Abstract

We demonstrate a practical method that is used to generate on-demand first- and higher-order cylindrical vector beams, in the 1550 nm band, directly from an all polarization maintaining mode-locked Er-fiber laser. On demand typical 1st order CVBs, including the radially and azimuthally polarized beams, can be easily achieved by properly adjusting the angle of a half-wave plate with respect to the fast axis of the vortex wave plate. The spatial beam mode can be flexibly switched with no disturbance on the time domain mode-locking output. The laser outputs the desired vector beams at 1571 nm with a spectral bandwidth at full-width at half-maximum of 32 nm. The mode-locked laser pulses have a repetition rate of 74.9 MHz. Moreover, the proposed method can be easily extended to create higher-order CVBs. Our research provides a convenient way to generate ultrafast pulses in highly flexible-controlled structured modes, which is essential for optical fabrication and light trapping applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler

Hongdan Wan, Jie Wang, Zuxing Zhang, Yu Cai, Bin Sun, and Lin Zhang
Opt. Express 25(10) 11444-11451 (2017)

An all-fiber laser generating cylindrical vector beam

Rui Zheng, Chun Gu, Anting Wang, Lixin Xu, and Hai Ming
Opt. Express 18(10) 10834-10838 (2010)

Dispersion-managed, high-order mode emission, Tm/Ho-co-doped fiber laser based on a mode-selective coupler

Su Chen, Yang Xu, Yu Cai, Jianping Shen, and Zuxing Zhang
J. Opt. Soc. Am. B 36(10) 2688-2693 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
    [Crossref]
  2. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
    [Crossref] [PubMed]
  3. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
    [Crossref] [PubMed]
  4. S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
    [Crossref] [PubMed]
  5. G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
    [Crossref] [PubMed]
  6. G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
    [Crossref] [PubMed]
  7. Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
    [Crossref] [PubMed]
  8. Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
    [Crossref] [PubMed]
  9. Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
    [Crossref] [PubMed]
  10. Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
    [Crossref] [PubMed]
  11. C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
    [Crossref]
  12. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
    [Crossref] [PubMed]
  13. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
    [Crossref] [PubMed]
  14. Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).
    [Crossref] [PubMed]
  15. X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
    [Crossref]
  16. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
    [Crossref] [PubMed]
  17. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
    [Crossref] [PubMed]
  18. B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
    [Crossref]
  19. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [Crossref] [PubMed]
  20. A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
    [Crossref] [PubMed]
  21. X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
    [Crossref]
  22. A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos Trans A Math Phys Eng Sci 375(2087), 20150436 (2017).
    [Crossref] [PubMed]
  23. C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
    [Crossref]
  24. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref] [PubMed]
  25. H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
    [Crossref] [PubMed]
  26. K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
    [Crossref] [PubMed]
  27. W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
    [Crossref] [PubMed]
  28. R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
    [Crossref] [PubMed]
  29. Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
    [Crossref]
  30. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
    [Crossref] [PubMed]

2018 (6)

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
[Crossref] [PubMed]

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

2017 (4)

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos Trans A Math Phys Eng Sci 375(2087), 20150436 (2017).
[Crossref] [PubMed]

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

2015 (5)

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

2014 (1)

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

2013 (1)

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

2012 (2)

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

2010 (1)

A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
[Crossref] [PubMed]

2009 (2)

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

2008 (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[Crossref] [PubMed]

2007 (1)

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

2005 (1)

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[Crossref] [PubMed]

2004 (1)

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

2002 (2)

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).
[Crossref] [PubMed]

2000 (1)

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Alfano, R. R.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

Biener, G.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

Bomzon, Z.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

Brambilla, G.

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

Brown, T.

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Cai, Y.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Cai, Z.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Changjun Min, C. M.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Chen, L.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Chen Xie, C. X.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Cox, M. A.

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

Cui, J.

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

Cui, S.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Du, L.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Forbes, A.

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos Trans A Math Phys Eng Sci 375(2087), 20150436 (2017).
[Crossref] [PubMed]

Gan, J.

K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
[Crossref] [PubMed]

Gu, C.

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Gu, Z.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
[Crossref] [PubMed]

Hao, Q.

K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
[Crossref] [PubMed]

Hashimoto, N.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Hasman, E.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

Heckenberg, N. R.

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[Crossref] [PubMed]

Hibi, T.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Horanai, H.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Hu, M.

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

Huang, H.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Huang, K.

K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
[Crossref] [PubMed]

Huang, X.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Ismaeel, R.

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

Ito, A.

A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
[Crossref] [PubMed]

Jackel, S.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

Jing Bu, J. B.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Jung, Y.

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

Karimi, E.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Kleiner, V.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

Kozawa, Y.

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[Crossref] [PubMed]

Kristensen, P.

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

Kuang, C.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
[Crossref] [PubMed]

Kurihara, M.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Lavery, M. P. J.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Leach, J.

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

Lee, T.

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

Leger, J. R.

Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).
[Crossref] [PubMed]

Li, R.

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

Li, S.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
[Crossref] [PubMed]

Li, Y.

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

Lin, Z.

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Liu, B.

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

Liu, W.

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

Liu, X.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
[Crossref] [PubMed]

Lumer, Y.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

Machavariani, G.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

Marrucci, L.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Meir, A.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

Milione, G.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

Min, C.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Ming, H.

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Moshe, I.

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

Nape, I.

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

Ndagano, B.

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

Nemoto, T.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Nguyen, T. A.

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Nieminen, T. A.

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[Crossref] [PubMed]

Nolan, D. A.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

Oduro, B.

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

Pereira, S. F.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Ramachandran, S.

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

Ren, Y.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Rosales-Guzman, C.

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

Rosales-Guzmán, C.

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

Roy, S.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Rubinsztein-Dunlop, H.

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[Crossref] [PubMed]

Sato, A.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Sato, S.

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[Crossref] [PubMed]

Shi, H.

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

Song, Y.

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

Sun, B.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Tian, H.

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

Urbach, H. P.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Ushakova, K.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

van den Berg, Q.

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Wan, H.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Wang, A.

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Wang, C.

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

Wang, J.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

Wang, R.

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Weng, X.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Willner, A. E.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Xie, C.

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

Xie, G.

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

Xiujie Dou, X. D.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Xu, B.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Xu, H.

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

Xu, L.

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Xue, Y.

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
[Crossref] [PubMed]

Yan, M. F.

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

Yang, A.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Yokoyama, H.

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Yong Yang, Y. Y.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Youngworth, K.

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Yuan, X.

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

Yuan, X. C.

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Yuan, X. Y.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Yuquan Zhang, Y Y. Z.

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

Zeng, H.

K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
[Crossref] [PubMed]

Zeng, J.

K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
[Crossref] [PubMed]

Zhan, Q.

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Zhang, L.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Zhang, Z.

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

Zhao, Y.

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

Zhu, S.

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Adv. Opt. Photonics (1)

Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photonics 1(1), 1–57 (2009).
[Crossref]

Appl. Phys. Lett. (1)

C. Zhang, R. Wang, C. Min, S. Zhu, and X. C. Yuan, “Experimental approach to the microscopic phase-sensitive surface plasmon resonance biosensor,” Appl. Phys. Lett. 102(1), 011114 (2013).
[Crossref]

Chin. Opt. Lett. (1)

Y Y. Z. Yuquan Zhang, X. D. Xiujie Dou, Y. Y. Yong Yang, C. X. Chen Xie, J. B. Jing Bu, C. M. Changjun Min, and X. Y. Yuan, “Flexible generation of femtosecond cylindrical vector beams,” Chin. Opt. Lett. 15(3), 30007–30010 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Huang, B. Xu, S. Cui, H. Xu, Z. Cai, and L. Chen, “Direct generation of vortex laser by rotating induced off-axis pumping,” IEEE J. Sel. Top. Quantum Electron. 24(5), 1–6 (2018).
[Crossref]

IEEE Photonics J. (1)

X. Weng, L. Du, A. Yang, C. Min, and X. Yuan, “Generating arbitrary order cylindrical vector beams with inherent transform mechanism,” IEEE Photonics J. 9(1), 1–8 (2017).
[Crossref]

J. Lightwave Technol. (1)

B. Ndagano, I. Nape, M. A. Cox, C. Rosales-Guzman, and A. Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” J. Lightwave Technol. 36(2), 292–301 (2018).
[Crossref]

J. Opt. (1)

C. Rosales-Guzmán, B. Ndagano, and A. Forbes, “A review of complex vector light fields and their applications,” J. Opt. 20(12), 123001 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

A. Ito, Y. Kozawa, and S. Sato, “Generation of hollow scalar and vector beams using a spot-defect mirror,” J. Opt. Soc. Am. A 27(9), 2072–2077 (2010).
[Crossref] [PubMed]

Opt. Express (8)

R. Li, H. Shi, H. Tian, Y. Li, B. Liu, Y. Song, and M. Hu, “All-polarization-maintaining dual-wavelength mode-locked fiber laser based on Sagnac loop filter,” Opt. Express 26(22), 28302–28311 (2018).
[Crossref] [PubMed]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

H. Wan, J. Wang, Z. Zhang, Y. Cai, B. Sun, and L. Zhang, “High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler,” Opt. Express 25(10), 11444–11451 (2017).
[Crossref] [PubMed]

K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7(2), 77–87 (2000).
[Crossref] [PubMed]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12(15), 3377–3382 (2004).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Numerical analysis of resolution enhancement in laser scanning microscopy using a radially polarized beam,” Opt. Express 23(3), 2076–2084 (2015).
[Crossref] [PubMed]

Y. Xue, C. Kuang, S. Li, Z. Gu, and X. Liu, “Sharper fluorescent super-resolution spot generated by azimuthally polarized beam in STED microscopy,” Opt. Express 20(16), 17653–17666 (2012).
[Crossref] [PubMed]

Y. Kozawa, T. Hibi, A. Sato, H. Horanai, M. Kurihara, N. Hashimoto, H. Yokoyama, T. Nemoto, and S. Sato, “Lateral resolution enhancement of laser scanning microscopy by a higher-order radially polarized mode beam,” Opt. Express 19(17), 15947–15954 (2011).
[Crossref] [PubMed]

Opt. Lett. (12)

G. Milione, M. P. J. Lavery, H. Huang, Y. Ren, G. Xie, T. A. Nguyen, E. Karimi, L. Marrucci, D. A. Nolan, R. R. Alfano, and A. E. Willner, “4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer,” Opt. Lett. 40(9), 1980–1983 (2015).
[Crossref] [PubMed]

G. Milione, T. A. Nguyen, J. Leach, D. A. Nolan, and R. R. Alfano, “Using the nonseparability of vector beams to encode information for optical communication,” Opt. Lett. 40(21), 4887–4890 (2015).
[Crossref] [PubMed]

Y. Zhao and J. Wang, “High-base vector beam encoding/decoding for visible-light communications,” Opt. Lett. 40(21), 4843–4846 (2015).
[Crossref] [PubMed]

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Forces in optical tweezers with radially and azimuthally polarized trapping beams,” Opt. Lett. 33(2), 122–124 (2008).
[Crossref] [PubMed]

Q. Zhan and J. R. Leger, “Measurement of surface features beyond the diffraction limit with an imaging ellipsometer,” Opt. Lett. 27(10), 821–823 (2002).
[Crossref] [PubMed]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30(22), 3063–3065 (2005).
[Crossref] [PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[Crossref] [PubMed]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, “Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. 32(11), 1468–1470 (2007).
[Crossref] [PubMed]

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings,” Opt. Lett. 27(5), 285–287 (2002).
[Crossref] [PubMed]

K. Huang, J. Zeng, J. Gan, Q. Hao, and H. Zeng, “Controlled generation of ultrafast vector vortex beams from a mode-locked fiber laser,” Opt. Lett. 43(16), 3933–3936 (2018).
[Crossref] [PubMed]

W. Liu, H. Shi, J. Cui, C. Xie, Y. Song, C. Wang, and M. Hu, “Single-polarization large-mode-area fiber laser mode-locked with a nonlinear amplifying loop mirror,” Opt. Lett. 43(12), 2848–2851 (2018).
[Crossref] [PubMed]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

Philos Trans A Math Phys Eng Sci (1)

A. Forbes, “Controlling light’s helicity at the source: orbital angular momentum states from lasers,” Philos Trans A Math Phys Eng Sci 375(2087), 20150436 (2017).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

S. Roy, K. Ushakova, Q. van den Berg, S. F. Pereira, and H. P. Urbach, “Radially polarized light for detection and nanolocalization of dielectric particles on a planar substrate,” Phys. Rev. Lett. 114(10), 103903 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental setup. COL: collimator; EDF: Erbium-doped fiber; WDM: wavelength division multiplexer; FR: Faraday rotator; HWP: half-wave plate; QWP: quarter-wave plate; PBS: polarization beam splitter; VWP: vortex wave-plate; M: dielectric mirror with an intensity transmission of 2%. (b) Polarization state evolution before PBS2, NPS, nonreciprocal phase shifter; PMF, polarization maintaining fiber, point and arrow presents horizontal polarization and vertical polarization, respectively.
Fig. 2
Fig. 2 (a) Principle for the generation of CVBs. Radially, azimuthally, clockwise and anticlockwise polarized vector beams, can be switched by adjusting the orientation of the HWP. (b) The mathematical derivation for the CVB generation.
Fig. 3
Fig. 3 (a) CVBs output power of the laser as a function of the pump power. Mode-locked operation starts at pump power of 430 mW. Inset shows the Gaussian output power of the laser as a function of the pump power. (b) The long-term stability of the generated 1st order CVBs.
Fig. 4
Fig. 4 Typical output characteristics of the NALM-based mode-locked fiber laser. (a) Normalized optical spectra for output1 and output2. (b) RF spectrum over a 5 MHz span with 300 Hz resolution. Inset: RF spectrum over a 1.5 GHz span with 10 kHz resolution.
Fig. 5
Fig. 5 (a) Doughnut-shape intensity profiles for four typical cylindrical vector beams, arrows are used to indicate the polarization distributions. Figures 5(b)-5(e) Transmitted intensity distributions after a linear polarizer in different angles of 0, 45°, 90° and 135°, where the white double-ended arrows indicate the polarizer orientation.
Fig. 6
Fig. 6 Normalized optical spectra of high-order CVBs generation at output1 and output2. (a) 2nd-order CVBs generation at output1 and output2. (b) 3rd-order CVBs generation at output1 and output2.
Fig. 7
Fig. 7 Experimentally-obtained 2nd-order CVBs and 3rd-order CVBs. (a) Doughnut-shape intensity profiles for 2nd-order CVBs and 3rd-order CVBs with the HWP2 in angles of 0° and 22.5°. Figures 7(b)-7(e) Petal intensity distributions after a linear polarizer in different angles of 0, 45°, 90° and 135°.

Tables (2)

Tables Icon

Table 1 Jones Matrices of Optical Elements

Tables Icon

Table 2 Laser Output Parameters at Different Orders of CVBs

Metrics