) S x 0 ( V ) ) , ( S y ( V ) S y 0 ( V ) ) ) .
C rad = k B T σ S ( V ) σ cam ,
M ax = k ax 1 C A C A 2 ( x 2 + y 2 ) ,
S z ( V ) = 2 k ax 1 C A G ( I ( x , y ) C A 2 ( x 2 + y 2 ) I ( x , y ) ) d x d y .
F z = H ˜ k ax ( S z ( V ) S z 0 ( V ) ) .
F z = C rad k rad k ax ( S z ( V ) S z 0 ( V ) ) .
C A = r max sin θ max = r max n m NA ,
F meas = F optical ,
F meas = F optical F thermal F viscous ,

Metrics