Abstract

We report on the experimental generation of broad and flat optical frequency combs (OFC) in a 1550 nm laser diode using gain switching with pulsed electrical excitation together with optical injection. The combination of both techniques allows the generation of high-quality OFCs at a repetition frequency of 500 MHz, showing a low-noise optical spectrum with unprecedent features in terms of width (108 tones within 10 dB) and flatness (56 tones within 3 dB) in comparison with those previously reported for this modulation frequency. The influence of the injection conditions on the OFC quality is studied. Using these two techniques, it has been possible to reduce the separation between tones, generating high spectral performance OFCs with a repetition rateof 100 MHz.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gain-switching injection-locked dual optical frequency combs: characterization and optimization

Borja Jerez, Pedro Martín-Mateos, Estefanía Prior, Cristina de Dios, and Pablo Acedo
Opt. Lett. 41(18) 4293-4296 (2016)

InP photonic integrated externally injected gain switched optical frequency comb

M. Deseada Gutierrez Pascual, Vidak Vujicic, Jules Braddell, Frank Smyth, Prince M. Anandarajah, and Liam P. Barry
Opt. Lett. 42(3) 555-558 (2017)

Dual optical frequency comb architecture with capabilities from visible to mid-infrared

Borja Jerez, Pedro Martín-Mateos, Estefanía Prior, Cristina de Dios, and Pablo Acedo
Opt. Express 24(13) 14986-14994 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surv. Tutor 20, 211–263 (2018).
    [Crossref]
  2. P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
    [Crossref]
  3. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
    [Crossref]
  4. T. Shao, R. Zhou, M. D. G. Pascual, P. M. Anandarajah, and L. P. Barry, “Integrated gain switched comb source for 100 gb/s WDM-SSB-DD-OFDM system,” J. Light. Technol. 33, 3525–3532 (2015).
    [Crossref]
  5. M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. M. Anandarajah, and L. P. Barry, “InP photonic integrated externally injected gain switched optical frequency comb,” Opt. Lett. 42, 555–558 (2017).
    [Crossref]
  6. M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. Anandarajah, and L. Barry, “Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems,” IEEE Photon. J. 9, 1–8 (2017).
    [Crossref]
  7. J. Pfeifle, V. Vujicic, R. T. Watts, P. C. Schindler, C. Weimann, R. Zhou, W. Freude, L. P. Barry, and C. Koos, “Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source,” Opt. Express 23, 724–738 (2015).
    [Crossref] [PubMed]
  8. A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
    [Crossref]
  9. B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Dual optical frequency comb architecture with capabilities from visible to mid-infrared,” Opt. Express 24, 14986–14994 (2016).
    [Crossref] [PubMed]
  10. S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124, 63 (2018).
    [Crossref]
  11. A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
    [Crossref]
  12. P. Paulus, R. Langenhorst, and D. Jager, “Generation and optimum control of picosecond optical pulses from gain-switched semiconductor lasers,” IEEE J. Quantum Electron. 24, 1519–1523 (1988).
    [Crossref]
  13. S. Chen, A. Sato, T. Ito, M. Yoshita, H. Akiyama, and H. Yokoyama, “Sub-5-ps optical pulse generation from a 1.55-μm distributed-feedback laser diode with nanosecond electric pulse excitation and spectral filtering,” Opt. Express 20, 24843–24849 (2012).
    [Crossref] [PubMed]
  14. C. Lin, P. Liu, T. Damen, D. Eilenberger, and R. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett. 16, 600–602 (1980).
    [Crossref]
  15. A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38, 1615–1617 (2013).
    [Crossref] [PubMed]
  16. D. Bimberg, K. Ketterer, E. H. Böttchër, and E. Scöll, “Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8 μm-1.3 μm wavelength range,” Int. J. Electron. 60, 23–45 (1986).
    [Crossref]
  17. S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
    [Crossref]
  18. M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett. 26, 2038–2040 (1990).
    [Crossref]
  19. S. P. O Duill, R. Zhou, P. M. Anandarajah, and L. P. Barry, “Analytical Approach to Assess the Impact of Pulse-to-Pulse Phase Coherence of Optical Frequency Combs,” IEEE J. Quantum Electron. 51, 1–8 (2015).
    [Crossref]
  20. P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
    [Crossref]
  21. R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22, 8120–8125 (2014).
    [Crossref] [PubMed]
  22. H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
    [Crossref]
  23. P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
    [Crossref]
  24. B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Gain-switching injection-locked dual optical frequency combs: characterization and optimization,” Opt. Lett. 41, 4293–4296 (2016).
    [Crossref] [PubMed]
  25. P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63, 1997–2042 (2000).
    [Crossref]
  26. W. Zheng and G. W. Taylor, “Gain-switched pulse response of quantum-well lasers,” IEEE J. Quantum Electron. 44, 966–975 (2008).
    [Crossref]
  27. A. Consoli, I. Esquivias, F. L. Hernandéz, J. Mulet, and S. Balle, “Characterization of gain-switched pulses from 1.55-μm vcsel,” IEEE Photon. Technol. Lett. 22, 772–774 (2010).
    [Crossref]
  28. K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52, 257–259 (1988).
    [Crossref]

2018 (3)

M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surv. Tutor 20, 211–263 (2018).
[Crossref]

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124, 63 (2018).
[Crossref]

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
[Crossref]

2017 (3)

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. M. Anandarajah, and L. P. Barry, “InP photonic integrated externally injected gain switched optical frequency comb,” Opt. Lett. 42, 555–558 (2017).
[Crossref]

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. Anandarajah, and L. Barry, “Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems,” IEEE Photon. J. 9, 1–8 (2017).
[Crossref]

H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
[Crossref]

2016 (2)

2015 (3)

S. P. O Duill, R. Zhou, P. M. Anandarajah, and L. P. Barry, “Analytical Approach to Assess the Impact of Pulse-to-Pulse Phase Coherence of Optical Frequency Combs,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

J. Pfeifle, V. Vujicic, R. T. Watts, P. C. Schindler, C. Weimann, R. Zhou, W. Freude, L. P. Barry, and C. Koos, “Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source,” Opt. Express 23, 724–738 (2015).
[Crossref] [PubMed]

T. Shao, R. Zhou, M. D. G. Pascual, P. M. Anandarajah, and L. P. Barry, “Integrated gain switched comb source for 100 gb/s WDM-SSB-DD-OFDM system,” J. Light. Technol. 33, 3525–3532 (2015).
[Crossref]

2014 (2)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22, 8120–8125 (2014).
[Crossref] [PubMed]

2013 (2)

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38, 1615–1617 (2013).
[Crossref] [PubMed]

2012 (2)

S. Chen, A. Sato, T. Ito, M. Yoshita, H. Akiyama, and H. Yokoyama, “Sub-5-ps optical pulse generation from a 1.55-μm distributed-feedback laser diode with nanosecond electric pulse excitation and spectral filtering,” Opt. Express 20, 24843–24849 (2012).
[Crossref] [PubMed]

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
[Crossref]

2011 (2)

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

2010 (1)

A. Consoli, I. Esquivias, F. L. Hernandéz, J. Mulet, and S. Balle, “Characterization of gain-switched pulses from 1.55-μm vcsel,” IEEE Photon. Technol. Lett. 22, 772–774 (2010).
[Crossref]

2009 (1)

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

2008 (1)

W. Zheng and G. W. Taylor, “Gain-switched pulse response of quantum-well lasers,” IEEE J. Quantum Electron. 44, 966–975 (2008).
[Crossref]

2000 (1)

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63, 1997–2042 (2000).
[Crossref]

1990 (1)

M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett. 26, 2038–2040 (1990).
[Crossref]

1988 (2)

P. Paulus, R. Langenhorst, and D. Jager, “Generation and optimum control of picosecond optical pulses from gain-switched semiconductor lasers,” IEEE J. Quantum Electron. 24, 1519–1523 (1988).
[Crossref]

K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52, 257–259 (1988).
[Crossref]

1986 (1)

D. Bimberg, K. Ketterer, E. H. Böttchër, and E. Scöll, “Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8 μm-1.3 μm wavelength range,” Int. J. Electron. 60, 23–45 (1986).
[Crossref]

1980 (1)

C. Lin, P. Liu, T. Damen, D. Eilenberger, and R. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett. 16, 600–602 (1980).
[Crossref]

Acedo, P.

B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Dual optical frequency comb architecture with capabilities from visible to mid-infrared,” Opt. Express 24, 14986–14994 (2016).
[Crossref] [PubMed]

B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Gain-switching injection-locked dual optical frequency combs: characterization and optimization,” Opt. Lett. 41, 4293–4296 (2016).
[Crossref] [PubMed]

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Akbulut, M.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
[Crossref]

Akiyama, H.

Alam, S. U.

Anandarajah, P.

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. Anandarajah, and L. Barry, “Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems,” IEEE Photon. J. 9, 1–8 (2017).
[Crossref]

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Anandarajah, P. M.

M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surv. Tutor 20, 211–263 (2018).
[Crossref]

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. M. Anandarajah, and L. P. Barry, “InP photonic integrated externally injected gain switched optical frequency comb,” Opt. Lett. 42, 555–558 (2017).
[Crossref]

T. Shao, R. Zhou, M. D. G. Pascual, P. M. Anandarajah, and L. P. Barry, “Integrated gain switched comb source for 100 gb/s WDM-SSB-DD-OFDM system,” J. Light. Technol. 33, 3525–3532 (2015).
[Crossref]

S. P. O Duill, R. Zhou, P. M. Anandarajah, and L. P. Barry, “Analytical Approach to Assess the Impact of Pulse-to-Pulse Phase Coherence of Optical Frequency Combs,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22, 8120–8125 (2014).
[Crossref] [PubMed]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

Balle, S.

A. Consoli, I. Esquivias, F. L. Hernandéz, J. Mulet, and S. Balle, “Characterization of gain-switched pulses from 1.55-μm vcsel,” IEEE Photon. Technol. Lett. 22, 772–774 (2010).
[Crossref]

Barry, L.

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. Anandarajah, and L. Barry, “Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems,” IEEE Photon. J. 9, 1–8 (2017).
[Crossref]

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Barry, L. P.

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. M. Anandarajah, and L. P. Barry, “InP photonic integrated externally injected gain switched optical frequency comb,” Opt. Lett. 42, 555–558 (2017).
[Crossref]

J. Pfeifle, V. Vujicic, R. T. Watts, P. C. Schindler, C. Weimann, R. Zhou, W. Freude, L. P. Barry, and C. Koos, “Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source,” Opt. Express 23, 724–738 (2015).
[Crossref] [PubMed]

T. Shao, R. Zhou, M. D. G. Pascual, P. M. Anandarajah, and L. P. Barry, “Integrated gain switched comb source for 100 gb/s WDM-SSB-DD-OFDM system,” J. Light. Technol. 33, 3525–3532 (2015).
[Crossref]

S. P. O Duill, R. Zhou, P. M. Anandarajah, and L. P. Barry, “Analytical Approach to Assess the Impact of Pulse-to-Pulse Phase Coherence of Optical Frequency Combs,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22, 8120–8125 (2014).
[Crossref] [PubMed]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

Becker, M.

Bhooplapur, S.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
[Crossref]

Bimberg, D.

D. Bimberg, K. Ketterer, E. H. Böttchër, and E. Scöll, “Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8 μm-1.3 μm wavelength range,” Int. J. Electron. 60, 23–45 (1986).
[Crossref]

Böttchër, E. H.

D. Bimberg, K. Ketterer, E. H. Böttchër, and E. Scöll, “Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8 μm-1.3 μm wavelength range,” Int. J. Electron. 60, 23–45 (1986).
[Crossref]

Braddell, J.

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124, 63 (2018).
[Crossref]

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. Anandarajah, and L. Barry, “Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems,” IEEE Photon. J. 9, 1–8 (2017).
[Crossref]

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. M. Anandarajah, and L. P. Barry, “InP photonic integrated externally injected gain switched optical frequency comb,” Opt. Lett. 42, 555–558 (2017).
[Crossref]

Chandran, S.

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124, 63 (2018).
[Crossref]

Chen, S.

Consoli, A.

A. Consoli, I. Esquivias, F. L. Hernandéz, J. Mulet, and S. Balle, “Characterization of gain-switched pulses from 1.55-μm vcsel,” IEEE Photon. Technol. Lett. 22, 772–774 (2010).
[Crossref]

Criado, A. R.

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Damen, T.

C. Lin, P. Liu, T. Damen, D. Eilenberger, and R. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett. 16, 600–602 (1980).
[Crossref]

Davila-Rodriguez, J.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
[Crossref]

de Dios, C.

B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Dual optical frequency comb architecture with capabilities from visible to mid-infrared,” Opt. Express 24, 14986–14994 (2016).
[Crossref] [PubMed]

B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Gain-switching injection-locked dual optical frequency combs: characterization and optimization,” Opt. Lett. 41, 4293–4296 (2016).
[Crossref] [PubMed]

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Delfyett, P. J.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
[Crossref]

Dohler, G. H.

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Duill, S. P. O

S. P. O Duill, R. Zhou, P. M. Anandarajah, and L. P. Barry, “Analytical Approach to Assess the Impact of Pulse-to-Pulse Phase Coherence of Optical Frequency Combs,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

Eilenberger, D.

C. Lin, P. Liu, T. Damen, D. Eilenberger, and R. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett. 16, 600–602 (1980).
[Crossref]

Erbert, G.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Erdmann, R.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Esquivias, I.

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
[Crossref]

A. Consoli, I. Esquivias, F. L. Hernandéz, J. Mulet, and S. Balle, “Characterization of gain-switched pulses from 1.55-μm vcsel,” IEEE Photon. Technol. Lett. 22, 772–774 (2010).
[Crossref]

Fang, T.

H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
[Crossref]

Freude, W.

Gossard, A. C.

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Gowar, J.

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63, 1997–2042 (2000).
[Crossref]

Gutiérrez, M. D.

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124, 63 (2018).
[Crossref]

Hartman, R.

C. Lin, P. Liu, T. Damen, D. Eilenberger, and R. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett. 16, 600–602 (1980).
[Crossref]

Heidt, A. M.

Herbert, C.

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Hernandéz, F. L.

A. Consoli, I. Esquivias, F. L. Hernandéz, J. Mulet, and S. Balle, “Characterization of gain-switched pulses from 1.55-μm vcsel,” IEEE Photon. Technol. Lett. 22, 772–774 (2010).
[Crossref]

Hoghooghi, N.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
[Crossref]

Huynh, T. N.

Ibsen, M.

Imran, M.

M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surv. Tutor 20, 211–263 (2018).
[Crossref]

Ito, T.

Jager, D.

P. Paulus, R. Langenhorst, and D. Jager, “Generation and optimum control of picosecond optical pulses from gain-switched semiconductor lasers,” IEEE J. Quantum Electron. 24, 1519–1523 (1988).
[Crossref]

Jerez, B.

Jones, D.

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Kaszubowska-Anandarajah, A.

M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surv. Tutor 20, 211–263 (2018).
[Crossref]

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Kelly, B.

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38, 1615–1617 (2013).
[Crossref] [PubMed]

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Ketterer, K.

D. Bimberg, K. Ketterer, E. H. Böttchër, and E. Scöll, “Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8 μm-1.3 μm wavelength range,” Int. J. Electron. 60, 23–45 (1986).
[Crossref]

Koos, C.

Langenhorst, R.

P. Paulus, R. Langenhorst, and D. Jager, “Generation and optimum control of picosecond optical pulses from gain-switched semiconductor lasers,” IEEE J. Quantum Electron. 24, 1519–1523 (1988).
[Crossref]

Latkowski, S.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

Lau, K. Y.

K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52, 257–259 (1988).
[Crossref]

Lauritsen, K.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Li, Z.

Lin, C.

C. Lin, P. Liu, T. Damen, D. Eilenberger, and R. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett. 16, 600–602 (1980).
[Crossref]

Liu, P.

C. Lin, P. Liu, T. Damen, D. Eilenberger, and R. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett. 16, 600–602 (1980).
[Crossref]

Lu, H.

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Maher, R.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

Mahon, S.

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124, 63 (2018).
[Crossref]

Malzer, S.

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Martín-Mateos, P.

Mulet, J.

A. Consoli, I. Esquivias, F. L. Hernandéz, J. Mulet, and S. Balle, “Characterization of gain-switched pulses from 1.55-μm vcsel,” IEEE Photon. Technol. Lett. 22, 772–774 (2010).
[Crossref]

Murdoch, S. G.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

Nakazawa, M.

M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett. 26, 2038–2040 (1990).
[Crossref]

O’Carroll, J.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

O’Gorman, J.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Ozdur, I.

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
[Crossref]

Paschke, K.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Pascual, M. D. G.

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. Anandarajah, and L. Barry, “Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems,” IEEE Photon. J. 9, 1–8 (2017).
[Crossref]

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. M. Anandarajah, and L. P. Barry, “InP photonic integrated externally injected gain switched optical frequency comb,” Opt. Lett. 42, 555–558 (2017).
[Crossref]

T. Shao, R. Zhou, M. D. G. Pascual, P. M. Anandarajah, and L. P. Barry, “Integrated gain switched comb source for 100 gb/s WDM-SSB-DD-OFDM system,” J. Light. Technol. 33, 3525–3532 (2015).
[Crossref]

Paulus, P.

P. Paulus, R. Langenhorst, and D. Jager, “Generation and optimum control of picosecond optical pulses from gain-switched semiconductor lasers,” IEEE J. Quantum Electron. 24, 1519–1523 (1988).
[Crossref]

Pérez-Serrano, A.

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
[Crossref]

Perry, P.

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Pesquera, L.

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
[Crossref]

Pfeifle, J.

Phelan, R.

A. M. Heidt, Z. Li, J. Sahu, P. C. Shardlow, M. Becker, M. Rothhardt, M. Ibsen, R. Phelan, B. Kelly, S. U. Alam, and D. J. Richardson, “100 kW peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm,” Opt. Lett. 38, 1615–1617 (2013).
[Crossref] [PubMed]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Poti, L.

M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surv. Tutor 20, 211–263 (2018).
[Crossref]

Preu, S.

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Prior, E.

B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Gain-switching injection-locked dual optical frequency combs: characterization and optimization,” Opt. Lett. 41, 4293–4296 (2016).
[Crossref] [PubMed]

B. Jerez, P. Martín-Mateos, E. Prior, C. de Dios, and P. Acedo, “Dual optical frequency comb architecture with capabilities from visible to mid-infrared,” Opt. Express 24, 14986–14994 (2016).
[Crossref] [PubMed]

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

Pu, T.

H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
[Crossref]

Rensing, M.

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Richardson, D. J.

Riecke, S. M.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Rosado, A.

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
[Crossref]

Rothhardt, M.

Ruth, A. A.

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124, 63 (2018).
[Crossref]

Sahu, J.

Sambo, N.

M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surv. Tutor 20, 211–263 (2018).
[Crossref]

Sato, A.

Schindler, P. C.

Schwertfeger, S.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

Scöll, E.

D. Bimberg, K. Ketterer, E. H. Böttchër, and E. Scöll, “Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8 μm-1.3 μm wavelength range,” Int. J. Electron. 60, 23–45 (1986).
[Crossref]

Shao, T.

T. Shao, R. Zhou, M. D. G. Pascual, P. M. Anandarajah, and L. P. Barry, “Integrated gain switched comb source for 100 gb/s WDM-SSB-DD-OFDM system,” J. Light. Technol. 33, 3525–3532 (2015).
[Crossref]

Shardlow, P. C.

Smyth, F.

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. Anandarajah, and L. Barry, “Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems,” IEEE Photon. J. 9, 1–8 (2017).
[Crossref]

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. M. Anandarajah, and L. P. Barry, “InP photonic integrated externally injected gain switched optical frequency comb,” Opt. Lett. 42, 555–558 (2017).
[Crossref]

Suzuki, K.

M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett. 26, 2038–2040 (1990).
[Crossref]

Taylor, G. W.

W. Zheng and G. W. Taylor, “Gain-switched pulse response of quantum-well lasers,” IEEE J. Quantum Electron. 44, 966–975 (2008).
[Crossref]

Tijero, J. M. G.

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
[Crossref]

Torres-Company, V.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

Valle, Á.

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
[Crossref]

Vasil’ev, P. P.

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63, 1997–2042 (2000).
[Crossref]

Vujicic, V.

Wang, R.

H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
[Crossref]

Watts, R. T.

Weimann, C.

Weiner, A. M.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

Wenzel, H.

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

White, I. H.

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63, 1997–2042 (2000).
[Crossref]

Xiang, P.

H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
[Crossref]

Xu, Y. Q.

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

Yamada, E.

M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett. 26, 2038–2040 (1990).
[Crossref]

Yokoyama, H.

Yoshita, M.

Zheng, J.

H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
[Crossref]

Zheng, W.

W. Zheng and G. W. Taylor, “Gain-switched pulse response of quantum-well lasers,” IEEE J. Quantum Electron. 44, 966–975 (2008).
[Crossref]

Zhou, R.

J. Pfeifle, V. Vujicic, R. T. Watts, P. C. Schindler, C. Weimann, R. Zhou, W. Freude, L. P. Barry, and C. Koos, “Flexible terabit/s Nyquist-WDM super-channels using a gain-switched comb source,” Opt. Express 23, 724–738 (2015).
[Crossref] [PubMed]

S. P. O Duill, R. Zhou, P. M. Anandarajah, and L. P. Barry, “Analytical Approach to Assess the Impact of Pulse-to-Pulse Phase Coherence of Optical Frequency Combs,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

T. Shao, R. Zhou, M. D. G. Pascual, P. M. Anandarajah, and L. P. Barry, “Integrated gain switched comb source for 100 gb/s WDM-SSB-DD-OFDM system,” J. Light. Technol. 33, 3525–3532 (2015).
[Crossref]

R. Zhou, T. N. Huynh, V. Vujicic, P. M. Anandarajah, and L. P. Barry, “Phase noise analysis of injected gain switched comb source for coherent communications,” Opt. Express 22, 8120–8125 (2014).
[Crossref] [PubMed]

Zhu, H.

H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
[Crossref]

Appl. Phys. B (1)

S. Chandran, S. Mahon, A. A. Ruth, J. Braddell, and M. D. Gutiérrez, “Cavity-enhanced absorption detection of H2S in the near-infrared using a gain-switched frequency comb laser,” Appl. Phys. B 124, 63 (2018).
[Crossref]

Appl. Phys. Lett. (1)

K. Y. Lau, “Gain switching of semiconductor injection lasers,” Appl. Phys. Lett. 52, 257–259 (1988).
[Crossref]

Electron. Lett. (2)

M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett. 26, 2038–2040 (1990).
[Crossref]

C. Lin, P. Liu, T. Damen, D. Eilenberger, and R. Hartman, “Simple picosecond pulse generation scheme for injection lasers,” Electron. Lett. 16, 600–602 (1980).
[Crossref]

IEEE Commun. Surv. Tutor (1)

M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, and L. Poti, “A survey of optical carrier generation techniques for terabit capacity elastic optical networks,” IEEE Commun. Surv. Tutor 20, 211–263 (2018).
[Crossref]

IEEE J. Quantum Electron. (4)

P. Paulus, R. Langenhorst, and D. Jager, “Generation and optimum control of picosecond optical pulses from gain-switched semiconductor lasers,” IEEE J. Quantum Electron. 24, 1519–1523 (1988).
[Crossref]

S. P. O Duill, R. Zhou, P. M. Anandarajah, and L. P. Barry, “Analytical Approach to Assess the Impact of Pulse-to-Pulse Phase Coherence of Optical Frequency Combs,” IEEE J. Quantum Electron. 51, 1–8 (2015).
[Crossref]

S. M. Riecke, H. Wenzel, S. Schwertfeger, K. Lauritsen, K. Paschke, R. Erdmann, and G. Erbert, “Picosecond spectral dynamics of gain-switched DFB lasers,” IEEE J. Quantum Electron. 47, 715–722 (2011).
[Crossref]

W. Zheng and G. W. Taylor, “Gain-switched pulse response of quantum-well lasers,” IEEE J. Quantum Electron. 44, 966–975 (2008).
[Crossref]

IEEE J. Sel. Top. Quant. Electron. (1)

P. J. Delfyett, I. Ozdur, N. Hoghooghi, M. Akbulut, J. Davila-Rodriguez, and S. Bhooplapur, “Advanced Ultrafast Technologies Based on Optical Frequency Combs,” IEEE J. Sel. Top. Quant. Electron. 18, 258–274 (2012).
[Crossref]

IEEE Photon. J. (2)

M. D. G. Pascual, V. Vujicic, J. Braddell, F. Smyth, P. Anandarajah, and L. Barry, “Photonic Integrated Gain Switched Optical Frequency Comb for Spectrally Efficient Optical Transmission Systems,” IEEE Photon. J. 9, 1–8 (2017).
[Crossref]

P. M. Anandarajah, R. Maher, Y. Q. Xu, S. Latkowski, J. O’Carroll, S. G. Murdoch, R. Phelan, J. O’Gorman, and L. P. Barry, “Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers,” IEEE Photon. J. 3, 112–122 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (1)

A. Consoli, I. Esquivias, F. L. Hernandéz, J. Mulet, and S. Balle, “Characterization of gain-switched pulses from 1.55-μm vcsel,” IEEE Photon. Technol. Lett. 22, 772–774 (2010).
[Crossref]

IEEE Trans. THz Sci. Technol. (1)

A. R. Criado, C. de Dios, E. Prior, G. H. Dohler, S. Preu, S. Malzer, H. Lu, A. C. Gossard, and P. Acedo, “Continuous-wave sub-THz photonic generation with ultra-narrow linewidth, ultra-high resolution, full frequency range coverage and high long-term frequency stability,” IEEE Trans. THz Sci. Technol. 3, 461–471 (2013).
[Crossref]

IET Optoelectron. (1)

P. Anandarajah, P. Perry, C. Herbert, D. Jones, A. Kaszubowska-Anandarajah, L. Barry, B. Kelly, J. O’Carroll, J. O’Gorman, M. Rensing, and R. Phelan, “Discrete mode lasers for communication applications,” IET Optoelectron. 3, 1–17 (2009).
[Crossref]

Int. J. Electron. (1)

D. Bimberg, K. Ketterer, E. H. Böttchër, and E. Scöll, “Gain modulation of unbiased semiconductor lasers: ultrashort light-pulse generation in the 0.8 μm-1.3 μm wavelength range,” Int. J. Electron. 60, 23–45 (1986).
[Crossref]

J. Light. Technol. (1)

T. Shao, R. Zhou, M. D. G. Pascual, P. M. Anandarajah, and L. P. Barry, “Integrated gain switched comb source for 100 gb/s WDM-SSB-DD-OFDM system,” J. Light. Technol. 33, 3525–3532 (2015).
[Crossref]

Laser Photon. Rev. (1)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photon. Rev. 8, 368–393 (2014).
[Crossref]

Laser Phys. Lett. (1)

H. Zhu, R. Wang, T. Pu, P. Xiang, J. Zheng, and T. Fang, “A novel approach for generating flat optical frequency comb based on externally injected gain-switching distributed feedback semiconductor laser,” Laser Phys. Lett. 14, 026201 (2017).
[Crossref]

Opt. Express (4)

Opt. Laser. Technol. (1)

A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, Á. Valle, L. Pesquera, and I. Esquivias, “Experimental study of optical frequency comb generation in gain-switched semiconductor lasers,” Opt. Laser. Technol. 108, 542–550 (2018).
[Crossref]

Opt. Lett. (3)

Rep. Prog. Phys. (1)

P. P. Vasil’ev, I. H. White, and J. Gowar, “Fast phenomena in semiconductor lasers,” Rep. Prog. Phys. 63, 1997–2042 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematics of the experimental setup. ML: master laser, SL: slave laser, PC: polarization controller, VOA: variable optical attenuator, PD: photodetector, OSC: oscilloscope, BOSA: Brillouin optical spectrum analyzer.
Fig. 2
Fig. 2 Temporal and spectral characteristics of the emission of the gain-switched laser when driven at 500 MHz under the following driving conditions: upper row (a)-(c), sinusoidal excitation with I b i a s = 68 mA and VRF = 2.4 V; middle row (d)-(f), sinusoidal excitation with I b i a s = 34 mA and VRF = 1.1 V; bottom row (g)-(i), pulsed excitation with I O F F = 12.2 mA and ION = 56.2 mA. (a), (d) and (g) show the estimated temporal profiles of the injected current (see text for details). The dashed red lines indicate the threshold current.
Fig. 3
Fig. 3 Temporal trace of the output power (a) and optical spectrum (b) of the light emitted by the laser under 500 MHz pulsed electrical excitation (I   O F F = 12.2 mA and I   O N = 56.2 mA) and optical injection ( P i n j = - 14 dBm, δ ν =16 GHz). The injection frequency is indicated by an arrow in (b). 3(c) is a zoom of 3(b).
Fig. 4
Fig. 4 Evolution of the FWHM of the optical pulse Δ t, δ f 10 and CNR, as a function of the electric pulse width τ e l e c at f   R = 500 MHz, I   O F F = 12.2 mA, P i n j = - 14 dBm, δ ν = 16 GHz and different values ofI   O N. The lines are drawn as a guide to the eye.
Fig. 5
Fig. 5 Temporal trace of the output power (a) and optical spectrum (b) of the light emitted by the laser under 100 MHz pulsed electrical excitation, I   O F F = 6.5 mA, I   O N = 156.5 mA and optical injection ( P i n j = - 30 dBm, and detuning, δ ν = 16 GHz). 5(c) is a zoom of 5(b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

i ( t ) = 2 V RF Z 0 + Z L cos  ( 2 π f R t ) + I b i a s ,
I O F F = I b i a s 4 V R F Z 0 + Z L · f R · τ e l e c  and  I O N = I O F F + 4 V R F Z 0 + Z L .