Abstract

Just like nanometer-scale conductive paths in an electronic chip at some point end up connected to macroscopic wires of the printed circuit board, photonic integrated circuits often need light in/out coupling from/to external devices, such as light sources or detectors. In the optical domain, these connections are challenging due to the scale mismatch and alignment precision required. At the same time, there is more than 24,500 μm2 of space available on two cleaved single mode optical fiber tips. We demonstrate that this space can be used to fabricate compound photonic assembly – Photonic-chip-on-tip – directly integrated with the fibers. As an example, we present a simple setup consisting of in- and out-coupling prisms, tapered waveguide, and a whispering gallery micro-resonator, all made in a single process with two-photon laser photolithography. Temperature sensing is demonstrated as an example of application. This approach to photonic circuit design intrinsically addresses the problems of scale mismatch, fiber alignment, light coupling, and packaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
InP photonic circuits using generic integration [Invited]

K. A. Williams, E. A. J. M. Bente, D. Heiss, Y. Jiao, K. Ławniczuk, X. J. M. Leijtens, J. J. G. M. van der Tol, and M. K. Smit
Photon. Res. 3(5) B60-B68 (2015)

Extremely compact hybrid III-V/SOI lasers: design and fabrication approaches

Olesya Bondarenko, Cheng-Yi Fang, Felipe Vallini, Joseph S. T. Smalley, and Yeshaiahu Fainman
Opt. Express 23(3) 2696-2712 (2015)

Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators

Guangyao Liu, Vladimir S. Ilchenko, Tiehui Su, Yi-Chun Ling, Shaoqi Feng, Kuanping Shang, Yu Zhang, Wei Liang, Anatoliy A. Savchenkov, Andrey B. Matsko, Lute Maleki, and S. J. Ben Yoo
Optica 5(2) 219-226 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
    [Crossref]
  2. M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
    [Crossref]
  3. A. Bogucki, Ł. Zinkiewicz, W. Pacuski, P. Wasylczyk, and P. Kossacki, “Optical fiber micro-connector with nanometer positioning precision for rapid prototyping of photonic devices,” Opt. Express 26(9), 11513–11518 (2018).
    [Crossref] [PubMed]
  4. P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
    [Crossref]
  5. M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
    [Crossref]
  6. A. Žukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari, and M. Malinauskas, “Improvement of the fabrication accuracy of fiber tip microoptical components via mode field expansion,” J. Laser Micro Nanoeng. 9(1), 68–72 (2014).
    [Crossref]
  7. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
    [Crossref]
  8. T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
    [Crossref]
  9. M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22(10), 12545–12550 (2014).
    [Crossref] [PubMed]
  10. H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
    [Crossref]
  11. D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
    [Crossref]
  12. G. Maire, L. Vivien, G. Sattler, A. Kaźmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16(1), 328–333 (2008).
    [Crossref] [PubMed]
  13. S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (Optical Society of America, 2009), paper CTuC6.
    [Crossref]
  14. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
    [Crossref] [PubMed]
  15. N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
    [Crossref]
  16. T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
    [Crossref]
  17. A. R. Nelson, “Coupling optical waveguides by tapers,” Appl. Opt. 14(12), 3012–3015 (1975).
    [Crossref] [PubMed]
  18. M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3(6), e175 (2014).
    [Crossref]
  19. Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. PRJ 2, A41–A44 (2014).
  20. H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photonics Technol. Lett. 30(5), 451–454 (2018).
    [Crossref]
  21. X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
    [Crossref]
  22. H. Wei and S. Krishnaswamy, “Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors,” IEEE Photonics Technol. Lett. 28(24), 2819–2822 (2016).
    [Crossref]
  23. Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
    [Crossref]
  24. Y. Lai, K. Zhou, L. Zhang, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31(17), 2559–2561 (2006).
    [Crossref] [PubMed]
  25. K. P. Nayak, F. Le Kien, Y. Kawai, K. Hakuta, K. Nakajima, H. T. Miyazaki, and Y. Sugimoto, “Cavity formation on an optical nanofiber using focused ion beam milling technique,” Opt. Express 19(15), 14040–14050 (2011).
    [Crossref] [PubMed]
  26. S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
    [Crossref] [PubMed]

2018 (3)

A. Bogucki, Ł. Zinkiewicz, W. Pacuski, P. Wasylczyk, and P. Kossacki, “Optical fiber micro-connector with nanometer positioning precision for rapid prototyping of photonic devices,” Opt. Express 26(9), 11513–11518 (2018).
[Crossref] [PubMed]

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photonics Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

2017 (2)

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
[Crossref]

2016 (5)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

T. Gissibl, M. Schmid, and H. Giessen, “Spatial beam intensity shaping using phase masks on single-mode optical fibers fabricated by femtosecond direct laser writing,” Optica 3(4), 448–451 (2016).
[Crossref]

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

H. Wei and S. Krishnaswamy, “Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors,” IEEE Photonics Technol. Lett. 28(24), 2819–2822 (2016).
[Crossref]

S. C. Warren-Smith, R. M. André, C. Perrella, J. Dellith, and H. Bartelt, “Direct core structuring of microstructured optical fibers using focused ion beam milling,” Opt. Express 24(1), 378–387 (2016).
[Crossref] [PubMed]

2015 (1)

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

2014 (5)

A. Žukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari, and M. Malinauskas, “Improvement of the fabrication accuracy of fiber tip microoptical components via mode field expansion,” J. Laser Micro Nanoeng. 9(1), 68–72 (2014).
[Crossref]

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3(6), e175 (2014).
[Crossref]

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. PRJ 2, A41–A44 (2014).

M. Kowalczyk, J. Haberko, and P. Wasylczyk, “Microstructured gradient-index antireflective coating fabricated on a fiber tip with direct laser writing,” Opt. Express 22(10), 12545–12550 (2014).
[Crossref] [PubMed]

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

2013 (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

2012 (1)

2011 (1)

2010 (2)

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

2008 (1)

2006 (2)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Y. Lai, K. Zhou, L. Zhang, and I. Bennion, “Microchannels in conventional single-mode fibers,” Opt. Lett. 31(17), 2559–2561 (2006).
[Crossref] [PubMed]

1975 (1)

Amrithanath, A. K.

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photonics Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

André, R. M.

Ayre, M.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Baets, R.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Balthasar, G.

Bartelt, H.

Bauters, J. F.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Belazaras, K.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Bennion, I.

Bienstman, P.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Billah, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Billah, M. R.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

Blaicher, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Bo, F.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Bogaerts, W.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Bogucki, A.

Bowers, J. E.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Bückmann, T.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3(6), e175 (2014).
[Crossref]

Caer, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Cassan, E.

Chen, Y.-K.

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Chu, T.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. PRJ 2, A41–A44 (2014).

Cui, H.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Dangel, R.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Davenport, M. L.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Dellith, J.

Dietrich, P. I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Dong, P.

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Dottermusch, S.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

Doylend, J. K.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Duan, G.-H.

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Farsari, M.

A. Žukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari, and M. Malinauskas, “Improvement of the fabrication accuracy of fiber tip microoptical components via mode field expansion,” J. Laser Micro Nanoeng. 9(1), 68–72 (2014).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Feng, S.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Feng, X.-B.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Freude, W.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

Fu, Y.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. PRJ 2, A41–A44 (2014).

Gadonas, R.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gao, X.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Giannone, D.

Giessen, H.

Gilbergs, H.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gissibl, T.

Goedecke, M. L.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

Gong, Q.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Griol, A.

Gruhler, N.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3(6), e175 (2014).
[Crossref]

Gylfason, K. B.

Haberko, J.

Hakuta, K.

Han, P.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Hao, Z.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

He, J.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Heck, M. J. R.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Hill, D.

Hillerkuss, D.

Hofmann, A.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

Hoose, T.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

Hu, C.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Jain, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Jiang, X.-F.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Jordan, M.

Juodkazis, S.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Kaskelyte, D.

A. Žukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari, and M. Malinauskas, “Improvement of the fabrication accuracy of fiber tip microoptical components via mode field expansion,” J. Laser Micro Nanoeng. 9(1), 68–72 (2014).
[Crossref]

Kawai, Y.

Kazmierczak, A.

Koos, C.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

Kossacki, P.

Kowalczyk, M.

Krishnaswamy, S.

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photonics Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

H. Wei and S. Krishnaswamy, “Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors,” IEEE Photonics Technol. Lett. 28(24), 2819–2822 (2016).
[Crossref]

Kurczveil, G.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Lai, Y.

Le Kien, F.

Leuthold, J.

Li, B.-B.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Li, J.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Li, Y.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Li, Z.-Y.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Lindenmann, N.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20(16), 17667–17677 (2012).
[Crossref] [PubMed]

Liu, Z.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Liu, Z.-P.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Maire, G.

Malinauskas, M.

A. Žukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari, and M. Malinauskas, “Improvement of the fabrication accuracy of fiber tip microoptical components via mode field expansion,” J. Laser Micro Nanoeng. 9(1), 68–72 (2014).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Marris-Morini, D.

Melissinaki, V.

A. Žukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari, and M. Malinauskas, “Improvement of the fabrication accuracy of fiber tip microoptical components via mode field expansion,” J. Laser Micro Nanoeng. 9(1), 68–72 (2014).
[Crossref]

Miyazaki, H. T.

Moehrle, M.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Momot, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Nakajima, K.

Nayak, K. P.

Neilson, D. T.

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Nelson, A. R.

Offrein, B.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Onanuga, T. P.

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

Pacuski, W.

Paipulas, D.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Pernice, W.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3(6), e175 (2014).
[Crossref]

Perrella, C.

Piskarskas, A.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Purlys, V.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Qin, Y.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Reuter, I.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Sakellari, I.

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Sanchez, B.

Sattler, G.

Schmid, M.

Schmogrow, R.

Schumann, M.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3(6), e175 (2014).
[Crossref]

Sohlström, H.

Srinivasan, S.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Sugimoto, Y.

Sun, W.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Sykora, J.

Taillaert, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Tang, W.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. PRJ 2, A41–A44 (2014).

Tang, Y.

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

Thiele, S.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Troppenz, U.

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

Van Laere, F.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Van Thourhout, D.

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Vivien, L.

Wagner, S.

Wang, H.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Wang, J.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Wang, X.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Warren-Smith, S. C.

Wasylczyk, P.

Wegener, M.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3(6), e175 (2014).
[Crossref]

Wei, H.

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photonics Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

H. Wei and S. Krishnaswamy, “Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors,” IEEE Photonics Technol. Lett. 28(24), 2819–2822 (2016).
[Crossref]

Xiao, Y.-F.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Xie, Z.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Xu, J.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Yang, H.

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

Ye, J.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Ye, T.

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. PRJ 2, A41–A44 (2014).

Zhang, G.

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

Zhang, L.

Zhang, M.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Zhang, Y.

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Zhou, K.

Zinkiewicz, L.

Žukauskas, A.

A. Žukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari, and M. Malinauskas, “Improvement of the fabrication accuracy of fiber tip microoptical components via mode field expansion,” J. Laser Micro Nanoeng. 9(1), 68–72 (2014).
[Crossref]

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

Z.-P. Liu, Y. Li, Y.-F. Xiao, B.-B. Li, X.-F. Jiang, Y. Qin, X.-B. Feng, H. Yang, and Q. Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R. Heck, J. F. Bauters, M. L. Davenport, J. K. Doylend, S. Jain, G. Kurczveil, S. Srinivasan, Y. Tang, and J. E. Bowers, “Hybrid silicon photonic integrated circuit technology,” IEEE J. Sel. Top. Quantum Electron. 19(4), 6100117 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. Wei, A. K. Amrithanath, and S. Krishnaswamy, “Three-dimensional printed polymer waveguides for whispering gallery mode sensors,” IEEE Photonics Technol. Lett. 30(5), 451–454 (2018).
[Crossref]

H. Wei and S. Krishnaswamy, “Direct Laser Writing Polymer Micro-Resonators for Refractive Index Sensors,” IEEE Photonics Technol. Lett. 28(24), 2819–2822 (2016).
[Crossref]

J. Appl. Phys. (1)

X. Gao, J. Li, Z. Hao, F. Bo, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang, and J. Xu, “Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate,” J. Appl. Phys. 121(6), 064502 (2017).
[Crossref]

J. Laser Micro Nanoeng. (1)

A. Žukauskas, V. Melissinaki, D. Kaskelyte, M. Farsari, and M. Malinauskas, “Improvement of the fabrication accuracy of fiber tip microoptical components via mode field expansion,” J. Laser Micro Nanoeng. 9(1), 68–72 (2014).
[Crossref]

J. Lit. Technol. (1)

N. Lindenmann, S. Dottermusch, M. L. Goedecke, T. Hoose, M. R. Billah, T. P. Onanuga, A. Hofmann, W. Freude, and C. Koos, “Connecting silicon photonic circuits to multicore fibers by photonic wire bonding,” J. Lit. Technol. 33(4), 755–760 (2015).
[Crossref]

J. Opt. (1)

M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

D. Taillaert, F. Van Laere, M. Ayre, W. Bogaerts, D. Van Thourhout, P. Bienstman, and R. Baets, “Grating couplers for coupling between optical fibers and nanophotonic waveguides,” Jpn. J. Appl. Phys. 45(8A), 6071–6077 (2006).
[Crossref]

Light Sci. Appl. (1)

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D–3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3(6), e175 (2014).
[Crossref]

Nanophotonics (1)

P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, “Silicon photonic devices and integrated circuits,” Nanophotonics 3(4-5), 215–228 (2014).
[Crossref]

Nat. Photonics (2)

P. I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, and C. Koos, “In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration,” Nat. Photonics 12(4), 241–247 (2018).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

H. Wang, Z. Xie, M. Zhang, H. Cui, J. He, S. Feng, X. Wang, W. Sun, J. Ye, P. Han, and Y. Zhang, “A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optica (1)

Photon. Res. PRJ (1)

Y. Fu, T. Ye, W. Tang, and T. Chu, “Efficient adiabatic silicon-on-insulator waveguide taper,” Photon. Res. PRJ 2, A41–A44 (2014).

Other (1)

S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (Optical Society of America, 2009), paper CTuC6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Computer-aided design (CAD) visualization (a,b) and realization (c,d) of a simple Photonic-Chip-on-Tip. In- and out- coupling prisms (orange), tapered waveguide (red) and WGM micro-resonator (purple) have been fabricated on a single mode fiber bundle (blue) using 3D two-photon laser photolithography. The fiber diameter is 125 µm and the ring resonator diameter is 40 µm. Panels (c) and (d) are scanning electron microscope (SEM) photographs with computer-added colors.
Fig. 2
Fig. 2 Coupling prisms and waveguide design. The waveguide (red) has a 3 × 3 µm2 square cross-section with the 30 µm long in-coupling taper and a 2 × 1 µm2 micro-ring resonator coupling taper (a). Calculated coupling efficiency as a function of the in-coupling taper length L (b). At around 30 µm the coupling saturates and this length has been chosen for the PCT. The non-monotonic behavior arises from the interplay between diffraction and adiabatic transition along the taper. Calculated lowest mode profiles in the waveguide: in the main section (c) and in the coupling taper (d). (e) Calculated modulus of the electric field for a light pulse (from top left down): propagating in the in-coupling fiber, reflecting from the prism, propagating in the taper and entering the waveguide.
Fig. 3
Fig. 3 Measured transmission between the input and output fibers as a function of the laser wavelength (a). Lorentz profile (red dashed line) was fitted to one of the minima. Measured resonance position shift as a function of temperature (b).
Fig. 4
Fig. 4 SEM photo of a cleaved end of a multi-core fiber developed as a universal platform for compound photonic/micro-fluidic Lab-on-Tip devices (with added colors). There are six single-mode optical cores (green), six multi-mode optical cores (blue) and six hollow channels (purple) within the 250 µm diameter fiber (a). Scale bar is 50 µm long. A Lab-on-Tip designed for the fiber in (a) with two fluid input channels, mixer and WGM resonator for chemical sensing (b).