Abstract

We propose and demonstrate a tunable broadband optical single sideband generation using self-coupled silicon micro-ring resonator. We exploit self-coupling in a ring cavity to generate tunable resonance splitting. Using the proposed device, single sideband with carrier signal is generated from a double sideband signal. Experimental verification of power fading free transmission through a 43 km signal mode optical fiber is achieved for an RF frequency range of 1-20 GHz, extendible to higher frequencies. We also achieved a spurious free dynamic range of > 99.9±1.05 dB.Hz2/3 over the demonstrated frequency range. Furthermore, error-free data transmission of 1-12 Gbps over a 43 km fiber is also demonstrated with a detailed analysis of bit error rate as well.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Impact of SOA-induced pattern effect on the filter requirements in vestigial sideband direct detected PAM4 transmission

Yan Fu, Haiyun Xin, Kuo Zhang, Jie Bai, Meihua Bi, Xin Miao, Longsheng Li, Zidong Guo, Hao He, and Weisheng Hu
Opt. Express 26(23) 30305-30312 (2018)

Optical direct-detection OFDM signal generation for radio-over-fiber link using frequency doubling scheme with carrier suppression

Chun-Ting Lin, Yu-Min Lin, Jason (Jyehong) Chen, Sheng-Peng Dai, Po Tsung Shih, Peng-Chun Peng, and Sien Chi
Opt. Express 16(9) 6056-6063 (2008)

References

  • View by:
  • |
  • |
  • |

  1. D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
    [Crossref]
  2. Y. Tian, K.-L. Lee, C. Lim, and A. Nirmalathas, “60 GHz Analog Radio-Over-Fiber Fronthaul Investigations,” J. Lightwave Technol. 35(19), 4304–4310 (2017).
    [Crossref]
  3. M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
    [Crossref]
  4. J. Zhang, O. L. Coutinho, and J. Yao, “A photonic approach to linearly chirped microwave waveform generation with an extended temporal duration,” IEEE Trans. Microw. Theory Tech. 64(6), 1947–1953 (2016).
    [Crossref]
  5. J. S. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
    [Crossref]
  6. J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
    [Crossref]
  7. J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).
  8. D. Wake, A. Nkansah, and N.J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. of Lightwave Technol. 28(16), 2456–2464 (2010).
    [Crossref]
  9. L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber,” IEEE Photon. Technol. Lett. 29(21), 1808–1811 (2017).
    [Crossref]
  10. T. Qing, S. Li, M. Xue, W. Li, N. Zhu, and S. Pan, “Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach–Zehnder modulator,” Opt. express 25(5), 4665–4671 (2017).
    [Crossref] [PubMed]
  11. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
    [Crossref]
  12. Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
    [Crossref]
  13. K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
    [Crossref]
  14. G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
    [Crossref]
  15. J. Ma, J. Yu, C. Yu, X. Xin, J. Zeng, and L. Chen, “Fiber dispersion influence on transmission of the optical millimeter-waves generated using LN-MZM intensity modulation,” J. Lightwave Technol. 25(11), 3244–3256 (2007).
    [Crossref]
  16. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [Crossref]
  17. B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
    [Crossref]
  18. D. B. Adams and C. K. Madsen, “A novel broadband photonic RF phase shifter,” J. Lightwave Technol. 26(15), 2712–2717 (2008).
    [Crossref]
  19. W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 1–8 (2014).
    [Crossref]
  20. Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26(7), 653–655 (2014).
    [Crossref]
  21. Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
    [Crossref]
  22. A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
    [Crossref]
  23. S. X. Chew, X. Yi, S. Song, L. Li, P. Bian, L. Nguyen, and R. A. Minasian, “Silicon-on-insulator dual-ring notch filter for optical sideband suppression and spectral characterization,” J. Lightwave Technol. 34(20), 4705–4714 (2016).
    [Crossref]
  24. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
    [Crossref]
  25. S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
    [Crossref]
  26. Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
    [Crossref]
  27. B. M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W. Y. Choi, “Single-chip Si optical single-sideband modulator,” Photon. Res. 6(1), 6–11 (2018).
    [Crossref]
  28. T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
    [Crossref]
  29. P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).
  30. T. Dai, A. Shen, G. Wang, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators,” Opt. Lett. 41(20), 4807–4810 (2016).
    [Crossref] [PubMed]
  31. A. Pandey and S. K. Selvaraja, “Tunable coupling-induced resonance splitting in a self-coupled silicon ring cavity with robust spectral characteristics,” Opt. Lett. 42(14), 2854–2857 (2017).
    [Crossref] [PubMed]
  32. B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 1–9 (2014).
    [Crossref]
  33. B.E. Little, J.P. Laine, and S.T. Chu, “Surface-roughness-induced contra-directional coupling in ring and disk resonators,” Opt. Lett. 22(1), 4–6 (1997).
    [Crossref] [PubMed]

2018 (2)

B. M. Yu, J.-M. Lee, C. Mai, S. Lischke, L. Zimmermann, and W. Y. Choi, “Single-chip Si optical single-sideband modulator,” Photon. Res. 6(1), 6–11 (2018).
[Crossref]

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

2017 (7)

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

A. Pandey and S. K. Selvaraja, “Tunable coupling-induced resonance splitting in a self-coupled silicon ring cavity with robust spectral characteristics,” Opt. Lett. 42(14), 2854–2857 (2017).
[Crossref] [PubMed]

Y. Tian, K.-L. Lee, C. Lim, and A. Nirmalathas, “60 GHz Analog Radio-Over-Fiber Fronthaul Investigations,” J. Lightwave Technol. 35(19), 4304–4310 (2017).
[Crossref]

J. S. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber,” IEEE Photon. Technol. Lett. 29(21), 1808–1811 (2017).
[Crossref]

T. Qing, S. Li, M. Xue, W. Li, N. Zhu, and S. Pan, “Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach–Zehnder modulator,” Opt. express 25(5), 4665–4671 (2017).
[Crossref] [PubMed]

2016 (4)

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

J. Zhang, O. L. Coutinho, and J. Yao, “A photonic approach to linearly chirped microwave waveform generation with an extended temporal duration,” IEEE Trans. Microw. Theory Tech. 64(6), 1947–1953 (2016).
[Crossref]

T. Dai, A. Shen, G. Wang, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators,” Opt. Lett. 41(20), 4807–4810 (2016).
[Crossref] [PubMed]

S. X. Chew, X. Yi, S. Song, L. Li, P. Bian, L. Nguyen, and R. A. Minasian, “Silicon-on-insulator dual-ring notch filter for optical sideband suppression and spectral characterization,” J. Lightwave Technol. 34(20), 4705–4714 (2016).
[Crossref]

2015 (1)

2014 (4)

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 1–8 (2014).
[Crossref]

Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 1–9 (2014).
[Crossref]

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

2012 (1)

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

2010 (3)

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

D. Wake, A. Nkansah, and N.J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. of Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
[Crossref]

2005 (1)

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[Crossref]

2000 (1)

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

1997 (3)

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

B.E. Little, J.P. Laine, and S.T. Chu, “Surface-roughness-induced contra-directional coupling in ring and disk resonators,” Opt. Lett. 22(1), 4–6 (1997).
[Crossref] [PubMed]

1996 (1)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[Crossref]

1993 (1)

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[Crossref]

Aalto, T.

Adams, D. B.

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

Andres, M. V.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

Bauwelinck, J.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber,” IEEE Photon. Technol. Lett. 29(21), 1808–1811 (2017).
[Crossref]

Bei, C.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

Bellido, J.C.

J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).

Bian, P.

Blais, S. R.

S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
[Crossref]

Breyne, L.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber,” IEEE Photon. Technol. Lett. 29(21), 1808–1811 (2017).
[Crossref]

Capmany, J.

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

J. S. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

Casas-Bedoya, A.

Chen, K.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[Crossref]

Chen, L.

Chen, W.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 1–9 (2014).
[Crossref]

Chew, S. X.

Choi, W. Y.

Chu, S.T.

Clark, T. R.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Coutinho, O. L.

J. Zhang, O. L. Coutinho, and J. Yao, “A photonic approach to linearly chirped microwave waveform generation with an extended temporal duration,” IEEE Trans. Microw. Theory Tech. 64(6), 1947–1953 (2016).
[Crossref]

Cruz, J. L.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

Cui, Y.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Dai, J.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Dai, T.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

T. Dai, A. Shen, G. Wang, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators,” Opt. Lett. 41(20), 4807–4810 (2016).
[Crossref] [PubMed]

Dai, Y.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Demeester, P.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber,” IEEE Photon. Technol. Lett. 29(21), 1808–1811 (2017).
[Crossref]

Dennis, M. L.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Domenech, D.

J. S. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

Eggleton, B. J.

Fandino, J. S.

J. S. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

Fernandez-Pousa, C.R.

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).

Gamage, P. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[Crossref]

Gomes, N.J.

D. Wake, A. Nkansah, and N.J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. of Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

Guo, X.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

Harjanne, M.

Hervas, J.

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).

Ilchenko, V. S.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
[Crossref]

Ji, Y.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Jiang, J.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

Jiang, X.

Kapulainen, M.

Kawanishi, T.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Laine, J.P.

Lee, J.-M.

Lee, K.-L.

Li, L.

Li, M.

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

Li, S.

Li, W.

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

T. Qing, S. Li, M. Xue, W. Li, N. Zhu, and S. Pan, “Optical vector analysis based on asymmetrical optical double-sideband modulation using a dual-drive dual-parallel Mach–Zehnder modulator,” Opt. express 25(5), 4665–4671 (2017).
[Crossref] [PubMed]

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 1–8 (2014).
[Crossref]

Li, Y.

Liang, W.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
[Crossref]

Lim, C.

Y. Tian, K.-L. Lee, C. Lim, and A. Nirmalathas, “60 GHz Analog Radio-Over-Fiber Fronthaul Investigations,” J. Lightwave Technol. 35(19), 4304–4310 (2017).
[Crossref]

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Lin, J.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Lischke, S.

Little, B.E.

Ma, J.

Madrigal, J.

J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).

Madsen, C. K.

Maestre, H.

J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).

Mai, C.

Maleki, L.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
[Crossref]

Marpaung, D.

Matsko, A. B.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
[Crossref]

Minasian, R. A.

Morrison, B.

Munoz, P.

J. S. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

Nakajima, H.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Nakajima, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Nanzer, J. A.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Nguyen, L.

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[Crossref]

Nirmalathas, A.

Y. Tian, K.-L. Lee, C. Lim, and A. Nirmalathas, “60 GHz Analog Radio-Over-Fiber Fronthaul Investigations,” J. Lightwave Technol. 35(19), 4304–4310 (2017).
[Crossref]

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Nkansah, A.

D. Wake, A. Nkansah, and N.J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. of Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

Nori, F.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 1–9 (2014).
[Crossref]

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[Crossref]

Novak, D.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Ogiso, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Ortega, B.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 1–9 (2014).
[Crossref]

Pagani, M.

Pan, S.

Pandey, A.

Pastor, D.

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

Peng, B.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 1–9 (2014).
[Crossref]

Qing, T.

Ricchiuti, A.L.

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

Rickman, A.

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

Sales, S.

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).

Savchenkov, A. A.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
[Crossref]

Seidel, D.

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
[Crossref]

Selvaraja, S. K.

Shen, A.

Shen, Y.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[Crossref]

Shinada, S.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

Song, S.

Sun, X.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Takachio, N.

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[Crossref]

Tian, Y.

Torfs, G.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber,” IEEE Photon. Technol. Lett. 29(21), 1808–1811 (2017).
[Crossref]

Torregrosa, G.

J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).

Tsuchiya, Y.

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

Wake, D.

D. Wake, A. Nkansah, and N.J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. of Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

Wang, G.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

T. Dai, A. Shen, G. Wang, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators,” Opt. Lett. 41(20), 4807–4810 (2016).
[Crossref] [PubMed]

Wang, L. X.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 1–8 (2014).
[Crossref]

Wang, P.

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

Wang, W. T.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 1–8 (2014).
[Crossref]

Wang, Y.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

T. Dai, A. Shen, G. Wang, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators,” Opt. Lett. 41(20), 4807–4810 (2016).
[Crossref] [PubMed]

Waterhouse, R. B.

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

Xin, X.

Xu, K.

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

Xue, M.

Yang, J.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

T. Dai, A. Shen, G. Wang, Y. Wang, Y. Li, X. Jiang, and J. Yang, “Bandwidth and wavelength tunable optical passband filter based on silicon multiple microring resonators,” Opt. Lett. 41(20), 4807–4810 (2016).
[Crossref] [PubMed]

Yang, L.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 1–9 (2014).
[Crossref]

Yang, T.

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

Yao, J.

J. Zhang, O. L. Coutinho, and J. Yao, “A photonic approach to linearly chirped microwave waveform generation with an extended temporal duration,” IEEE Trans. Microw. Theory Tech. 64(6), 1947–1953 (2016).
[Crossref]

S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
[Crossref]

Yi, X.

Yin, X.

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber,” IEEE Photon. Technol. Lett. 29(21), 1808–1811 (2017).
[Crossref]

Yonenaga, K.

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[Crossref]

Yu, B. M.

Yu, C.

Yu, H.

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

Yu, J.

Zeng, J.

Zhang, F.

Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

Zhang, J.

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

J. Zhang, O. L. Coutinho, and J. Yao, “A photonic approach to linearly chirped microwave waveform generation with an extended temporal duration,” IEEE Trans. Microw. Theory Tech. 64(6), 1947–1953 (2016).
[Crossref]

Zhang, X.

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[Crossref]

Zhang, Y.

M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, and D. Marpaung, “Low-error and broadband microwave frequency measurement in a silicon chip,” Optica 2(8), 751–756 (2015).
[Crossref]

Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

Zhu, N.

Zhu, N. H.

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 1–8 (2014).
[Crossref]

Zhu, N.H.

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

Zimmermann, L.

Electron. Lett. (1)

G. H. Smith, D. Novak, and Z. Ahmed, “Technique for optical SSB generation to overcome dispersion penalties in fibre-radio systems,” Electron. Lett. 33(1), 74–75 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L. Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless systems,” IEEE J. Quantum Electron. 52(1), 1–11 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron (1)

J. Hervas, A.L. Ricchiuti, W. Li, N.H. Zhu, C.R. Fernandez-Pousa, S. Sales, M. Li, and J. Capmany, “Microwave photonics for optical sensors,” IEEE J. Sel. Top. Quantum Electron.,  23(2), 327–339 (2017).
[Crossref]

IEEE Photon. J. (2)

W. Li, W. T. Wang, L. X. Wang, and N. H. Zhu, “Optical vector network analyzer based on single-sideband modulation and segmental measurement,” IEEE Photon. J. 6(2), 1–8 (2014).
[Crossref]

P. Wang, T. Yang, T. Dai, G. Wang, J. Zhang, W. Chen, and J. Yang, “Design of a Flexible-Grid 1 2 wavelength-selective switch using silicon microring resonators,” IEEE Photon. J. 9(6), 1–10 (2017).

IEEE Photon. Technol. Lett. (8)

T. Dai, G. Wang, X. Guo, C. Bei, J. Jiang, W. Chen, Y. Wang, H. Yu, and J. Yang, “Scalable bandwidth-tunable micro-ring filter based on multi-channel-spectrum combination,” IEEE Photon. Technol. Lett. 30(11), 1044–1047 (2018).
[Crossref]

Y. Zhang, F. Zhang, and S. Pan, “Optical single sideband modulation with tunable optical carrier-to-sideband ratio,” IEEE Photon. Technol. Lett. 26(7), 653–655 (2014).
[Crossref]

Y. Ogiso, Y. Tsuchiya, S. Shinada, S. Nakajima, T. Kawanishi, and H. Nakajima, “High extinction-ratio integrated Mach–Zehnder modulator with active Y-branch for optical SSB signal generation,” IEEE Photon. Technol. Lett. 22(12), 941–943 (2010).
[Crossref]

S. R. Blais and J. Yao, “Optical single sideband modulation using an ultranarrow dual-transmission-band fiber Bragg grating,” IEEE Photon. Technol. Lett. 18(21), 2230–2232 (2006).
[Crossref]

Y. Shen, X. Zhang, and K. Chen, “Optical single sideband modulation of 11-GHz RoF system using stimulated Brillouin scattering,” IEEE Photon. Technol. Lett. 17(6), 1277–1279 (2005).
[Crossref]

L. Breyne, G. Torfs, X. Yin, P. Demeester, and J. Bauwelinck, “Comparison Between Analog Radio-Over-Fiber and Sigma Delta Modulated Radio-Over-Fiber,” IEEE Photon. Technol. Lett. 29(21), 1808–1811 (2017).
[Crossref]

Y. Cui, K. Xu, J. Dai, X. Sun, Y. Dai, Y. Ji, and J. Lin, “Overcoming chromatic-dispersion-induced power fading in ROF links employing parallel modulators,” IEEE Photon. Technol. Lett. 24(14), 1173–1175 (2012).
[Crossref]

K. Yonenaga and N. Takachio, “A fiber chromatic dispersion compensation technique with an optical SSB transmission in optical homodyne detection systems,” IEEE Photon. Technol. Lett. 5(8), 949–951 (1993).
[Crossref]

IEEE Trans. Microw. Theory Tech. (5)

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wave links,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[Crossref]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[Crossref]

B. Ortega, J. L. Cruz, J. Capmany, M. V. Andres, and D. Pastor, “Variable delay line for phased-array antenna based on a chirped fiber grating,” IEEE Trans. Microw. Theory Tech. 48(8), 1352–1360 (2000).
[Crossref]

J. Zhang, O. L. Coutinho, and J. Yao, “A photonic approach to linearly chirped microwave waveform generation with an extended temporal duration,” IEEE Trans. Microw. Theory Tech. 64(6), 1947–1953 (2016).
[Crossref]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Single-sideband electro-optical modulator and tunable microwave photonic receiver,” IEEE Trans. Microw. Theory Tech. 58(11), 3167–3174 (2010).
[Crossref]

J. Lightwave Technol. (4)

J. of Lightwave Technol. (1)

D. Wake, A. Nkansah, and N.J. Gomes, “Radio over fiber link design for next generation wireless systems,” J. of Lightwave Technol. 28(16), 2456–2464 (2010).
[Crossref]

Nat. Commun. (1)

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 1–9 (2014).
[Crossref]

Nat. Photonics (2)

A. Rickman, “The commercialization of silicon photonics,” Nat. Photonics 8(8), 579–582 (2014).
[Crossref]

J. S. Fandino, P. Munoz, D. Domenech, and J. Capmany, “A monolithic integrated photonic microwave filter,” Nat. Photonics 11(2), 124–129 (2017).
[Crossref]

Opt. express (1)

Opt. Lett. (3)

Optica (1)

Photon. Res. (1)

Other (1)

J.C. Bellido, J. Hervas, J. Madrigal, H. Maestre, G. Torregrosa, C.R. Fernandez-Pousa, and S. Sales, “Fast Incoherent OFDR Interrogation of FBG Arrays Using Sparse Radio-Frequency Responses,” J. Lightwave Technol. (2018) (in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1:
Fig. 1: (a) [i] A simple RF-over-fiber transmission block diagram with optical-SSB generating filter, a[ii] and a[iii] principle of sideband suppression using waveshping filter, LSB: Lower SideBand, USB: Upper SideBand, (b) experimentally obtained typical optical spectrum of a DSB+C signal generated from a MZM, (c) demonstration of power penalty and (d) phase response associated with DSB+C and SSB+C after passing the signal through a 43 km SMF.
Fig. 2:
Fig. 2: (a) Schematic of SCMRR. The self-coupling region is constructed using a directional coupler of length Lsc and gap g2 that inturn determines the self-coupling co-efficient κ2, (b)simulated response of SCMRR for 7% κ2. The resonance split is characterized by split-ER, ER and split λ2λ1, (c) and (d) variation of the splitting at BDP and DP as a function of κ2, (e) BDP resonance split variation for full range of κ2, and (f) distribution of a transverse component of E-field in the cavity with symmetric/anti-symmetric coupling at λ1 and λ2 in the SCR.
Fig. 3:
Fig. 3: (a) Microscope image along with measured spectral response of a SCMRR when (b) κ2 = 0, (c) when response at κ2 ≠ 0, (d) resonance splitting as a function of κ2 and (e) thermo-optically tuned κ2 and splitting using micro-heater.
Fig. 4:
Fig. 4: Experimental setup for side band suppression. TLS: Tunable laser source. MZM: Mach–Zehnder modulator. EDFA: Erbium doped fiber amplifier. BPF: Band pass filter. PD: Photo detector. DCA: Digital component analyzer. BERT: Bit error rate tester. ESA: Electrical spectrum analyzer. OSA: Optical spectrum analyzer. PRBS: Patterned random bit sequence.
Fig. 5:
Fig. 5: Bandwidth measurement at DP and BDP for two different values of resonance split where the resonance split has been controlled by varying the self-coupling, (a) experimental setup for calculating S21 parameter, LCA: Lightwave Component Analyzer, (b) and (c) S21 parameter for different resonance splitting of SCMRR and hence different split-ER at DP and BDP.
Fig. 6:
Fig. 6: (a) OSSR as a function of modulation frequency. Carrier and sideband (USB and LSB) position in (b) uncompensated SCMRR and (c) – (e) compensated SCMRR. The resonance splitting is varied in compensated case whereas it remains static in uncompensated case.
Fig. 7:
Fig. 7: Received RF signal in time domain and spectral characteristics of uncompensated (a and b) and compensated SCMRR (c and d), (b) inset shows received signal at 3 GHz with ER and IL variation for uncompensated case, (e) SFDR measurement at 500 MHz and (f) variation of SFDR as function of modulation frequency.
Fig. 8:
Fig. 8: (a) BER of a 500 MHz SSB+C and DSB+C signalling after transmission over a 43 km fiber, (b) power penalty of SSB+C and DSB+C, penalty at 8.5 GHz (c) BER at 8.5 GHz for both the formats, and (d) BER at various frequencies for SSB+C modulation format.
Fig. 9:
Fig. 9: Eye diagram at different frequencies for compensated case. The Signal to noise ration is constant as the eye is wide open for 1Gbps-12.5 Gbps.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f c = c / 2 L f D λ f o r α f c   2 = π / 2
α = π D λ 2 L / c