Abstract

In this contribution, we present a new method, based on a tunable excitation laser source and a robust common path interferometer in the detection channel. Its purpose is to image spectral excitation and emission information on a monochrome complementary metal oxide semiconductor (CMOS) camera. This allows us to spatially obtain both excitation and emission spectra of the whole imaged area and create derived images such as red-green-blue (RGB), excitation and emission maxima, and Stokes shift images. Our presented method is a further development of hyperspectral imaging that usually is limited to recording spatially resolved emission spectra. Taking advantage of the full camera chip should speed up the acquisition versus line scan or pointwise hyperspectral imaging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Photopolymerizable nanocomposites for holographic recording and sensor application

Elsa Leite, Izabela Naydenova, Svetlana Mintova, Louis Leclercq, and Vincent Toal
Appl. Opt. 49(19) 3652-3660 (2010)

Designing microarray phantoms for hyperspectral imaging validation

Matthew L. Clarke, Ji Youn Lee, Daniel V. Samarov, David W. Allen, Maritoni Litorja, Ralph Nossal, and Jeeseong Hwang
Biomed. Opt. Express 3(6) 1291-1299 (2012)

Fluorescence microspectroscopy as a tool to study mechanism of nanoparticles delivery into living cancer cells

Zoran Arsov, Iztok Urbančič, Maja Garvas, Daniele Biglino, Ajasja Ljubetič, Tilen Koklič, and Janez Štrancar
Biomed. Opt. Express 2(8) 2083-2095 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, 2006).
  2. B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications (John Wiley & Sons, 2012).
  3. R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018).
    [Crossref] [PubMed]
  4. Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
    [Crossref] [PubMed]
  5. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
    [Crossref] [PubMed]
  6. Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
    [Crossref]
  7. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
    [Crossref] [PubMed]
  8. R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018).
    [Crossref] [PubMed]
  9. L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
    [Crossref] [PubMed]
  10. R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
    [Crossref] [PubMed]
  11. H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
    [Crossref] [PubMed]
  12. S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
    [Crossref] [PubMed]
  13. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
    [Crossref] [PubMed]
  14. M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996).
    [Crossref] [PubMed]
  15. W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
    [Crossref] [PubMed]
  16. I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
    [Crossref] [PubMed]
  17. G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
    [Crossref] [PubMed]
  18. Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
    [Crossref] [PubMed]
  19. J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
    [Crossref]
  20. G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).
    [Crossref] [PubMed]
  21. D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
    [Crossref]
  22. M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016).
    [Crossref] [PubMed]
  23. Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
    [Crossref] [PubMed]
  24. D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018).
    [Crossref] [PubMed]
  25. L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016).
    [Crossref] [PubMed]
  26. P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
    [Crossref] [PubMed]
  27. A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
    [Crossref] [PubMed]
  28. A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
    [Crossref] [PubMed]
  29. E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).
  30. Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000).
    [Crossref] [PubMed]
  31. S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
    [Crossref]
  32. D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
    [Crossref] [PubMed]
  33. F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
    [Crossref]
  34. J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1-6), 215–227 (1987).
    [Crossref]
  35. N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
    [Crossref]
  36. P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985).
    [PubMed]
  37. A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008).
    [Crossref]
  38. A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996).
    [Crossref]
  39. H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014).
    [Crossref] [PubMed]
  40. A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009).
    [Crossref]
  41. S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018).
    [Crossref] [PubMed]
  42. Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
    [Crossref] [PubMed]

2018 (6)

R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018).
[Crossref] [PubMed]

R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018).
[Crossref] [PubMed]

D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018).
[Crossref] [PubMed]

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018).
[Crossref] [PubMed]

2017 (5)

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
[Crossref] [PubMed]

2016 (2)

M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016).
[Crossref] [PubMed]

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016).
[Crossref] [PubMed]

2015 (2)

G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).
[Crossref] [PubMed]

Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
[Crossref] [PubMed]

2014 (3)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014).
[Crossref] [PubMed]

2013 (2)

Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
[Crossref] [PubMed]

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

2012 (3)

J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

2011 (1)

N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
[Crossref]

2010 (1)

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

2009 (1)

A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009).
[Crossref]

2008 (1)

A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008).
[Crossref]

2006 (1)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[Crossref] [PubMed]

2003 (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

2001 (1)

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

2000 (2)

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[Crossref] [PubMed]

Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000).
[Crossref] [PubMed]

1999 (1)

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

1996 (4)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996).
[Crossref] [PubMed]

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
[Crossref]

A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996).
[Crossref]

1987 (1)

J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1-6), 215–227 (1987).
[Crossref]

1985 (1)

P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985).
[PubMed]

Alvarez, D. F.

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

Amenabar, I.

I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
[Crossref] [PubMed]

Arppe-Tabbara, R.

R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018).
[Crossref] [PubMed]

Ballard, S. G.

M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996).
[Crossref] [PubMed]

Ballottari, M.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

Bar-Am, I.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Beauvais, J.

D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

Bojarski, P.

A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008).
[Crossref]

Bouma, G. J.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Brault, J. W.

J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1-6), 215–227 (1987).
[Crossref]

Brenner, S. A.

G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).
[Crossref] [PubMed]

Brida, D.

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

Buckwald, R. A.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
[Crossref]

Bürmann, F.

H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014).
[Crossref] [PubMed]

Cabib, D.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
[Crossref]

Cai, Y.-Y.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Carro-Temboury, M. R.

R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018).
[Crossref] [PubMed]

Cassan, E.

J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Cerullo, G.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).

Chang, W.-S.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Chen, L.

Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
[Crossref] [PubMed]

Cluzel, B.

J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Collins, S. S. E.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

D’Andrea, C.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

De Fornel, F.

J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

de Oliveira, N.

N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
[Crossref]

De Silvestri, S.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

Deibel, C.

M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016).
[Crossref] [PubMed]

Dellinger, J.

J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

du Manoir, S.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Dubowski, J. J.

D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

Dutta, A. K.

A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996).
[Crossref]

Elcoroaristizabal, S.

D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018).
[Crossref] [PubMed]

Farina, A.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

Faulkner, S.

Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
[Crossref] [PubMed]

Favreau, P. F.

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

Fei, B.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Ferguson-Smith, M. A.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Ferrari, A. C.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

Fowler, S. D.

P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985).
[PubMed]

Gaida, J. H.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

Gao, L.

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[Crossref] [PubMed]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
[Crossref]

Garner, H. R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Gellings, E.

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016).
[Crossref] [PubMed]

Goikoetxea, M.

I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
[Crossref] [PubMed]

Greenspan, P.

P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985).
[PubMed]

Groner, W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Guo, F.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Hagen, N.

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Hamoen, L. W.

H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014).
[Crossref] [PubMed]

Harris, A. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Hattori, S.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[Crossref] [PubMed]

Hauer, J.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).

He, X.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Heaster, T.

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

Hempel, C.

R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018).
[Crossref] [PubMed]

Hernandez, C.

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

Hillenbrand, R.

I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
[Crossref] [PubMed]

Hirose, S.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[Crossref] [PubMed]

Hoener, B. S.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Hooley, E. N.

Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
[Crossref] [PubMed]

Ince, C.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Intes, X.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

Jee, A.-Y.

A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009).
[Crossref]

Jimenez, A.

D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

Joyeux, D.

N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
[Crossref]

Just Sørensen, T.

Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
[Crossref] [PubMed]

Kamada, K.

A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996).
[Crossref]

Kawski, A.

A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008).
[Crossref]

Kenny, S. J.

R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018).
[Crossref] [PubMed]

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

Kester, R. T.

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Kinnear, C.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Kirchner, S. R.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Krause, S.

S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018).
[Crossref] [PubMed]

M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016).
[Crossref] [PubMed]

E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).

Kuklinski, B.

A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008).
[Crossref]

Kwon, H.

A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009).
[Crossref]

Landes, C. F.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Lasch, P.

I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
[Crossref] [PubMed]

Le Roux, X.

J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Leavesley, S. J.

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

Ledbetter, D. H.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Lee, M.

A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009).
[Crossref]

Lepage, D.

D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

Li, Q.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Li, W.

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

Liao, Z.

Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
[Crossref] [PubMed]

Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
[Crossref] [PubMed]

Link, S.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Lipson, S. G.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
[Crossref]

Liu, H.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Lombardi, L.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

Lu, G.

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Ma, Y.

Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000).
[Crossref] [PubMed]

Malik, Z.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
[Crossref]

Mantulnikovs, K.

Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
[Crossref] [PubMed]

Manzoni, C.

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[Crossref] [PubMed]

Melnikau, D.

D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018).
[Crossref] [PubMed]

Messmer, K.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Moon, S.

R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018).
[Crossref] [PubMed]

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

Müllen, K.

Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
[Crossref] [PubMed]

Mulvaney, P.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Nadeau, R. G.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Nahon, L.

N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
[Crossref]

Neu-Baker, N. M.

G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).
[Crossref] [PubMed]

Nielsen, T.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Ning, Y.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Nishimura, H.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[Crossref] [PubMed]

Nuansing, W.

I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
[Crossref] [PubMed]

Ohta, K.

A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996).
[Crossref]

Okumura, K.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[Crossref] [PubMed]

Oriana, A.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

Overgaard, M. H.

S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018).
[Crossref] [PubMed]

Park, S.

A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009).
[Crossref]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Perri, A.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).

Phalippou, D.

N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
[Crossref]

Pian, Q.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

Piatkowski, L.

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016).
[Crossref] [PubMed]

Polli, D.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).

Poly, S.

I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
[Crossref] [PubMed]

Prabhat, P.

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

Preda, F.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

Réhault, J.

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

Rich, T. C.

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

Ried, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Rodier, J.-C.

N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
[Crossref]

Roth, G. A.

G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).
[Crossref] [PubMed]

Roudjane, M.

N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
[Crossref]

Ruch, R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Ryder, A. G.

D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018).
[Crossref] [PubMed]

Schoell, B.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Schröck, E.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Schultz, R. A.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Shirai, T.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[Crossref] [PubMed]

Shortreed, M. R.

Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000).
[Crossref] [PubMed]

Shyu, Y.

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

Sinsuebphon, N.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

Smith, K. W.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Soenksen, D.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Sørensen, T. J.

R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018).
[Crossref] [PubMed]

Speicher, M. R.

M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996).
[Crossref] [PubMed]

Stappert, S.

Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
[Crossref] [PubMed]

Strahl, H.

H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014).
[Crossref] [PubMed]

Streiter, M.

M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016).
[Crossref] [PubMed]

Tahiliani, S.

G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).
[Crossref] [PubMed]

Talmi, A.

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
[Crossref]

Thyrhaug, E.

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).

Tkaczyk, T. S.

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Tropiano, M.

Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
[Crossref] [PubMed]

Tsurui, H.

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[Crossref] [PubMed]

Van Do, K.

J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

van Hulst, N. F.

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016).
[Crossref] [PubMed]

Veldman, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Viola, D.

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

von Borczyskowski, C.

M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016).
[Crossref] [PubMed]

Vosch, T.

S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018).
[Crossref] [PubMed]

R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018).
[Crossref] [PubMed]

Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
[Crossref] [PubMed]

Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
[Crossref] [PubMed]

E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).

Wang, W.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Wang, Y.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Ward, D. C.

M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996).
[Crossref] [PubMed]

Wienberg, J.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Winkelman, J. W.

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Wyatt, R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Xiang, L.

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

Xu, D.

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

Xu, K.

R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018).
[Crossref] [PubMed]

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

Yan, R.

R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018).
[Crossref] [PubMed]

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

Yao, R.

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

Yeung, E. S.

Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000).
[Crossref] [PubMed]

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[Crossref] [PubMed]

Zavaleta, J. R.

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Zhang, H.

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

R. Yan, S. Moon, S. J. Kenny, and K. Xu, “Spectrally resolved and functional super-resolution microscopy via ultrahigh-throughput single-molecule spectroscopy,” Acc. Chem. Res. 51(3), 697–705 (2018).
[Crossref] [PubMed]

Anal. Chem. (1)

Y. Ma, M. R. Shortreed, and E. S. Yeung, “High-throughput single-molecule spectroscopy in free solution,” Anal. Chem. 72(19), 4640–4645 (2000).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

J. Dellinger, K. Van Do, X. Le Roux, F. De Fornel, E. Cassan, and B. Cluzel, “Hyperspectral optical near-field imaging: Looking graded photonic crystals and photonic metamaterials in color,” Appl. Phys. Lett. 101(14), 141108 (2012).
[Crossref]

Chem. Commun. (Camb.) (1)

Z. Liao, M. Tropiano, K. Mantulnikovs, S. Faulkner, T. Vosch, and T. Just Sørensen, “Spectrally resolved confocal microscopy using lanthanide centred near-IR emission,” Chem. Commun. (Camb.) 51(12), 2372–2375 (2015).
[Crossref] [PubMed]

Chem. Phys. Lett. (2)

A. Kawski, P. Bojarski, and B. Kukliński, “Estimation of ground- and excited-state dipole moments of Nile red dye from solvatochromic effect on absorption and fluorescence spectra,” Chem. Phys. Lett. 463(4-6), 410–412 (2008).
[Crossref]

A.-Y. Jee, S. Park, H. Kwon, and M. Lee, “Excited state dynamics of Nile red in polymers,” Chem. Phys. Lett. 477(1-3), 112–115 (2009).
[Crossref]

Chemistry (1)

R. Arppe-Tabbara, M. R. Carro-Temboury, C. Hempel, T. Vosch, and T. J. Sørensen, “Luminescence from lanthanide (III) ions bound to the glycocalyx of Chinese hamster ovary cells,” Chemistry 24(46), 11885–11889 (2018).
[Crossref] [PubMed]

Cytometry (1)

R. A. Schultz, T. Nielsen, J. R. Zavaleta, R. Ruch, R. Wyatt, and H. R. Garner, “Hyperspectral imaging: a novel approach for microscopic analysis,” Cytometry 43(4), 239–247 (2001).
[Crossref] [PubMed]

Cytometry A (1)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[Crossref] [PubMed]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[Crossref] [PubMed]

IEEE J. Sel. Top. Quant. (1)

F. Preda, A. Oriana, J. Réhault, L. Lombardi, A. C. Ferrari, G. Cerullo, and D. Polli, “Linear and nonlinear spectroscopy by a common-path birefringent interferometer,” IEEE J. Sel. Top. Quant. 23(3), 88–96 (2017).
[Crossref]

J. Am. Chem. Soc. (2)

S. Moon, R. Yan, S. J. Kenny, Y. Shyu, L. Xiang, W. Li, and K. Xu, “Spectrally resolved, functional super-resolution microscopy reveals nanoscale compositional heterogeneity in live-cell membranes,” J. Am. Chem. Soc. 139(32), 10944–10947 (2017).
[Crossref] [PubMed]

Z. Liao, E. N. Hooley, L. Chen, S. Stappert, K. Müllen, and T. Vosch, “Green emitting photoproducts from terrylene diimide after red illumination,” J. Am. Chem. Soc. 135(51), 19180–19185 (2013).
[Crossref] [PubMed]

J. Biomed. Opt. (3)

G. Lu and B. Fei, “Medical hyperspectral imaging: a review,” J. Biomed. Opt. 19(1), 10901 (2014).
[Crossref] [PubMed]

Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, “Review of spectral imaging technology in biomedical engineering: achievements and challenges,” J. Biomed. Opt. 18(10), 100901 (2013).
[Crossref] [PubMed]

P. F. Favreau, C. Hernandez, T. Heaster, D. F. Alvarez, T. C. Rich, P. Prabhat, and S. J. Leavesley, “Excitation-scanning hyperspectral imaging microscope,” J. Biomed. Opt. 19(4), 46010 (2014).
[Crossref] [PubMed]

J. Histochem. Cytochem. (1)

H. Tsurui, H. Nishimura, S. Hattori, S. Hirose, K. Okumura, and T. Shirai, “Seven-color fluorescence imaging of tissue samples based on Fourier spectroscopy and singular value decomposition,” J. Histochem. Cytochem. 48(5), 653–662 (2000).
[Crossref] [PubMed]

J. Lipid Res. (1)

P. Greenspan and S. D. Fowler, “Spectrofluorometric studies of the lipid probe, Nile red,” J. Lipid Res. 26(7), 781–789 (1985).
[PubMed]

J. Microsc.-Oxford (1)

Z. Malik, D. Cabib, R. A. Buckwald, A. Talmi, Y. Garini, and S. G. Lipson, “Fourier transform multipixel spectroscopy for quantitative cytology,” J. Microsc.-Oxford 182(2), 133–140 (1996).
[Crossref]

J. Photoch. Photobio. A (1)

A. K. Dutta, K. Kamada, and K. Ohta, “Spectroscopic studies of Nile red in organic solvents and polymers,” J. Photoch. Photobio. A 93(1), 57–64 (1996).
[Crossref]

J. Phys. Chem. C (1)

S. R. Kirchner, K. W. Smith, B. S. Hoener, S. S. E. Collins, W. Wang, Y.-Y. Cai, C. Kinnear, H. Zhang, W.-S. Chang, P. Mulvaney, C. F. Landes, and S. Link, “Snapshot hyperspectral imaging (SHI) for revealing irreversible and heterogeneous plasmonic processes,” J. Phys. Chem. C 122(12), 6865–6875 (2018).
[Crossref]

J. Phys. Chem. Lett. (1)

M. Streiter, S. Krause, C. von Borczyskowski, and C. Deibel, “Dynamics of single-molecule stokes shifts: Influence of conformation and environment,” J. Phys. Chem. Lett. 7(21), 4281–4284 (2016).
[Crossref] [PubMed]

Light Sci. Appl. (1)

D. Lepage, A. Jimenez, J. Beauvais, and J. J. Dubowski, “Conic hyperspectral dispersion mapping applied to semiconductor plasmonics,” Light Sci. Appl. 1(9), e28 (2012).
[Crossref]

Methods Appl. Fluoresc. (1)

D. Melnikau, S. Elcoroaristizabal, and A. G. Ryder, “An excitation emission fluorescence lifetime spectrometer using a frequency doubled supercontinuum laser source,” Methods Appl. Fluoresc. 6(4), 045007 (2018).
[Crossref] [PubMed]

Mikrochim. Acta (1)

J. W. Brault, “High precision Fourier transform spectrometry: The critical role of phase corrections,” Mikrochim. Acta 93(1-6), 215–227 (1987).
[Crossref]

Nat. Commun. (3)

L. Piatkowski, E. Gellings, and N. F. van Hulst, “Broadband single-molecule excitation spectroscopy,” Nat. Commun. 7(1), 10411 (2016).
[Crossref] [PubMed]

I. Amenabar, S. Poly, M. Goikoetxea, W. Nuansing, P. Lasch, and R. Hillenbrand, “Hyperspectral infrared nanoimaging of organic samples based on Fourier transform infrared nanospectroscopy,” Nat. Commun. 8, 14402 (2017).
[Crossref] [PubMed]

H. Strahl, F. Bürmann, and L. W. Hamoen, “The actin homologue MreB organizes the bacterial cell membrane,” Nat. Commun. 5(1), 3442 (2014).
[Crossref] [PubMed]

Nat. Genet. (1)

M. R. Speicher, S. G. Ballard, and D. C. Ward, “Karyotyping human chromosomes by combinatorial multi-fluor FISH,” Nat. Genet. 12(4), 368–375 (1996).
[Crossref] [PubMed]

Nat. Med. (1)

W. Groner, J. W. Winkelman, A. G. Harris, C. Ince, G. J. Bouma, K. Messmer, and R. G. Nadeau, “Orthogonal polarization spectral imaging: A new method for study of the microcirculation,” Nat. Med. 5(10), 1209–1212 (1999).
[Crossref] [PubMed]

Nat. Photonics (2)

Q. Pian, R. Yao, N. Sinsuebphon, and X. Intes, “Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging,” Nat. Photonics 11(7), 411–414 (2017).
[Crossref] [PubMed]

N. de Oliveira, M. Roudjane, D. Joyeux, D. Phalippou, J.-C. Rodier, and L. Nahon, “High-resolution broad-bandwidth Fourier-transform absorption spectroscopy in the VUV range down to 40 nm,” Nat. Photonics 5(3), 149–153 (2011).
[Crossref]

Opt. Express (3)

A. Perri, F. Preda, C. D’Andrea, E. Thyrhaug, G. Cerullo, D. Polli, and J. Hauer, “Excitation-emission Fourier-transform spectroscopy based on a birefringent interferometer,” Opt. Express 25(12), 483–490 (2017).
[Crossref] [PubMed]

A. Perri, J. H. Gaida, A. Farina, F. Preda, D. Viola, M. Ballottari, J. Hauer, S. De Silvestri, C. D’Andrea, G. Cerullo, and D. Polli, “Time- and frequency-resolved fluorescence with a single TCSPC detector via a Fourier-transform approach,” Opt. Express 26(3), 2270–2279 (2018).
[Crossref] [PubMed]

L. Gao, R. T. Kester, N. Hagen, and T. S. Tkaczyk, “Snapshot image mapping spectrometer (IMS) with high sampling density for hyperspectral microscopy,” Opt. Express 18(14), 14330–14344 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

D. Brida, C. Manzoni, and G. Cerullo, “Phase-locked pulses for two-dimensional spectroscopy by a birefringent delay line,” Opt. Lett. 37(15), 3027–3029 (2012).
[Crossref] [PubMed]

Sci. Rep. (1)

S. Krause, M. H. Overgaard, and T. Vosch, “Photon energy dependent micro-Raman spectroscopy with a continuum laser source,” Sci. Rep. 8(1), 11621 (2018).
[Crossref] [PubMed]

Science (1)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[Crossref] [PubMed]

Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. (1)

G. A. Roth, S. Tahiliani, N. M. Neu-Baker, and S. A. Brenner, “Hyperspectral microscopy as an analytical tool for nanomaterials,” Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(4), 565–579 (2015).
[Crossref] [PubMed]

Other (3)

E. Thyrhaug, S. Krause, A. Perri, G. Cerullo, D. Polli, T. Vosch, and J. Hauer, “Single-molecule excitation-emission spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. (Accepted).

J. R. Lakowicz, Principles of fluorescence spectroscopy (Springer, 2006).

B. Valeur and M. N. Berberan-Santos, Molecular fluorescence: principles and applications (John Wiley & Sons, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A) Scheme of the experimental setup consisting of a continuum light source (CLS), fiber, acousto-optic tunable filter (AOTF), beam splitter (BS), band pass (BP), short pass (SP) and long pass (LP) filters, objective, sample, birefringent wedge interferometer with polarizers (P1 & P2), birefringent block A and birefringent wedges B, mirror and a CMOS camera [27,32,33]. B) Measurement procedure for excitation spectra based on scanning the excitation wavelength. C) Measurement procedure for emission spectra based on interference of the fluorescence emission which leads to destructive/constructive interference depending on the optical path difference d and the transmitted spectrum. The Fourier transform yields the emission spectrum at every pixel.
Fig. 2
Fig. 2 A) Transmission image of dye-doped zeolite crystals. B) Integrated fluorescence intensity from the interferometric data. C) Reconstructed RGB image from the spectra of each pixel. D) Color-coded emission maximum image. Values below a certain intensity threshold are colored white. The pixel size corresponds to 115 nm. E) Example spectra and interferograms of the marked spots in D. The gray spectra have been acquired confocally with a dispersion-based spectrograph from samples of unmixed zeolite crystals (see Fig. 5). Spot 1 can be associated with Atto 488, spot 2 with Rhodamine 6G, spot 7 with Atto 633.
Fig. 3
Fig. 3 A) Transmission image of dye-doped zeolite crystals. B) Reconstructed RGB image from the excitation spectra at each pixel. C) Reconstructed RGB image from the Fourier transform of the interferogram at each pixel. D) Integrated fluorescence intensity from the interferometric data. E) Color-coded excitation maximum image. Values below a certain intensity threshold are colored white. F) Color-coded emission maximum image. Values below a certain intensity threshold are colored white. The pixel size corresponds to 115 nm. G) Example excitation and emission spectra of the marked spots in Figs. 3(e) and 3(f). For comparison, the emission spectra recorded at the same positions with a confocal microscope and a dispersion-based spectrograph are shown in green (see spectra of the unmixed dye coated zeolites in Fig. 5) H) Color-coded Stokes shift in units of cm−1 as calculated from the excitation and emission maxima from the data in Figs. 3(e) and 3(f). Values below a certain intensity threshold are colored white.
Fig. 4
Fig. 4 A) Transmission image of Nile Red doped PVA and PEG coated zeolite crystals. B) Reconstructed RGB image from the excitation spectra at each pixel. C) Reconstructed RGB image from the Fourier transform of the interferogram at each pixel. D) Integrated fluorescence intensity from the interferometric data. E) Color-coded excitation maxima image. Values below a certain intensity threshold are colored white. F) Color-coded emission maximum image. Values below a certain intensity threshold are colored white. The pixel size corresponds to 287 nm. G) Example excitation and emission spectra of the marked spots in Figs. 4(e) and 4(f). For comparison, the emission spectra recorded at the same positions with a confocal microscope and a spectrograph are shown in green. H) Color-coded Stokes shift in units of cm−1 as calculated from the difference between the data in Figs. 4(e) and 4(f). Values below a certain intensity threshold are colored white.
Fig. 5
Fig. 5 Confocally measured excitation and emission spectra from non-mixed dye coated zeolite crystals utilized also for the experiment shown in Fig. 2. Excitation wavelength for acquiring emission spectra was 473 nm.
Fig. 6
Fig. 6 Confocally measured excitation (blue) and emission (red) spectra of Nile Red embedded in films of pure PVA (solid, Stokes shift 336 cm−1) and pure PEG (dashed, Stokes shift 1855 cm1).
Fig. 7
Fig. 7 A) Representative emission spectra of the three spots marked in B after Fourier transformation. The three areas mark the color channels for red, green and blue. B) Left: RGB image reconstructed from the emission intensity values appearing in the R, G and B channel for all pixels. Middle: Same as left but with threefold increased RGB values. Right: Image of the emission maximum wavelength for every pixel. The wavelength values have been converted to RGB values in order to plot them correctly. Values below a certain intensity threshold are colored white. Also shown are the intensity values for the example positions 1, 2 and 3 with respect to the RGB channels. C) Color examples for position 1, 2 and 3 for the three cases shown in B including the applied RGB values.

Metrics