Abstract

In this work, a new approach based on the use of a one-dimensional photonic crystal (1DPC) made of dielectric layers with alternating refractive indexes deposited inside a photonic crystal fiber (PCF) is proposed as a suitable platform for the excitation of Bloch surface waves (BSWs). The presence of an additional dielectric layer on the 1DPC modifies the local effective refractive index, enabling a direct manipulation of the BSWs. In particular, we investigate BSW resonance conditions in a 1DPC of alternating layers of TiO2 and SiO2 deposited inside a three-hole suspended-core PCF to design an ultra-wide range refractive index sensor in the near infrared. The obtained simulation results indicate that BSW sensors based on PCF could be an alternative to surface plasmon resonance (SPR) sensors, with a ultrahigh sensing figure-of-merit, which might facilitate applications in high-resolution refractive index sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of Bloch-surface-wave assisted diffraction-based biosensors

Marco Liscidini and J. E. Sipe
J. Opt. Soc. Am. B 26(2) 279-289 (2009)

Refractive index sensor based on graphene-coated photonic surface-wave resonance

Qianru Yang, Linling Qin, Guoyang Cao, Cheng Zhang, and Xiaofeng Li
Opt. Lett. 43(4) 639-642 (2018)

A full ellipsometric approach to optical sensing with Bloch surface waves on photonic crystals

Alberto Sinibaldi, Riccardo Rizzo, Giovanni Figliozzi, Emiliano Descrovi, Norbert Danz, Peter Munzert, Aleksei Anopchenko, and Francesco Michelotti
Opt. Express 21(20) 23331-23344 (2013)

References

  • View by:
  • |
  • |
  • |

  1. W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
    [Crossref]
  2. A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
    [Crossref]
  3. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
    [Crossref]
  4. E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
    [Crossref] [PubMed]
  5. M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016).
    [Crossref] [PubMed]
  6. M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B 32, 431–438 (2015).
    [Crossref]
  7. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014).
    [Crossref] [PubMed]
  8. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [Crossref]
  9. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
    [Crossref]
  10. M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011).
    [Crossref]
  11. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
    [Crossref] [PubMed]
  12. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
    [Crossref]
  13. M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
    [Crossref]
  14. F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
    [Crossref] [PubMed]
  15. S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
    [Crossref]
  16. M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007).
    [Crossref]
  17. T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017).
    [Crossref] [PubMed]
  18. M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016).
    [Crossref] [PubMed]
  19. X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24, 16016–16026 (2016).
    [Crossref] [PubMed]
  20. P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
    [Crossref] [PubMed]
  21. V. H. Aristizabal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006).
    [Crossref] [PubMed]
  22. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001).
    [Crossref] [PubMed]
  23. P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014).
    [Crossref] [PubMed]
  24. E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016).
    [Crossref]
  25. E. Reyes-Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Appl. Opt. 56, 156–162 (2017).
    [Crossref] [PubMed]
  26. D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017).
    [Crossref]
  27. S. Torres-Peiró, A. Díez, J. L. Cruz, and M. V. Andrés, “Fundamental-mode cutoff in liquid-filled Y-shaped microstructured fibers with Ge-doped core,” Opt. Lett. 33, 2578–2580 (2008).
    [Crossref] [PubMed]
  28. G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
    [Crossref]
  29. N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018).
    [Crossref]
  30. R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
    [Crossref]
  31. B. E. A. Saleh and M. C. Teich, Fundamentals of photonics(Wiley, 2007).
  32. V. Brückner, Elements of optical networking (Vieweg+Teubner Verlag, 2011).
    [Crossref]
  33. A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010).
    [Crossref]
  34. A. W. Snyder and J. D. Love, Optical waveguide theory(SpringerUS, 1983).
  35. G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
    [Crossref]
  36. G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014).
    [Crossref] [PubMed]
  37. B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013).
    [Crossref]
  38. Y.-X. Jiang, B.-H. Liu, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Long-range surface plasmon resonance sensor based on dielectric/silver coated hollow fiber with enhanced figure of merit,” Opt. Lett. 40, 744–747 (2015).
    [Crossref] [PubMed]

2018 (1)

N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018).
[Crossref]

2017 (3)

2016 (5)

M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016).
[Crossref] [PubMed]

X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24, 16016–16026 (2016).
[Crossref] [PubMed]

M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016).
[Crossref] [PubMed]

E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016).
[Crossref]

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
[Crossref]

2015 (3)

2014 (5)

Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014).
[Crossref] [PubMed]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014).
[Crossref] [PubMed]

P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014).
[Crossref] [PubMed]

2013 (2)

B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013).
[Crossref]

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

2012 (2)

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

2011 (2)

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011).
[Crossref]

2010 (3)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010).
[Crossref]

2008 (2)

2007 (1)

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007).
[Crossref]

2006 (1)

2005 (1)

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

2003 (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

2001 (1)

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

1977 (1)

Alvaro, M.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

Andrés, M. V.

Aristizabal, V. H.

Badding, J. V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Bajoni, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011).
[Crossref]

Ballarini, M.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

Bernal, M.-P.

Boyer, P.

Brückner, V.

V. Brückner, Elements of optical networking (Vieweg+Teubner Verlag, 2011).
[Crossref]

Brunazzo, D.

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

Bussolino, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

Castaldi, G.

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

Corbett, B.

M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016).
[Crossref] [PubMed]

Cordeiro, C. M. B.

Cruz, J. L.

Cusano, A.

Danz, N.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Day, R. M.

D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017).
[Crossref]

Descrovi, E.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
[Crossref] [PubMed]

Díez, A.

Digregorio, G.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

Dominici, L.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
[Crossref] [PubMed]

Dorofeenko, A. V.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010).
[Crossref]

Du, G.

Eggleton, B. J.

Frascella, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

Galdi, V.

Gerace, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011).
[Crossref]

Giorgis, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
[Crossref] [PubMed]

Gómez-Cardona, N. D.

N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018).
[Crossref]

Gopalan, V.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Grosjean, T.

Hale, A.

Han, S.

He, R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Healy, N.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Herzig, H. P.

Herzig, H.-P.

Ho, H. P.

D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017).
[Crossref]

Hong, C.-S.

Hu, D. J. J.

D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017).
[Crossref]

Jiang, Y.-X.

Jiao, Y.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

Kavokin, A. V.

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Kerbage, C.

Khan, M. U.

M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016).
[Crossref] [PubMed]

Kim, M.-S.

Kong, W.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Kovalevich, T.

Krishnamurthi, M.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Li, S.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Li, Y.

Liang, H.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Liao, C.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Liscidini, M.

M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B 32, 431–438 (2015).
[Crossref]

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011).
[Crossref]

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007).
[Crossref]

Lisyansky, A. A.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010).
[Crossref]

Liu, B.-H.

Liu, J.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Liu, S.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Lonai, J. D.

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014).
[Crossref] [PubMed]

Love, J. D.

A. W. Snyder and J. D. Love, Optical waveguide theory(SpringerUS, 1983).

Malpuech, G.

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Martin, O. J. F.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Menotti, M.

Mernaugh, R. L.

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014).
[Crossref] [PubMed]

Merzlikin, A. M.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010).
[Crossref]

Michelotti, F.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
[Crossref] [PubMed]

Moi, V.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

Munzert, P.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Musi, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

Nakagawa, W.

Napione, L.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

Paeder, V.

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

Pang, Z.

Peacock, A. C.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Quaglio, M.

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H. P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

Reyes-Vera, E.

N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018).
[Crossref]

E. Reyes-Vera, C. M. B. Cordeiro, and P. Torres, “Highly sensitive temperature sensor using a Sagnac loop interferometer based on a side-hole photonic crystal fiber filled with metal,” Appl. Opt. 56, 156–162 (2017).
[Crossref] [PubMed]

E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016).
[Crossref]

P. Torres, E. Reyes-Vera, A. Díez, and M. V. Andrés, “Two-core transversally chirped microstructured optical fiber refractive index sensor,” Opt. Lett. 39, 1593–1596 (2014).
[Crossref] [PubMed]

Ricciardi, S.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

Rivolo, P.

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

Rodriguez, G. A.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014).
[Crossref] [PubMed]

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Ryckman, J. D.

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics(Wiley, 2007).

Salut, R.

Sanvitto, D.

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011).
[Crossref]

Sazio, P. J. A.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Scaravilli, M.

Schulz, U.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Sfez, T.

Shelykh, I. A.

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Shi, Y.-W.

Sinibaldi, A.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Sipe, J. E.

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007).
[Crossref]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical waveguide theory(SpringerUS, 1983).

Song, S.

Sonntag, F.

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Sparks, J. R.

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Suarez, M.

Sun, Y.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
[Crossref]

Tan, X.-J.

Tang, X.-L.

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics(Wiley, 2007).

Torres, P.

Torres-Peiró, S.

Vélez, F. J.

Vinogradov, A. P.

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010).
[Crossref]

Wan, Y.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Wang, C.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Wang, G.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Wang, Y.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Weiss, S. M.

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014).
[Crossref] [PubMed]

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

Westbrook, P. S.

Windeler, R. S.

Xu, X.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Yang, T.

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[Crossref]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
[Crossref]

Yin, G.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Yu, L.

Zhao, J.

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

Zheng, Z.

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
[Crossref]

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

Zhu, X.-S.

Adv. Opt. Photonics (1)

D. J. J. Hu, H. P. Ho, and R. M. Day, “Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications,” Adv. Opt. Photonics 9, 257–314 (2017).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett (3)

M. Liscidini, D. Gerace, D. Sanvitto, and D. Bajoni, “Guided Bloch surface wave polaritons,” Appl. Phys. Lett.  98, 121118 (2011).
[Crossref]

M. Ballarini, F. Frascella, F. Michelotti, G. Digregorio, P. Rivolo, V. Paeder, V. Musi, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled emission of organic dyes grafted on a one-dimensional photonic crystal,” Appl. Phys. Lett.  99, 043302 (2011).
[Crossref]

M. Liscidini and J. E. Sipe, “Enhancement of diffraction for biosensing applications via Bloch surface waves,” Appl. Phys. Lett.  91, 253125 (2007).
[Crossref]

Appl. Phys. Lett. (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[Crossref]

Biosens. Bioelectron. (1)

G. A. Rodriguez, J. D. Ryckman, Y. Jiao, and S. M. Weiss, “A size selective porous silicon grating-coupled bloch surface and sub-surface wave biosensor,” Biosens. Bioelectron. 53, 486–493 (2014).
[Crossref]

IEEE Sens. J. (3)

S. Li, J. Liu, Z. Zheng, Y. Wan, W. Kong, and Y. Sun, “Highly sensitive, Bloch surface wave D-type fiber sensor,” IEEE Sens. J. 16, 1200–1204 (2016).
[Crossref]

G. Wang, C. Wang, S. Liu, J. Zhao, C. Liao, X. Xu, H. Liang, G. Yin, and Y. Wang, “Side-opened suspended core fiber-based surface plasmon resonance sensor,” IEEE Sens. J. 15, 4086–4092 (2015).
[Crossref]

N. D. Gómez-Cardona, E. Reyes-Vera, and P. Torres, “Multi-plasmon resonances in microstructured optical fibers: Extending the detection range of SPR sensors and a multi-analyte sensing technique,” IEEE Sens. J. 18, 7492–7498 (2018).
[Crossref]

J. Opt (1)

E. Reyes-Vera and P. Torres, “Influence of filler metal on birefringent optical properties of photonic crystal fiber with integrated electrodes,” J. Opt.  18, 85804 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Nano Lett. (1)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H. P. Herzig, O. J. F. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

Nanoscale Res. Lett (1)

G. A. Rodriguez, J. D. Lonai, R. L. Mernaugh, and S. M. Weiss, “Porous silicon bloch surface and sub-surface wave structure for simultaneous detection of small and large molecules,” Nanoscale Res. Lett.  9, 383 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

R. He, P. J. A. Sazio, A. C. Peacock, N. Healy, J. R. Sparks, M. Krishnamurthi, V. Gopalan, and J. V. Badding, “Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres,” Nat. Photonics 6, 174–179 (2012).
[Crossref]

Opt. Express (8)

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698–713 (2001).
[Crossref] [PubMed]

V. H. Aristizabal, F. J. Vélez, and P. Torres, “Analysis of photonic crystal fibers: Scalar solution and polarization correction,” Opt. Express 14, 11848–11854 (2006).
[Crossref] [PubMed]

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, and H. P. Herzig, “Near-field imaging of Bloch surface waves on silicon nitride one-dimensional photonic crystals,” Opt. Express 16, 5453–5464 (2008).
[Crossref] [PubMed]

X.-J. Tan and X.-S. Zhu, “Optical fiber sensor based on Bloch surface wave in photonic crystals,” Opt. Express 24, 16016–16026 (2016).
[Crossref] [PubMed]

M. Scaravilli, G. Castaldi, A. Cusano, and V. Galdi, “Grating-coupling-based excitation of Bloch surface waves for lab-on-fiber optrodes,” Opt. Express 24, 27771–27784 (2016).
[Crossref] [PubMed]

B.-H. Liu, Y.-X. Jiang, X.-S. Zhu, X.-L. Tang, and Y.-W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21, 32349–32357 (2013).
[Crossref]

Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403 (2014).
[Crossref] [PubMed]

T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M.-S. Kim, H.-P. Herzig, M.-P. Bernal, and T. Grosjean, “Polarization controlled directional propagation of Bloch surface wave,” Opt. Express 25, 5710–5715 (2017).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[Crossref]

Phys.-Usp. (1)

A. P. Vinogradov, A. V. Dorofeenko, A. M. Merzlikin, and A. A. Lisyansky, “Surface states in photonic crystals,” Phys.-Usp. 53, 243–256 (2010).
[Crossref]

Sci. Technol. Adv. Mater. (1)

M. U. Khan and B. Corbett, “Bloch surface wave structures for high sensitivity detection and compact waveguiding,” Sci. Technol. Adv. Mater. 17, 398–409 (2016).
[Crossref] [PubMed]

Science (1)

P. Russell, “Photonic crystal fibers,” Science 299, 358–362 (2003).
[Crossref] [PubMed]

Sens. Actuators, B (2)

W. Kong, Z. Zheng, Y. Wan, S. Li, and J. Liu, “High-sensitivity sensing based on intensity-interrogated Bloch surface wave sensors,” Sens. Actuators, B 193, 467–471 (2014).
[Crossref]

A. Sinibaldi, N. Danz, E. Descrovi, P. Munzert, U. Schulz, F. Sonntag, L. Dominici, and F. Michelotti, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuators, B 174, 292–298 (2012).
[Crossref]

Sensors (1)

F. Frascella, S. Ricciardi, P. Rivolo, V. Moi, F. Giorgis, E. Descrovi, F. Michelotti, P. Munzert, N. Danz, L. Napione, M. Alvaro, and F. Bussolino, “A fluorescent one-dimensional photonic crystal for label-free biosensing based on bloch surface waves,” Sensors 13, 2011–2022 (2013).
[Crossref] [PubMed]

Other (3)

B. E. A. Saleh and M. C. Teich, Fundamentals of photonics(Wiley, 2007).

V. Brückner, Elements of optical networking (Vieweg+Teubner Verlag, 2011).
[Crossref]

A. W. Snyder and J. D. Love, Optical waveguide theory(SpringerUS, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Designed 1DPC structure. Band diagrams for (b) TM polarization and (c) TE polarization. In the band diagrams: white regions are the forbidden bands, the solid and discontinuous black lines are, respectively, the light in the analyte and the substrate, the green and red lines are the calculated TM- and TE-polarized BSW dispersion curves, respectively, and orange lines highlight the spectral region of interest (Δλ = 1500 – 1600 nm). For the analysis, the analyte refractive index was assumed as nA = 1.33.
Fig. 2
Fig. 2 Schematic of the Ge-doped suspended-core silica PCF with a TiO2/SiO2 4-period multilayer structure designed to sustain Bloch surface wave modes.
Fig. 3
Fig. 3 Electric field distribution in the PCF with 1DPC: (a) core-guided mode, (b) TM-polarized BSW mode and (c) TE-polarized BSW mode. The insets present the electric-field of the Bloch waves along the 1DPC in the fiber central region. In general, for this structure, the TM-polarized BSWs have an evanescent tail that significantly penetrates the homogeneous external medium and therefore are of greater interest for sensing applications.
Fig. 4
Fig. 4 Dispersion curves (dashed lines) of the modes and transmission spectra (blue solid lines) of the designed PCF with the 1DPC in CH1, assuming an analyte medium of nA = 1.33 and a 1DPC length of 1.0 mm and 0.7 mm for the TM- and TE-polarized BSWs, respectively: (a) y-polarized core-guided mode excites the TM-polarized BSW modes, (b) x-polarized core-guided mode excites the TE-polarized BSW. The insets correspond to the electric-field distributions of the excited TM- and TE-polarized BSW modes in the spectral ranges analyzed.
Fig. 5
Fig. 5 Resonance wavelength of the BSW1 mode as a function of the top layer thickness with nA = 1.33. The blue and red curves represent the TM and TE modes, respectively.
Fig. 6
Fig. 6 Transmission spectra as a function of the analyte refractive index for a TM-polarized BSW sensing structure based on three-hole suspended-core PCF with a 1DPC length of 1.5 mm.
Fig. 7
Fig. 7 Operation of the TM-polarized BSW sensor based on three-hole suspended-core PCF with a 1DPC length of 1.5 mm in an ultra-wide refractive index range. (a) Resonance wavelength shift and (b) sensitivity.
Fig. 8
Fig. 8 Transmission spectra of the sensing structure for five different sensor lengths.

Tables (1)

Tables Icon

Table 1 FWHM and FOM analysis of the proposed sensing structure for nA = 1.33. The sensitivity value is Sn = 1693 nm/RIU.