Abstract

In this paper, a splitting ratio-adjustable Mach-Zehnder interferometer (MZI) for the measurement of relative humidity (RH) is proposed and experimentally demonstrated. The sensing head contains three sections of single mode fiber (SMF) and two sections of multimode fiber (MMF), in which the two MMFs are spliced among the three SMFs. The MMFs are corroded with hydrofluoric acid and act as mode couplers to split and recombine light owing to the core diameter mismatch with the SMF. A layer of graphene oxide (GO) is coated on the MMFs by dip-coating and natural evaporation. The effective refractive index of the GO will vary when it absorbs the water molecules. As a result, the intensity of the transmission light in the core and cladding of the single mode fiber can be adjusted. Thus, the intensity of the resonant dip will vary when the relative humidity changes. The experimental results show that a humidity sensitivity of 0.263 dB/RH% with a linear correlation coefficient of 99% can be achieved in a relative humidity range of 35% to 85%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Humidity and temperature sensor based on a Mach–Zehnder interferometer with a pokal taper and peanut taper

Yimei Zhong, Zhengrong Tong, Weihua Zhang, Juan Qin, and Wenlin Gao
Appl. Opt. 58(29) 7981-7986 (2019)

Temperature-independent hygrometry using micromachined photonic crystal fiber

Pan Zhang, Hangzhou Yang, Kok-Sing Lim, Harith Ahmad, Qiangzhou Rong, Qin Tian, and Xiangzi Ding
Appl. Opt. 57(15) 4237-4244 (2018)

Reduced graphene oxide for fiber-optic humidity sensing

Yi Xiao, Jun Zhang, Xiang Cai, Shaozao Tan, Jianhui Yu, Huihui Lu, Yunhan Luo, Guozhen Liao, Shiping Li, Jieyuan Tang, and Zhe Chen
Opt. Express 22(25) 31555-31567 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
    [Crossref] [PubMed]
  2. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [Crossref]
  3. J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).
  4. P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002).
    [Crossref] [PubMed]
  5. T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
    [Crossref]
  6. M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
    [Crossref] [PubMed]
  7. T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sensor. Actuat. A-Phys. 148(1), 57–62 (2008).
  8. J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quant. 18(5), 1553–1559 (2012).
    [Crossref]
  9. T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
    [Crossref]
  10. W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).
  11. J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonic. Tech. L. 18(8), 935–937 (2006).
    [Crossref]
  12. L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensor. Actuat. A-Physical 190, 1–5 (2013).
  13. S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuat. Biol. Chem. 104(2), 217–222 (2005).
  14. Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
    [Crossref] [PubMed]
  15. C. Bariáin, I. R. MatíAs, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat,” Biol. Chem. 69(1–2), 127–131 (2000).
  16. B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sensor. Actuat., Biol. Chem. 80(2), 132–135 (2001).
  17. C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
    [Crossref] [PubMed]
  18. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
    [Crossref] [PubMed]
  19. N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties,” ACS Nano 4(4), 2300–2306 (2010).
    [Crossref] [PubMed]
  20. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
    [Crossref] [PubMed]
  21. O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125416 (2008).
    [Crossref]
  22. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
    [Crossref] [PubMed]
  23. B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).
  24. B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
    [Crossref] [PubMed]
  25. B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
    [Crossref] [PubMed]
  26. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [Crossref] [PubMed]
  27. H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
    [Crossref] [PubMed]
  28. J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
    [Crossref] [PubMed]
  29. X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
    [Crossref] [PubMed]
  30. Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).
  31. Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sensor. Actuat. Biol. Chem. 222, 159–165 (2016).
  32. Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
    [Crossref]
  33. R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
    [Crossref]
  34. Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).
  35. Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
    [Crossref]

2016 (7)

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sensor. Actuat. Biol. Chem. 222, 159–165 (2016).

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

2015 (1)

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

2014 (7)

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref] [PubMed]

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

2013 (3)

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
[Crossref] [PubMed]

T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensor. Actuat. A-Physical 190, 1–5 (2013).

2012 (3)

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quant. 18(5), 1553–1559 (2012).
[Crossref]

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

2010 (2)

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties,” ACS Nano 4(4), 2300–2306 (2010).
[Crossref] [PubMed]

2008 (2)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sensor. Actuat. A-Phys. 148(1), 57–62 (2008).

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125416 (2008).
[Crossref]

2007 (2)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref] [PubMed]

2006 (2)

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[Crossref] [PubMed]

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonic. Tech. L. 18(8), 935–937 (2006).
[Crossref]

2005 (2)

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuat. Biol. Chem. 104(2), 217–222 (2005).

T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
[Crossref]

2002 (1)

P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002).
[Crossref] [PubMed]

2001 (1)

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sensor. Actuat., Biol. Chem. 80(2), 132–135 (2001).

2000 (1)

C. Bariáin, I. R. MatíAs, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat,” Biol. Chem. 69(1–2), 127–131 (2000).

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Arregui, F. J.

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonic. Tech. L. 18(8), 935–937 (2006).
[Crossref]

C. Bariáin, I. R. MatíAs, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat,” Biol. Chem. 69(1–2), 127–131 (2000).

Bariáin, C.

C. Bariáin, I. R. MatíAs, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat,” Biol. Chem. 69(1–2), 127–131 (2000).

Blake, P.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Bravo, J.

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonic. Tech. L. 18(8), 935–937 (2006).
[Crossref]

Cai, W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Chan, C. C.

T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).

Chen, C.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Chen, L. H.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).

Chen, Y.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

Chen, Y. F.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Chen, Z.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Cheng, Y.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

Chiang, K. S.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Choi, H. Y.

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref] [PubMed]

Chung, C.

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
[Crossref] [PubMed]

Corres, J. M.

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonic. Tech. L. 18(8), 935–937 (2006).
[Crossref]

Dai, D.

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

Dai, J.

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

Dang, Y.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Dong, X.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

Enjin, A.

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

Farrell, G.

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quant. 18(5), 1553–1559 (2012).
[Crossref]

Frank, D. D.

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

Fu, F.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Gallio, M.

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

Geim, A. K.

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Giaccari, P.

P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002).
[Crossref] [PubMed]

Gong, Y.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Grattan, D.

T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
[Crossref]

Grattan, K. T. V.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sensor. Actuat. A-Phys. 148(1), 57–62 (2008).

Grigorieva, I. V.

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Guan, H.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Guo, M.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sensor. Actuat. Biol. Chem. 222, 159–165 (2016).

Gupta, B. D.

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sensor. Actuat., Biol. Chem. 80(2), 132–135 (2001).

He, J. R.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

Hill, E. W.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Hong, B. H.

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
[Crossref] [PubMed]

Hu, H.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Huang, B.

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

Huang, X.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

Jayaram, P. N.

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Katsnelson, M. I.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Khijwania, S. K.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuat. Biol. Chem. 104(2), 217–222 (2005).

Kim, M. J.

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref] [PubMed]

Kim, Y. K.

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
[Crossref] [PubMed]

Kong, L.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Konstantaki, M.

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[Crossref] [PubMed]

Kou, T.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensor. Actuat. A-Physical 190, 1–5 (2013).

Kronenberg, P.

P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002).
[Crossref] [PubMed]

Lade,

T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
[Crossref]

Lee, B. H.

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref] [PubMed]

Lee, K. X.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).

Leenaerts, O.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125416 (2008).
[Crossref]

Leong, K. C.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).

Li, J.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Li, L.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensor. Actuat. A-Physical 190, 1–5 (2013).

Li, T.

T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).

Li, W.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensor. Actuat. A-Physical 190, 1–5 (2013).

Li, X.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Li, Y. R.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

Li, Z.

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Liao, C.

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Limberger, H. G.

P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002).
[Crossref] [PubMed]

Liu, D.

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref] [PubMed]

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensor. Actuat. A-Physical 190, 1–5 (2013).

Liu, Y.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

López-Amo, M.

C. Bariáin, I. R. MatíAs, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat,” Biol. Chem. 69(1–2), 127–131 (2000).

Lou, W.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Lu, H.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Luo, H.

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref] [PubMed]

Luo, Y.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Madamopoulos, N.

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[Crossref] [PubMed]

Mansourian, S.

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

Mathew, J.

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quant. 18(5), 1553–1559 (2012).
[Crossref]

Matias, I. R.

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonic. Tech. L. 18(8), 935–937 (2006).
[Crossref]

MatíAs, I. R.

C. Bariáin, I. R. MatíAs, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat,” Biol. Chem. 69(1–2), 127–131 (2000).

Medhekar, N. V.

N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties,” ACS Nano 4(4), 2300–2306 (2010).
[Crossref] [PubMed]

Meng, H.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

Min, D. H.

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
[Crossref] [PubMed]

Morozov, S. V.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Murali, S.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Nair, R. R.

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Ni, K.

T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

Novoselov, K. S.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Parry, R.

T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
[Crossref]

Partoens, B.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125416 (2008).
[Crossref]

Peeters, F. M.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125416 (2008).
[Crossref]

Peng, S.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Pispas, S.

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[Crossref] [PubMed]

Pissadakis, S.

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[Crossref] [PubMed]

Potts, J. R.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Powell, B. D.

T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
[Crossref]

Ramasubramaniam, A.

N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties,” ACS Nano 4(4), 2300–2306 (2010).
[Crossref] [PubMed]

Rao, Y. J.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Rao, Y.-J.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

Rastogi, P. K.

P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002).
[Crossref] [PubMed]

Rui, X.

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

Ruoff, R. S.

N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties,” ACS Nano 4(4), 2300–2306 (2010).
[Crossref] [PubMed]

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Ryoo, S. R.

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
[Crossref] [PubMed]

Schedin, F.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Semenova, Y.

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quant. 18(5), 1553–1559 (2012).
[Crossref]

Shen, C.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Shenoy, V. B.

N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties,” ACS Nano 4(4), 2300–2306 (2010).
[Crossref] [PubMed]

Shentu, F.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Shin, D.

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
[Crossref] [PubMed]

Shum, P. P.

T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

Singh, J. P.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuat. Biol. Chem. 104(2), 217–222 (2005).

Srinivasan, K. L.

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuat. Biol. Chem. 104(2), 217–222 (2005).

Stensmyr, M. C.

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

Suh, G. S.

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

Suk, J. W.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Sun, B.

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Sun, Q.

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref] [PubMed]

Sun, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sensor. Actuat. A-Phys. 148(1), 57–62 (2008).

Sun, X.

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

Tan, C.

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

Tang, J.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Thylén, L.

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

Tong, L.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Tong Sun, K. T. V.

T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
[Crossref]

Vainos, N. A.

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[Crossref] [PubMed]

Venugopalan, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sensor. Actuat. A-Phys. 148(1), 57–62 (2008).

Wang, G.

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Wang, Q.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sensor. Actuat. Biol. Chem. 222, 159–165 (2016).

Wang, Y.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Wang, Z.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

Wang, Z. G.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Wei, W.

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sensor. Actuat. Biol. Chem. 222, 159–165 (2016).

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

Wong, W. C.

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).

Wosinski, L.

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

Wu, H. A.

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Wu, Y.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

Xia, F.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Xia, K.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Xia, L.

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensor. Actuat. A-Physical 190, 1–5 (2013).

Xiao, Y.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Xiong, R.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

Xu, Z.

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref] [PubMed]

Xue, H.

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

Yang, K.

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Yang, M.

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

Yao, B.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

Yao, B. C.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Yao, Q.

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

Yao, W.

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

Yeo, T. L.

T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
[Crossref]

Yi, Z.

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

Yin, G.

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Yu, C. B.

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

Yu, J.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Zaharieva, E. E.

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

Zhang, A.

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

Zhang, A. Q.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Zhang, J.

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

Zhang, L.

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref] [PubMed]

Zhang, S.

T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

Zhang, W. L.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Zhang, Y.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Zhao, Y.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sensor. Actuat. Biol. Chem. 222, 159–165 (2016).

Zhi, L.

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

Zhi, Y.

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

Zhi, Z.

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

Zhong, C.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Zhong, X.

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Zhou, J.

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

Zhu, Y.

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

C. Chung, Y. K. Kim, D. Shin, S. R. Ryoo, B. H. Hong, and D. H. Min, “Biomedical applications of graphene and graphene oxide,” Acc. Chem. Res. 46(10), 2211–2224 (2013).
[Crossref] [PubMed]

ACS Nano (1)

N. V. Medhekar, A. Ramasubramaniam, R. S. Ruoff, and V. B. Shenoy, “Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties,” ACS Nano 4(4), 2300–2306 (2010).
[Crossref] [PubMed]

Adv. Mater. (1)

Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications,” Adv. Mater. 22(35), 3906–3924 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

M. Konstantaki, S. Pissadakis, S. Pispas, N. Madamopoulos, and N. A. Vainos, “Optical fiber long-period grating humidity sensor with poly(ethylene oxide)/cobalt chloride coating,” Appl. Opt. 45(19), 4567–4571 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Biol. Chem. (2)

C. Bariáin, I. R. MatíAs, F. J. Arregui, and M. López-Amo, “Optical fiber humidity sensor based on a tapered fiber coated with agarose gel,” Sensor. Actuat,” Biol. Chem. 69(1–2), 127–131 (2000).

B. D. Gupta and Ratnanjali, “A novel probe for a fiber optic humidity sensor,” Sensor. Actuat., Biol. Chem. 80(2), 132–135 (2001).

Curr. Biol. (1)

A. Enjin, E. E. Zaharieva, D. D. Frank, S. Mansourian, G. S. Suh, M. Gallio, and M. C. Stensmyr, “Humidity sensing in drosophila,” Curr. Biol. 26(10), 1352–1358 (2016).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quant. (1)

J. Mathew, Y. Semenova, and G. Farrell, “Relative humidity sensor based on an agarose-infiltrated photonic crystal fiber interferometer,” IEEE J. Sel. Top. Quant. 18(5), 1553–1559 (2012).
[Crossref]

IEEE Photonic. Tech. L. (1)

J. M. Corres, J. Bravo, I. R. Matias, and F. J. Arregui, “Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms,” IEEE Photonic. Tech. L. 18(8), 935–937 (2006).
[Crossref]

IEEE Sens. J. (3)

T. L. Yeo, K. T. V. Tong Sun, D. Grattan, R. Parry, Lade, and B. D. Powell, “Polymer-coated fiber Bragg grating for relative humidity sensing,” IEEE Sens. J. 5(5), 1082–1089 (2005).
[Crossref]

T. Li, X. Dong, C. C. Chan, K. Ni, S. Zhang, and P. P. Shum, “Humidity sensor with a PVA-coated photonic crystal fiber interferometer,” IEEE Sens. J. 13(6), 2214–2216 (2013).
[Crossref]

R. Xiong, H. Meng, Q. Yao, B. Huang, Y. Liu, H. Xue, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on modal interference,” IEEE Sens. J. 14(8), 2524–2528 (2014).
[Crossref]

Nat. Mater. (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Opt. Express (5)

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Luo, C. Chen, K. Xia, S. Peng, H. Guan, J. Tang, H. Lu, J. Yu, J. Zhang, Y. Xiao, and Z. Chen, “Tungsten disulfide (WS2-based all-fiber-optic humidity sensor,” Opt. Express 24(8), 8956–8966 (2016).
[Crossref] [PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref] [PubMed]

J. Zhou, C. Liao, Y. Wang, G. Yin, X. Zhong, K. Yang, B. Sun, G. Wang, and Z. Li, “Simultaneous measurement of strain and temperature by employing fiber Mach-Zehnder interferometer,” Opt. Express 22(2), 1680–1686 (2014).
[Crossref] [PubMed]

X. Sun, D. Dai, L. Thylén, and L. Wosinski, “High-sensitivity liquid refractive-index sensor based on a Mach-Zehnder interferometer with a double-slot hybrid plasmonic waveguide,” Opt. Express 23(20), 25688–25699 (2015).
[Crossref] [PubMed]

Opt. Lett. (2)

H. Luo, Q. Sun, Z. Xu, D. Liu, and L. Zhang, “Simultaneous measurement of refractive index and temperature using multimode microfiber-based dual Mach-Zehnder interferometer,” Opt. Lett. 39(13), 4049–4052 (2014).
[Crossref] [PubMed]

P. Kronenberg, P. K. Rastogi, P. Giaccari, and H. G. Limberger, “Relative humidity sensor with optical fiber Bragg gratings,” Opt. Lett. 27(16), 1385–1387 (2002).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study,” Phys. Rev. B Condens. Matter Mater. Phys. 77(12), 125416 (2008).
[Crossref]

Sci. Rep. (1)

B. C. Yao, Y. Wu, C. B. Yu, J. R. He, Y. J. Rao, Y. Gong, F. Fu, Y. F. Chen, and Y. R. Li, “Partially reduced graphene oxide based FRET on fiber-optic interferometer for biochemical detection,” Sci. Rep. 6(1), 23706 (2016).
[Crossref] [PubMed]

Science (1)

R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, “Unimpeded permeation of water through helium-leak-tight graphene-based membranes,” Science 335(6067), 442–444 (2012).
[Crossref] [PubMed]

Sens. Actuat. Biol. Chem. (1)

S. K. Khijwania, K. L. Srinivasan, and J. P. Singh, “An evanescent-wave optical fiber relative humidity sensor with enhanced sensitivity,” Sens. Actuat. Biol. Chem. 104(2), 217–222 (2005).

Sensor. Actuat. A-Phys. (2)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sensor. Actuat. A-Phys. 148(1), 57–62 (2008).

Q. Yao, H. Meng, W. Wei, H. Xue, X. Rui, B. Huang, C. Tan, and X. Huang, “Simultaneous measurement of refractive index and temperature based on a core-offset Mach–Zehnder interferometer combined with a fiber Bragg grating,” Sensor. Actuat. A-Phys. 209, 73–77 (2014).
[Crossref]

Sensor. Actuat. A-Physical (1)

L. Xia, L. Li, W. Li, T. Kou, and D. Liu, “Novel optical fiber humidity sensor based on a no-core fiber structure,” Sensor. Actuat. A-Physical 190, 1–5 (2013).

Sensor. Actuat. Biol. Chem. (6)

W. C. Wong, C. C. Chan, L. H. Chen, T. Li, K. X. Lee, and K. C. Leong, “Polyvinyl alcohol coated photonic crystal optical fiber sensor for humidity measurement,” Sensor. Actuat. Biol. Chem. 174, 563–569 (2012).

J. Dai, M. Yang, Y. Zhi, L. Zhi, W. Yao, G. Wang, Z. Yi, and Z. Zhi, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sensor. Actuat. Biol. Chem. 190, 657–663 (2014).

B. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y.-J. Rao, Z. Wang, and Y. Chen, “All-optical Mach–Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sensor. Actuat. Biol. Chem. 194, 142–148 (2014).

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide,” Sensor. Actuat. Biol. Chem. 234, 503–509 (2016).

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sensor. Actuat. Biol. Chem. 225, 213–220 (2016).

Q. Wang, W. Wei, M. Guo, and Y. Zhao, “Optimization of cascaded fiber tapered Mach–Zehnder interferometer and refractive index sensing technology,” Sensor. Actuat. Biol. Chem. 222, 159–165 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Structure of sensing head.
Fig. 2
Fig. 2 Schematic diagram of etching device.
Fig. 3
Fig. 3 (a) Relation between etch time and waist diameter. (b) Transmission spectrum of 19th minute of corrosion.
Fig. 4
Fig. 4 (a) Multimode fiber coated with graphene oxide at magnification of 82. (b) Detailed drawing of part coated with graphene at magnification of 20K. (c) Enlarged drawing of cross section at multimode fiber at magnification of 30K under scanning electron microscope (SEM).
Fig. 5
Fig. 5 Transmission spectrogram before and after coating of graphene oxide.
Fig. 6
Fig. 6 Schematic diagram of experimental device.
Fig. 7
Fig. 7 (a) Change in transmission spectrum with change in HR from 35% to 85%. (b) Relation between relative humidity and transmission peak at dip of A.
Fig. 8
Fig. 8 Relation between RH and transmission peaks at dips of A, B, and C.
Fig. 9
Fig. 9 (a) The spatial frequency spectrum of the transmission spectrum at different RH values. (b) Spatial spectrum in the range of spatial frequencies from 0 to 0.002. (c) Spatial spectrum in the range of spatial frequencies from 0.05 to 0.17.
Fig. 10
Fig. 10 Stability test results of three different transmission peaks under fixed relative humidity.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I= I core + I cladding +2 I core I cladding cosφ
φ= 2πLΔ n eff λ
λ k = 2LΔ n eff 2k+1 ,k=1,2,3,...

Metrics