Abstract

Perovskite quantum dots embedded composite film (PQDCF) exhibits strong photoluminescence emissions and is expected to be excellent down-shifting material for enhancing ultraviolet (UV) response of silicon devices. In this work, light conversion process is analyzed by combining the experiments with Monte-Carlo ray-trace simulation. Results show that external quantum efficiency (EQE) in the UV region was mainly determined by absorption loss and match of peak wavelength. Moreover, resolution was correlated with thickness and reabsorption. This conclusion provides a guideline for designing novel materials with enhanced UV sensitivity and an EQE of 28% is predicted. Our experimental results showed that the use of red emissive PQDCF achieved an EQE of 20%.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ray-trace simulation of CuInS(Se)2 quantum dot based luminescent solar concentrators

Xiangmin Hu, Ruidan Kang, Yongyou Zhang, Luogen Deng, Haizheng Zhong, Bingsuo Zou, and Li-Jie Shi
Opt. Express 23(15) A858-A867 (2015)

CH3NH3PbI3 perovskite / silicon tandem solar cells: characterization based optical simulations

Miha Filipič, Philipp Löper, Bjoern Niesen, Stefaan De Wolf, Janez Krč, Christophe Ballif, and Marko Topič
Opt. Express 23(7) A263-A278 (2015)

Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications

Shouleh Nikzad, Michael E. Hoenk, Frank Greer, Blake Jacquot, Steve Monacos, Todd J. Jones, Jordana Blacksberg, Erika Hamden, David Schiminovich, Chris Martin, and Patrick Morrissey
Appl. Opt. 51(3) 365-369 (2012)

References

  • View by:
  • |
  • |
  • |

  1. X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
    [Crossref]
  2. D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
    [Crossref]
  3. F. Schuster, D. Coquillat, H. Videlier, M. Sakowicz, F. Teppe, L. Dussopt, B. Giffard, T. Skotnicki, and W. Knap, “Broadband terahertz imaging with highly sensitive silicon CMOS detectors,” Opt. Express 19(8), 7827–7832 (2011).
    [Crossref] [PubMed]
  4. H. Lee, S. H. Park, S. H. Noh, J. Lim, and M. S. Kim, “Development of a portable 3CCD camera system for multispectral imaging of biological samples,” Sensors (Basel) 14(11), 20262–20273 (2014).
    [Crossref] [PubMed]
  5. Q. Xu, L. Meng, T. Zeng, K. Sinha, C. Dick, and X. Wang, “On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing,” Opt. Lett. 44(2), 463–466 (2019).
    [Crossref] [PubMed]
  6. M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
    [Crossref] [PubMed]
  7. M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
    [Crossref] [PubMed]
  8. H. Ferhati, F. Djeffal, and F. Srairi, “Enhancement of the absorbance figure of merit in amorphous-silicon p-i-n solar cell by using optimized intermediate metallic layers,” Optik (Stuttg.) 130, 473–480 (2017).
    [Crossref]
  9. S. Nikzad, M. E. Hoenk, F. Greer, B. Jacquot, S. Monacos, T. J. Jones, J. Blacksberg, E. Hamden, D. Schiminovich, C. Martin, and P. Morrissey, “Delta-doped electron-multiplied CCD with absolute quantum efficiency over 50% in the near to far ultraviolet range for single photon counting applications,” Appl. Opt. 51(3), 365–369 (2012).
    [Crossref] [PubMed]
  10. E. T. Hamden, F. Greer, M. E. Hoenk, J. Blacksberg, M. R. Dickie, S. Nikzad, D. C. Martin, and D. Schiminovich, “Ultraviolet antireflection coatings for use in silicon detector design,” Appl. Opt. 50(21), 4180–4188 (2011).
    [Crossref] [PubMed]
  11. M. Lesser, “Antireflection coatings for silicon charge-coupled devices,” Opt. Eng. 26(9), 911–915 (1987).
    [Crossref]
  12. X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
    [Crossref]
  13. M. M. Blouke, M. W. Cowens, J. E. Hall, J. A. Westphal, and A. B. Christensen, “Ultraviolet downconverting phosphor for use with silicon CCD imagers,” Appl. Opt. 19(19), 3318–3321 (1980).
    [Crossref] [PubMed]
  14. E. Klampaftis, D. Ross, K. R. Mcintosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
    [Crossref]
  15. J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, “Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence,” Sol. Energy Mater. Sol. Cells 120, 168–174 (2014).
    [Crossref]
  16. S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
    [Crossref]
  17. K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
    [Crossref]
  18. Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
    [Crossref] [PubMed]
  19. S. Chang, Z. Bai, and H. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
    [Crossref]
  20. G. Lozano, “The role of metal halide perovskites in next-generation lighting devices,” J. Phys. Chem. Lett. 9(14), 3987–3997 (2018).
    [Crossref] [PubMed]
  21. J. He, H. Chen, H. Chen, Y. Wang, S. T. Wu, and Y. Dong, “Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays,” Opt. Express 25(11), 12915–12925 (2017).
    [Crossref] [PubMed]
  22. M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
    [Crossref]
  23. D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
    [Crossref]
  24. R. Rothemund, “Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers,” Sol. Energy Mater. Sol. Cells 120, 616–621 (2014).
    [Crossref]
  25. C. Tummeltshammer, M. S. Brown, A. Taylor, A. J. Kenyon, and I. Papakonstantinou, “Efficiency and loss mechanisms of plasmonic Luminescent Solar Concentrators,” Opt. Express 21(S5Suppl 5), A735–A749 (2013).
    [Crossref] [PubMed]
  26. B. McKenna and R. C. Evans, “Towards efficient spectral converters through materials design for luminescent solar devices,” Adv. Mater. 29(28), 1606491 (2017).
    [Crossref] [PubMed]
  27. H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
    [Crossref]
  28. B. Lipovšek, A. Solodovnyk, K. Forberich, E. Stern, J. Krč, C. J. Brabec, and M. Topič, “Optical model for simulation and optimization of luminescent down-shifting layers filled with phosphor particles for photovoltaics,” Opt. Express 23(15), A882–A895 (2015).
    [Crossref] [PubMed]
  29. X. Hu, R. Kang, Y. Zhang, L. Deng, H. Zhong, B. Zou, and L. J. Shi, “Ray-trace simulation of CuInS(Se)2 quantum dot based luminescent solar concentrators,” Opt. Express 23(15), A858–A867 (2015).
    [Crossref] [PubMed]
  30. M. Kennedy, “Monte-Carlo Ray-Trace Modelling of Quantum Dot Solar Concentrators,” Dublin Institute of Technology, (2009).
    [Crossref]
  31. M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators,” Proc. SPIE 6649, 664905 (2007).
    [Crossref]
  32. S. M. Geyer, J. M. Scherer, N. Moloto, F. B. Jaworski, and M. G. Bawendi, “Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications,” ACS Nano 5(7), 5566–5571 (2011).
    [Crossref] [PubMed]
  33. M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
    [Crossref]
  34. K. Fliegel, “Modeling and measurement of image sensor characteristics,” Wuxiandian Gongcheng 13, 27–34 (2004).
  35. A. Karimzadeh, “Modulation transfer function of a triangular pixel array detector,” J. Opt. Soc. Am. A 31(7), 1688–1691 (2014).
    [Crossref] [PubMed]
  36. X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
    [Crossref]

2019 (1)

2018 (3)

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

S. Chang, Z. Bai, and H. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

G. Lozano, “The role of metal halide perovskites in next-generation lighting devices,” J. Phys. Chem. Lett. 9(14), 3987–3997 (2018).
[Crossref] [PubMed]

2017 (5)

J. He, H. Chen, H. Chen, Y. Wang, S. T. Wu, and Y. Dong, “Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays,” Opt. Express 25(11), 12915–12925 (2017).
[Crossref] [PubMed]

B. McKenna and R. C. Evans, “Towards efficient spectral converters through materials design for luminescent solar devices,” Adv. Mater. 29(28), 1606491 (2017).
[Crossref] [PubMed]

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

H. Ferhati, F. Djeffal, and F. Srairi, “Enhancement of the absorbance figure of merit in amorphous-silicon p-i-n solar cell by using optimized intermediate metallic layers,” Optik (Stuttg.) 130, 473–480 (2017).
[Crossref]

2016 (2)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (7)

R. Rothemund, “Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers,” Sol. Energy Mater. Sol. Cells 120, 616–621 (2014).
[Crossref]

A. Karimzadeh, “Modulation transfer function of a triangular pixel array detector,” J. Opt. Soc. Am. A 31(7), 1688–1691 (2014).
[Crossref] [PubMed]

J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, “Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence,” Sol. Energy Mater. Sol. Cells 120, 168–174 (2014).
[Crossref]

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref] [PubMed]

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

H. Lee, S. H. Park, S. H. Noh, J. Lim, and M. S. Kim, “Development of a portable 3CCD camera system for multispectral imaging of biological samples,” Sensors (Basel) 14(11), 20262–20273 (2014).
[Crossref] [PubMed]

2013 (2)

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

C. Tummeltshammer, M. S. Brown, A. Taylor, A. J. Kenyon, and I. Papakonstantinou, “Efficiency and loss mechanisms of plasmonic Luminescent Solar Concentrators,” Opt. Express 21(S5Suppl 5), A735–A749 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (3)

2010 (1)

M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
[Crossref]

2009 (2)

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

E. Klampaftis, D. Ross, K. R. Mcintosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

2007 (1)

M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators,” Proc. SPIE 6649, 664905 (2007).
[Crossref]

2004 (1)

K. Fliegel, “Modeling and measurement of image sensor characteristics,” Wuxiandian Gongcheng 13, 27–34 (2004).

1987 (1)

M. Lesser, “Antireflection coatings for silicon charge-coupled devices,” Opt. Eng. 26(9), 911–915 (1987).
[Crossref]

1980 (1)

Alcubilla, R.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref] [PubMed]

Alonso-Álvarez, D.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Bai, Z.

S. Chang, Z. Bai, and H. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref] [PubMed]

Bätzner, D. L.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Bawendi, M. G.

S. M. Geyer, J. M. Scherer, N. Moloto, F. B. Jaworski, and M. G. Bawendi, “Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications,” ACS Nano 5(7), 5566–5571 (2011).
[Crossref] [PubMed]

Bettiol, F.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Blacksberg, J.

Blouke, M. M.

Boeuf, F.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Bowers, J. E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Brabec, C. J.

Brown, M. S.

Cai, Y.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Casalino, M.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Cassan, E.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Chang, S.

S. Chang, Z. Bai, and H. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

Chen, H.

Chen, J. Y.

J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, “Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence,” Sol. Energy Mater. Sol. Cells 120, 168–174 (2014).
[Crossref]

Chen, T. M.

J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, “Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence,” Sol. Energy Mater. Sol. Cells 120, 168–174 (2014).
[Crossref]

Chen, Y.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Cheng, Z.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Cho, D.

M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
[Crossref]

Christensen, A. B.

Coppola, G.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Coquillat, D.

Cotsell, J. N.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Cowens, M. W.

De Fazio, D.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Deng, L.

Dick, C.

Dickie, M. R.

Djeffal, F.

H. Ferhati, F. Djeffal, and F. Srairi, “Enhancement of the absorbance figure of merit in amorphous-silicon p-i-n solar cell by using optimized intermediate metallic layers,” Optik (Stuttg.) 130, 473–480 (2017).
[Crossref]

Dong, Y.

Doran, J.

M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators,” Proc. SPIE 6649, 664905 (2007).
[Crossref]

Dussopt, L.

Eiden, A.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Evans, R. C.

B. McKenna and R. C. Evans, “Towards efficient spectral converters through materials design for luminescent solar devices,” Adv. Mater. 29(28), 1606491 (2017).
[Crossref] [PubMed]

Fan, M.

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

Fan, Z.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Fedeli, J.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Fenollosa, R.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref] [PubMed]

Ferhati, H.

H. Ferhati, F. Djeffal, and F. Srairi, “Enhancement of the absorbance figure of merit in amorphous-silicon p-i-n solar cell by using optimized intermediate metallic layers,” Optik (Stuttg.) 130, 473–480 (2017).
[Crossref]

Ferrari, A. C.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Fliegel, K.

K. Fliegel, “Modeling and measurement of image sensor characteristics,” Wuxiandian Gongcheng 13, 27–34 (2004).

Forberich, K.

Fu, H.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Garín, M.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref] [PubMed]

Geyer, S. M.

S. M. Geyer, J. M. Scherer, N. Moloto, F. B. Jaworski, and M. G. Bawendi, “Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications,” ACS Nano 5(7), 5566–5571 (2011).
[Crossref] [PubMed]

Giebink, N. C.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Giffard, B.

Goykhman, I.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Greer, F.

Gupta, S.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Hall, J. E.

Hamden, E.

Hamden, E. T.

Han, D.

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

Hanton, K.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Hartmann, J.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

He, J.

Hoenk, M. E.

Horng, C.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Hu, X.

Huang, C. K.

J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, “Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence,” Sol. Energy Mater. Sol. Cells 120, 168–174 (2014).
[Crossref]

Hung, W. B.

J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, “Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence,” Sol. Energy Mater. Sol. Cells 120, 168–174 (2014).
[Crossref]

Iodice, M.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Jacquot, B.

Jaworski, F. B.

S. M. Geyer, J. M. Scherer, N. Moloto, F. B. Jaworski, and M. G. Bawendi, “Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications,” ACS Nano 5(7), 5566–5571 (2011).
[Crossref] [PubMed]

Jia, S.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Jiang, F.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

Jones, T. J.

Kalytchuk, S.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Kang, R.

Karimzadeh, A.

Kennedy, M.

M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators,” Proc. SPIE 6649, 664905 (2007).
[Crossref]

Kenyon, A. J.

Kershaw, S. V.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Kim, M. S.

H. Lee, S. H. Park, S. H. Noh, J. Lim, and M. S. Kim, “Development of a portable 3CCD camera system for multispectral imaging of biological samples,” Sensors (Basel) 14(11), 20262–20273 (2014).
[Crossref] [PubMed]

Kim, S.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Kim, T.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Kim, W.

M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
[Crossref]

Kim, Y.

M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
[Crossref]

Klampaftis, E.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

E. Klampaftis, D. Ross, K. R. Mcintosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Knap, W.

Komljenovic, T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Krc, J.

Kwok, E. C. H.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Lau, G.

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

Lee, H.

H. Lee, S. H. Park, S. H. Noh, J. Lim, and M. S. Kim, “Development of a portable 3CCD camera system for multispectral imaging of biological samples,” Sensors (Basel) 14(11), 20262–20273 (2014).
[Crossref] [PubMed]

Lee, S.

M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
[Crossref]

Lee, Y.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Lesser, M.

M. Lesser, “Antireflection coatings for silicon charge-coupled devices,” Opt. Eng. 26(9), 911–915 (1987).
[Crossref]

Liang, H.

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

Liang, W.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Lidorikis, E.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Lim, J.

H. Lee, S. H. Park, S. H. Noh, J. Lim, and M. S. Kim, “Development of a portable 3CCD camera system for multispectral imaging of biological samples,” Sensors (Basel) 14(11), 20262–20273 (2014).
[Crossref] [PubMed]

Lipovšek, B.

Lozano, G.

G. Lozano, “The role of metal halide perovskites in next-generation lighting devices,” J. Phys. Chem. Lett. 9(14), 3987–3997 (2018).
[Crossref] [PubMed]

Lu, W. G.

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref] [PubMed]

Lutz, J.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Malyarchuk, V.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Marris-morini, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Marsal, L. F.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref] [PubMed]

Martin, C.

Martin, D. C.

Mashanovich, G. Z.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

McCormack, S. J.

M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators,” Proc. SPIE 6649, 664905 (2007).
[Crossref]

Mcintosh, K. R.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

E. Klampaftis, D. Ross, K. R. Mcintosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

McKenna, B.

B. McKenna and R. C. Evans, “Towards efficient spectral converters through materials design for luminescent solar devices,” Adv. Mater. 29(28), 1606491 (2017).
[Crossref] [PubMed]

Meng, L.

Q. Xu, L. Meng, T. Zeng, K. Sinha, C. Dick, and X. Wang, “On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing,” Opt. Lett. 44(2), 463–466 (2019).
[Crossref] [PubMed]

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Meseguer, F.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref] [PubMed]

Milana, S.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Moloto, N.

S. M. Geyer, J. M. Scherer, N. Moloto, F. B. Jaworski, and M. G. Bawendi, “Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications,” ACS Nano 5(7), 5566–5571 (2011).
[Crossref] [PubMed]

Monacos, S.

Morrissey, P.

Nedeljkovic, M.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Nikzad, S.

Noh, S. H.

H. Lee, S. H. Park, S. H. Noh, J. Lim, and M. S. Kim, “Development of a portable 3CCD camera system for multispectral imaging of biological samples,” Sensors (Basel) 14(11), 20262–20273 (2014).
[Crossref] [PubMed]

Norton, B.

M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators,” Proc. SPIE 6649, 664905 (2007).
[Crossref]

O’brien, P.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Papakonstantinou, I.

Park, J.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Park, S. H.

H. Lee, S. H. Park, S. H. Noh, J. Lim, and M. S. Kim, “Development of a portable 3CCD camera system for multispectral imaging of biological samples,” Sensors (Basel) 14(11), 20262–20273 (2014).
[Crossref] [PubMed]

Reed, G. T.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Richards, B. S.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

E. Klampaftis, D. Ross, K. R. Mcintosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Rogach, A. L.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Rogers, J. A.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Ross, D.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

E. Klampaftis, D. Ross, K. R. Mcintosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

Rothemund, R.

R. Rothemund, “Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers,” Sol. Energy Mater. Sol. Cells 120, 616–621 (2014).
[Crossref]

Sakowicz, M.

Sassi, U.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Scherer, J. M.

S. M. Geyer, J. M. Scherer, N. Moloto, F. B. Jaworski, and M. G. Bawendi, “Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications,” ACS Nano 5(7), 5566–5571 (2011).
[Crossref] [PubMed]

Schiminovich, D.

Schmid, J. H.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Schuster, F.

Shen, L.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Sheng, X.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Shi, L.

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref] [PubMed]

Shi, L. J.

Singh, M. K.

M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
[Crossref]

Sinha, K.

Skotnicki, T.

Solodovnyk, A.

Srairi, F.

H. Ferhati, F. Djeffal, and F. Srairi, “Enhancement of the absorbance figure of merit in amorphous-silicon p-i-n solar cell by using optimized intermediate metallic layers,” Optik (Stuttg.) 130, 473–480 (2017).
[Crossref]

Stern, E.

Stolz, T.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Storiz, P.

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Sun, K. W.

J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, “Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence,” Sol. Energy Mater. Sol. Cells 120, 168–174 (2014).
[Crossref]

Tan, Q.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Tang, J.

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

Taylor, A.

Teoh, W. Y.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Teppe, F.

Thomson, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Tiwary, U. S.

M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
[Crossref]

Tomarchio, F.

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

Topic, M.

Tsang, H. K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Tummeltshammer, C.

Vaneski, A.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Videlier, H.

Virot, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Vivien, L.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Wang, C.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Wang, L.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

Wang, X.

Q. Xu, L. Meng, T. Zeng, K. Sinha, C. Dick, and X. Wang, “On-chip colloidal quantum dot devices with a CMOS compatible architecture for near-infrared light sensing,” Opt. Lett. 44(2), 463–466 (2019).
[Crossref] [PubMed]

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Wang, Y.

J. He, H. Chen, H. Chen, Y. Wang, S. T. Wu, and Y. Dong, “Hybrid downconverters with green perovskite-polymer composite films for wide color gamut displays,” Opt. Express 25(11), 12915–12925 (2017).
[Crossref] [PubMed]

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref] [PubMed]

Westphal, J. A.

Wu, S. T.

Wu, X.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

Xu, D.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Xu, J.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, K.

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Xu, Q.

Ye, T.

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

You, S.

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

Yu, C.

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Zeng, T.

Zhang, H.

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

Zhang, M.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

Zhang, Y.

X. Hu, R. Kang, Y. Zhang, L. Deng, H. Zhong, B. Zou, and L. J. Shi, “Ray-trace simulation of CuInS(Se)2 quantum dot based luminescent solar concentrators,” Opt. Express 23(15), A858–A867 (2015).
[Crossref] [PubMed]

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

Zheng, W.

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

Zheng, X.

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

Zhong, H.

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

S. Chang, Z. Bai, and H. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref] [PubMed]

X. Hu, R. Kang, Y. Zhang, L. Deng, H. Zhong, B. Zou, and L. J. Shi, “Ray-trace simulation of CuInS(Se)2 quantum dot based luminescent solar concentrators,” Opt. Express 23(15), A858–A867 (2015).
[Crossref] [PubMed]

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

Zhou, Q.

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref] [PubMed]

Zhovtiuk, O.

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

Zhu, X.

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

Zilkie, A.

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

Zou, B.

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref] [PubMed]

X. Hu, R. Kang, Y. Zhang, L. Deng, H. Zhong, B. Zou, and L. J. Shi, “Ray-trace simulation of CuInS(Se)2 quantum dot based luminescent solar concentrators,” Opt. Express 23(15), A858–A867 (2015).
[Crossref] [PubMed]

ACS Nano (2)

M. Casalino, U. Sassi, I. Goykhman, A. Eiden, E. Lidorikis, S. Milana, D. De Fazio, F. Tomarchio, M. Iodice, G. Coppola, and A. C. Ferrari, “Vertically illuminated, resonant-cavity-enhanced, graphene–silicon Schottky photodetectors,” ACS Nano 11(11), 10955–10963 (2017).
[Crossref] [PubMed]

S. M. Geyer, J. M. Scherer, N. Moloto, F. B. Jaworski, and M. G. Bawendi, “Efficient luminescent down-shifting detectors based on colloidal quantum dots for dual-band detection applications,” ACS Nano 5(7), 5566–5571 (2011).
[Crossref] [PubMed]

Adv. Mater. (2)

Q. Zhou, Z. Bai, W. G. Lu, Y. Wang, B. Zou, and H. Zhong, “In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights,” Adv. Mater. 28(41), 9163–9168 (2016).
[Crossref] [PubMed]

B. McKenna and R. C. Evans, “Towards efficient spectral converters through materials design for luminescent solar devices,” Adv. Mater. 29(28), 1606491 (2017).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

S. Chang, Z. Bai, and H. Zhong, “In situ fabricated perovskite nanocrystals: a revolution in optical materials,” Adv. Opt. Mater. 6(18), 1800380 (2018).
[Crossref]

M. Zhang, L. Wang, L. Meng, X. Wu, Q. Tan, Y. Chen, W. Liang, F. Jiang, Y. Cai, and H. Zhong, “Perovskite quantum dots embedded composite films enhancing UV response of silicon photodetectors for broadband and solar-blind light detection,” Adv. Opt. Mater. 6(16), 1800077 (2018).
[Crossref]

X. Sheng, C. Yu, V. Malyarchuk, Y. Lee, S. Kim, T. Kim, L. Shen, C. Horng, J. Lutz, N. C. Giebink, J. Park, and J. A. Rogers, “Silicon-based visible-blind ultraviolet detection and imaging using down-shifting luminophores,” Adv. Opt. Mater. 2(4), 314–319 (2014).
[Crossref]

Appl. Energy (1)

H. Liang, M. Fan, S. You, W. Zheng, H. Zhang, T. Ye, and X. Zheng, “A Monte Carlo method and finite volume method coupled optical simulation method for parabolic trough solar collectors,” Appl. Energy 201, 60–68 (2017).
[Crossref]

Appl. Opt. (3)

J. Opt. (1)

D. Thomson, A. Zilkie, J. E. Bowers, T. Komljenovic, G. T. Reed, L. Vivien, D. Marris-morini, E. Cassan, L. Virot, J. Fedeli, J. Hartmann, J. H. Schmid, D. Xu, F. Boeuf, P. O’brien, G. Z. Mashanovich, and M. Nedeljkovic, “Roadmap on silicon photonics,” J. Opt. 18(7), 073003 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. C (1)

S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S. V. Kershaw, H. Fu, Z. Fan, E. C. H. Kwok, C. Wang, W. Y. Teoh, and A. L. Rogach, “Semiconductor nanocrystals as luminescent down-shifting layers to enhance the efficiency of thin-film CdTe/CdS and crystalline Si solar cells,” J. Phys. Chem. C 118(30), 16393–16400 (2014).
[Crossref]

J. Phys. Chem. Lett. (1)

G. Lozano, “The role of metal halide perovskites in next-generation lighting devices,” J. Phys. Chem. Lett. 9(14), 3987–3997 (2018).
[Crossref] [PubMed]

Nat. Commun. (1)

M. Garín, R. Fenollosa, R. Alcubilla, L. Shi, L. F. Marsal, and F. Meseguer, “All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region,” Nat. Commun. 5(1), 3440 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

X. Wang, Z. Cheng, K. Xu, H. K. Tsang, and J. Xu, “High-responsivity graphene/silicon-heterostructure waveguide photodetectors,” Nat. Photonics 7(11), 888–891 (2013).
[Crossref]

Opt. Eng. (1)

M. Lesser, “Antireflection coatings for silicon charge-coupled devices,” Opt. Eng. 26(9), 911–915 (1987).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Optik (Stuttg.) (1)

H. Ferhati, F. Djeffal, and F. Srairi, “Enhancement of the absorbance figure of merit in amorphous-silicon p-i-n solar cell by using optimized intermediate metallic layers,” Optik (Stuttg.) 130, 473–480 (2017).
[Crossref]

Proc. SPIE (1)

M. Kennedy, S. J. McCormack, J. Doran, and B. Norton, “Ray-trace modelling of reflectors for quantum dot solar concentrators,” Proc. SPIE 6649, 664905 (2007).
[Crossref]

Prog. Photovolt. Res. Appl. (2)

K. R. McIntosh, G. Lau, J. N. Cotsell, K. Hanton, D. L. Bätzner, F. Bettiol, and B. S. Richards, “Increase in external quantum efficiency of encapsulated silicon solar cells from a luminescent down-shifting layer,” Prog. Photovolt. Res. Appl. 17(3), 191–197 (2009).
[Crossref]

D. Alonso-Álvarez, D. Ross, E. Klampaftis, K. R. Mcintosh, S. Jia, P. Storiz, T. Stolz, and B. S. Richards, “Luminescent down-shifting experiment and modelling with multiple photovoltaic technologies,” Prog. Photovolt. Res. Appl. 23(4), 479–497 (2015).
[Crossref]

Progr. Electromagnetics Res. B (1)

M. K. Singh, W. Kim, U. S. Tiwary, S. Lee, D. Cho, and Y. Kim, “Optical performance analysis using a point spread function and modulation transfer function for W-band pmmw imaging system based on quasi optics focused array of dielectric rod waveguide antenna,” Progr. Electromagnetics Res. B 23, 273–291 (2010).
[Crossref]

Sensors (Basel) (1)

H. Lee, S. H. Park, S. H. Noh, J. Lim, and M. S. Kim, “Development of a portable 3CCD camera system for multispectral imaging of biological samples,” Sensors (Basel) 14(11), 20262–20273 (2014).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

E. Klampaftis, D. Ross, K. R. Mcintosh, and B. S. Richards, “Enhancing the performance of solar cells via luminescent down-shifting of the incident spectrum: a review,” Sol. Energy Mater. Sol. Cells 93(8), 1182–1194 (2009).
[Crossref]

J. Y. Chen, C. K. Huang, W. B. Hung, K. W. Sun, and T. M. Chen, “Efficiency improvement of Si solar cells using metal-enhanced nanophosphor fluorescence,” Sol. Energy Mater. Sol. Cells 120, 168–174 (2014).
[Crossref]

R. Rothemund, “Optical modelling of the external quantum efficiency of solar cells with luminescent down-shifting layers,” Sol. Energy Mater. Sol. Cells 120, 616–621 (2014).
[Crossref]

Wuxiandian Gongcheng (1)

K. Fliegel, “Modeling and measurement of image sensor characteristics,” Wuxiandian Gongcheng 13, 27–34 (2004).

Other (2)

X. Wu, J. Tang, F. Jiang, X. Zhu, Y. Zhang, D. Han, L. Wang, and H. Zhong, “Highly luminescent red emissive perovskite quantum dots embedded composite films: ligands capping and caesium doping controlled crystallization process,” Nanoscale, (2019).
[Crossref]

M. Kennedy, “Monte-Carlo Ray-Trace Modelling of Quantum Dot Solar Concentrators,” Dublin Institute of Technology, (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The illustration of the light conversion process in PQDCF enhanced image sensor. In the UV region, Photon loss comes from the reflection (i), front and side escape (ii,iii), transmission (iv), absorption (v), reabsorption (vi). Only the emitted visible photons (vii,viii) that reach the sensor (ix) contribute to the EQE. RP represents the diffusion radius of photons.
Fig. 2
Fig. 2 (a) The absorption coefficients and normalized PL spectrum of the green emissive PQDCF. (b) The refractive index of the PQDCF and the polymer matrix polyvinylidene difluoride (PVDF).
Fig. 3
Fig. 3 (a) The EQE of the EMCCD coated with PVDF or PQDCF under different excitation wavelengths. (b) The photon proportions of different fates in the green emissive PQDCF.
Fig. 4
Fig. 4 (a) The absorption coefficients and normalized PL spectrum for the red emissive PQDCF. (b) The EQE of the EMCCD coated with red emissive PQDCF.
Fig. 5
Fig. 5 (a) The diffusion radius with the excitation wavelength of 290 nm. (b) The diffusion radius with various excitation wavelengths and the thickness of the PQDCF is 2.5 μm. (c) The calculated MTF of PQDCF with different thickness, and the MTF of the bare EMCCD before spatial frequency first drops to 0. (d) since the pixel size (30 μm × 20 μm) is asymmetrical in the x and y directions, the MTF of this whole device in both directions is drawn separately with thickness of 2.5 μm.
Fig. 6
Fig. 6 (a) The EQE corresponding to different incident angles and the proportion of front loss. The incident angle is the angle between incident light and normal vector of the front surface of PQDCF, the wavelength of incident photons was set to 290 nm. (b) The MTF of the green emissive PQDCF for different incident angles (10, 30, 60 degrees).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

EQ E PQD_sensor = n( λ )EQ E sensor ( λ )dλ m( λ )dλ
R P = H 1P
P= R P R P dx R P 2 x 2 R P 2 x 2 dy λ N PQDCF ( x,y,λ )EQ E sensor ( λ )dλ N PQDCF ( x,y,λ )EQ E sensor ( λ )dλdxdy
PS F PQDCF ( x,y )= N PQDCF ( x,y,λ )EQ E sensor ( λ )dλ N PQDCF ( x,y,λ )EQ E sensor ( λ )dλdxdy
MT F PQD_sensor =| F( PS F PQDCF )F( PS F sensor ) |