Abstract

Nanoscale patterns on rigid or flexible substrates are of considerable interest in modern nanophotonics and optoelectronics devices. Subwavelength structures are produced in this study by using a laser beam and microdroplets that carry nanoparticles to the deposition substrate. These droplets are generated from an aqueous suspension of nanoparticles by electrospray and dispensed through a conical hollow laser beam so that laser-droplet interactions occur immediately above the substrate surface. Each microdroplet serves the dual role as a nanoparticle carrier to the substrate and as a superlens for focusing the laser beam to a subwavelength diameter. This focused beam vaporizes the droplet and sinters the nanoparticles on the substrate. The deposition of subwavelength nanostructures and thin films on a silicon wafer are demonstrated in this paper. This process may be applied to produce novel nanophotonics and electronics devices involving a variety of subwavelength patterns including an ordered array of semiconductor nanoparticles.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Laser-induced radiation leakage from microdroplets

Gang Chen, Dipakbin Q. Chowdhury, Richard K. Chang, and Wen-Feng Hsieh
J. Opt. Soc. Am. B 10(4) 620-632 (1993)

Pulsed-laser printing of silver nanoparticles ink: control of morphological properties

Ludovic Rapp, Julie Ailuno, Anne Patricia Alloncle, and Philippe Delaporte
Opt. Express 19(22) 21563-21574 (2011)

Competition between subwavelength and deep-subwavelength structures ablated by ultrashort laser pulses

Lei Wang, Bin-Bin Xu, Xiao-Wen Cao, Qian-Kun Li, Wen-Jing Tian, Qi-Dai Chen, Saulius Juodkazis, and Hong-Bo Sun
Optica 4(6) 637-642 (2017)

References

  • View by:
  • |
  • |
  • |

  1. T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
    [Crossref]
  2. B. D. Gates, “Flexible electronics,” Science 323(5921), 1566–1567 (2009).
    [Crossref] [PubMed]
  3. M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
    [Crossref] [PubMed]
  4. H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).
  5. J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater. 23(41), 4782–4787 (2011).
    [Crossref] [PubMed]
  6. T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
    [Crossref] [PubMed]
  7. A. Nadarajah, R. C. Word, J. Meiss, and R. Könenkamp, “Flexible inorganic nanowire light-emitting diode,” Nano Lett. 8(2), 534–537 (2008).
    [Crossref] [PubMed]
  8. Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
    [Crossref]
  9. Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
    [Crossref]
  10. B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
    [Crossref] [PubMed]
  11. H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
    [Crossref] [PubMed]
  12. M. S. Saleh, C. Hu, and R. Panat, “Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing,” Sci. Adv. 3(3), e1601986 (2017).
    [Crossref] [PubMed]
  13. M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
    [Crossref] [PubMed]
  14. C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
    [Crossref] [PubMed]
  15. A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
    [Crossref] [PubMed]
  16. M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
    [Crossref]
  17. S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
    [Crossref] [PubMed]
  18. Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
    [Crossref]
  19. Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
    [Crossref]
  20. Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
    [Crossref] [PubMed]
  21. E. Bor, M. Turduev, and H. Kurt, “Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light,” Sci. Rep. 6(1), 30871 (2016).
    [Crossref] [PubMed]
  22. J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “Subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Sci. Rep. 7(1), 7380 (2017).
    [Crossref] [PubMed]
  23. J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
    [Crossref]
  24. J. Park, C. Park, K. Lee, Y.-H. Cho, and Y. Park, “Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light,” Sci. Rep. 7(1), 41384 (2017).
    [Crossref] [PubMed]
  25. H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
    [Crossref] [PubMed]
  26. S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83(4), 758–760 (2003).
    [Crossref]
  27. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett. 35(20), 3396–3398 (2010).
    [Crossref] [PubMed]
  28. M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength laser nanopatterning using droplet lenses,” Sci. Rep. 5(1), 16199 (2015).
    [Crossref] [PubMed]
  29. A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
    [Crossref] [PubMed]
  30. G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
    [Crossref] [PubMed]
  31. M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
    [Crossref] [PubMed]
  32. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
    [Crossref] [PubMed]
  33. X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).
  34. M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
    [Crossref] [PubMed]
  35. E. Castillo-Orozco, A. Kar, and R. Kumar, “Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension,” Sci. Rep. 7(1), 5144 (2017).
    [Crossref] [PubMed]
  36. Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(3), 035418 (2004).
    [Crossref]
  37. S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
    [Crossref]
  38. J. C. Burton, A. L. Sharpe, R. C. van der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett. 109(7), 074301 (2012).
    [Crossref] [PubMed]
  39. F. Celestini, T. Frisch, and Y. Pomeau, “Take Off of Small Leidenfrost Droplets,” Phys. Rev. Lett. 109(3), 034501 (2012).
    [Crossref] [PubMed]
  40. J. C. Miñano, “Perfect imaging in a homogeneous threedimensional region,” Opt. Express 14(21), 9627–9635 (2006).
    [Crossref] [PubMed]
  41. J. C. Miñano, P. Benítez, and J. C. González, “Perfect imaging with geodesic waveguides,” New J. Phys. 12(12), 123023 (2010).
    [Crossref]
  42. B. S. Luk’yanchuk, Y. W. Zheng, and Y. Lu, “Laser cleaning of solid surface: optical resonance and near-field effects,” High-Power Laser Ablation III 4065, 576–587 (2000).
    [Crossref]
  43. Y. W. Zheng, B. S. Luk’yanchuk, Y. F. Lu, W. D. Song, and Z. H. Mai, “Dry laser cleaning of particles from solid substrates: experiments and theory,” J. Appl. Phys. 90(5), 2135–2142 (2001).
    [Crossref]
  44. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  45. L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

2018 (2)

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

2017 (5)

E. Castillo-Orozco, A. Kar, and R. Kumar, “Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension,” Sci. Rep. 7(1), 5144 (2017).
[Crossref] [PubMed]

J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “Subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Sci. Rep. 7(1), 7380 (2017).
[Crossref] [PubMed]

J. Park, C. Park, K. Lee, Y.-H. Cho, and Y. Park, “Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light,” Sci. Rep. 7(1), 41384 (2017).
[Crossref] [PubMed]

M. S. Saleh, C. Hu, and R. Panat, “Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing,” Sci. Adv. 3(3), e1601986 (2017).
[Crossref] [PubMed]

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

2016 (3)

E. Bor, M. Turduev, and H. Kurt, “Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light,” Sci. Rep. 6(1), 30871 (2016).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

2015 (2)

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength laser nanopatterning using droplet lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref] [PubMed]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

2013 (3)

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

2012 (4)

J. C. Burton, A. L. Sharpe, R. C. van der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett. 109(7), 074301 (2012).
[Crossref] [PubMed]

F. Celestini, T. Frisch, and Y. Pomeau, “Take Off of Small Leidenfrost Droplets,” Phys. Rev. Lett. 109(3), 034501 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

2011 (6)

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater. 23(41), 4782–4787 (2011).
[Crossref] [PubMed]

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
[Crossref]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

2010 (3)

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett. 35(20), 3396–3398 (2010).
[Crossref] [PubMed]

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

J. C. Miñano, P. Benítez, and J. C. González, “Perfect imaging with geodesic waveguides,” New J. Phys. 12(12), 123023 (2010).
[Crossref]

2009 (3)

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

B. D. Gates, “Flexible electronics,” Science 323(5921), 1566–1567 (2009).
[Crossref] [PubMed]

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

2008 (1)

A. Nadarajah, R. C. Word, J. Meiss, and R. Könenkamp, “Flexible inorganic nanowire light-emitting diode,” Nano Lett. 8(2), 534–537 (2008).
[Crossref] [PubMed]

2006 (4)

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
[Crossref] [PubMed]

J. C. Miñano, “Perfect imaging in a homogeneous threedimensional region,” Opt. Express 14(21), 9627–9635 (2006).
[Crossref] [PubMed]

2005 (1)

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[Crossref] [PubMed]

2004 (2)

Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(3), 035418 (2004).
[Crossref]

2003 (1)

S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83(4), 758–760 (2003).
[Crossref]

2001 (4)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
[Crossref]

Y. W. Zheng, B. S. Luk’yanchuk, Y. F. Lu, W. D. Song, and Z. H. Mai, “Dry laser cleaning of particles from solid substrates: experiments and theory,” J. Appl. Phys. 90(5), 2135–2142 (2001).
[Crossref]

2000 (1)

B. S. Luk’yanchuk, Y. W. Zheng, and Y. Lu, “Laser cleaning of solid surface: optical resonance and near-field effects,” High-Power Laser Ablation III 4065, 576–587 (2000).
[Crossref]

Ahn, B. Y.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Ahn, J. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

An, H.

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

Araci, E.

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater. 23(41), 4782–4787 (2011).
[Crossref] [PubMed]

Bae, S. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Ben-Aryeh, Y.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Benítez, P.

J. C. Miñano, P. Benítez, and J. C. González, “Perfect imaging with geodesic waveguides,” New J. Phys. 12(12), 123023 (2010).
[Crossref]

Bertsch, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Boneberg, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Bor, E.

E. Bor, M. Turduev, and H. Kurt, “Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light,” Sci. Rep. 6(1), 30871 (2016).
[Crossref] [PubMed]

Boris, L.

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Burton, J. C.

J. C. Burton, A. L. Sharpe, R. C. van der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett. 109(7), 074301 (2012).
[Crossref] [PubMed]

Cao, Q.

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

Cao, Y.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Carli, S.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Castagnola, E.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Castillo-Orozco, E.

E. Castillo-Orozco, A. Kar, and R. Kumar, “Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension,” Sci. Rep. 7(1), 5144 (2017).
[Crossref] [PubMed]

Celestini, F.

F. Celestini, T. Frisch, and Y. Pomeau, “Take Off of Small Leidenfrost Droplets,” Phys. Rev. Lett. 109(3), 034501 (2012).
[Crossref] [PubMed]

Chang, C. M.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Chen, B. H.

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Chen, S.

S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83(4), 758–760 (2003).
[Crossref]

Chen, S. W.

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

Chen, S. Y.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Chen, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Chen, Z. C.

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
[Crossref]

Cheng, B. H.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

Chiang, H. P.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

Chiang, H.-P.

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

Chichkov, B. N.

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

Cho, Y. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Cho, Y.-H.

J. Park, C. Park, K. Lee, Y.-H. Cho, and Y. Park, “Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light,” Sci. Rep. 7(1), 41384 (2017).
[Crossref] [PubMed]

Choi, M. R.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Chong, T. C.

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
[Crossref]

Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(3), 035418 (2004).
[Crossref]

Chou, K. S.

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[Crossref] [PubMed]

Chu, C. H.

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

Chu, N. N.

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Chung, K. S.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

Ciarpella, F.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Da Shiue, C.

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

Dai, H. J.

Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
[Crossref]

Diaspro, A.

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength laser nanopatterning using droplet lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref] [PubMed]

Duley, W. W.

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

Duocastella, M.

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength laser nanopatterning using droplet lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref] [PubMed]

Duoss, E. B.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Fadiga, L.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Florian, C.

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength laser nanopatterning using droplet lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref] [PubMed]

Franco, A.

J. C. Burton, A. L. Sharpe, R. C. van der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett. 109(7), 074301 (2012).
[Crossref] [PubMed]

Frisch, T.

F. Celestini, T. Frisch, and Y. Pomeau, “Take Off of Small Leidenfrost Droplets,” Phys. Rev. Lett. 109(3), 034501 (2012).
[Crossref] [PubMed]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Gangopadhyay, P.

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater. 23(41), 4782–4787 (2011).
[Crossref] [PubMed]

Gao, H.

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

García de Abajo, F. J.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Gates, B. D.

B. D. Gates, “Flexible electronics,” Science 323(5921), 1566–1567 (2009).
[Crossref] [PubMed]

Gong, Y. D.

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
[Crossref]

González, J. C.

J. C. Miñano, P. Benítez, and J. C. González, “Perfect imaging with geodesic waveguides,” New J. Phys. 12(12), 123023 (2010).
[Crossref]

Goshi, N.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Green, M. J.

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

Grinblat, G.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Guan, J.

J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “Subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Sci. Rep. 7(1), 7380 (2017).
[Crossref] [PubMed]

Guo, W.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Guo, X.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Habib, T.

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

Halas, N. J.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Han, N. R.

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
[Crossref]

Han, S.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Han, T. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Harald, G.

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

Hong, B. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Hong, M.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Hong, M. H.

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(3), 035418 (2004).
[Crossref]

Hsiao, M. K.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

Hu, A.

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

Hu, C.

M. S. Saleh, C. Hu, and R. Panat, “Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing,” Sci. Adv. 3(3), e1601986 (2017).
[Crossref] [PubMed]

Hu, S. H.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Huang, D. W.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

Huang, H. W.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

Huang, K. C.

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[Crossref] [PubMed]

Hur, S. H.

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

Jeon, S.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
[Crossref] [PubMed]

Jin, P.

J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “Subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Sci. Rep. 7(1), 7380 (2017).
[Crossref] [PubMed]

Kar, A.

E. Castillo-Orozco, A. Kar, and R. Kumar, “Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension,” Sci. Rep. 7(1), 5144 (2017).
[Crossref] [PubMed]

Kassegne, S.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Khan, A.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett. 35(20), 3396–3398 (2010).
[Crossref] [PubMed]

Kim, W.

Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
[Crossref]

Kivshar, Y. S.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Ko, S. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Koch, J.

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

Könenkamp, R.

A. Nadarajah, R. C. Word, J. Meiss, and R. Könenkamp, “Flexible inorganic nanowire light-emitting diode,” Nano Lett. 8(2), 534–537 (2008).
[Crossref] [PubMed]

Kumar, R.

E. Castillo-Orozco, A. Kar, and R. Kumar, “Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension,” Sci. Rep. 7(1), 5144 (2017).
[Crossref] [PubMed]

Kurt, H.

E. Bor, M. Turduev, and H. Kurt, “Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light,” Sci. Rep. 6(1), 30871 (2016).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

Lee, H. H.

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[Crossref] [PubMed]

Lee, K.

J. Park, C. Park, K. Lee, Y.-H. Cho, and Y. Park, “Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light,” Sci. Rep. 7(1), 41384 (2017).
[Crossref] [PubMed]

Lee, S.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Lee, T. W.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Lee, Y.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Lei, W.

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

Leiderer, P.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Leung, P. T.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

Lewis, J. A.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Li, L.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Li, Y.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Li, Y. M.

Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
[Crossref]

Liao, H. C.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Lin, C. C.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Lin, J.

J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “Subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Sci. Rep. 7(1), 7380 (2017).
[Crossref] [PubMed]

Lin, W. C.

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Lin, Y.

Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(3), 035418 (2004).
[Crossref]

Liou, S. H.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Liu, A. Q.

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Liu, T. Y.

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Liu, Y.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Liu, Z.

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Lu, Y.

B. S. Luk’yanchuk, Y. W. Zheng, and Y. Lu, “Laser cleaning of solid surface: optical resonance and near-field effects,” High-Power Laser Ablation III 4065, 576–587 (2000).
[Crossref]

Lu, Y. F.

Y. W. Zheng, B. S. Luk’yanchuk, Y. F. Lu, W. D. Song, and Z. H. Mai, “Dry laser cleaning of particles from solid substrates: experiments and theory,” J. Appl. Phys. 90(5), 2135–2142 (2001).
[Crossref]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(3), 035418 (2004).
[Crossref]

Y. W. Zheng, B. S. Luk’yanchuk, Y. F. Lu, W. D. Song, and Z. H. Mai, “Dry laser cleaning of particles from solid substrates: experiments and theory,” J. Appl. Phys. 90(5), 2135–2142 (2001).
[Crossref]

B. S. Luk’yanchuk, Y. W. Zheng, and Y. Lu, “Laser cleaning of solid surface: optical resonance and near-field effects,” High-Power Laser Ablation III 4065, 576–587 (2000).
[Crossref]

Lutkenhaus, J. L.

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

Ma, Y.

J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “Subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Sci. Rep. 7(1), 7380 (2017).
[Crossref] [PubMed]

Maggiolini, E.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Mai, Z. H.

Y. W. Zheng, B. S. Luk’yanchuk, Y. F. Lu, W. D. Song, and Z. H. Mai, “Dry laser cleaning of particles from solid substrates: experiments and theory,” J. Appl. Phys. 90(5), 2135–2142 (2001).
[Crossref]

Maier, I. N.

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

Maier, S. A.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Malyarchuk, V.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
[Crossref] [PubMed]

Manjavacas, A.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Mansuripur, M.

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

McClain, M. J.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Meiss, J.

A. Nadarajah, R. C. Word, J. Meiss, and R. Könenkamp, “Flexible inorganic nanowire light-emitting diode,” Nano Lett. 8(2), 534–537 (2008).
[Crossref] [PubMed]

Meitl, M. A.

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

Miñano, J. C.

J. C. Miñano, P. Benítez, and J. C. González, “Perfect imaging with geodesic waveguides,” New J. Phys. 12(12), 123023 (2010).
[Crossref]

J. C. Miñano, “Perfect imaging in a homogeneous threedimensional region,” Opt. Express 14(21), 9627–9635 (2006).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Mosbacher, M.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Motala, M. J.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Münzer, H. J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Nadarajah, A.

A. Nadarajah, R. C. Word, J. Meiss, and R. Könenkamp, “Flexible inorganic nanowire light-emitting diode,” Nano Lett. 8(2), 534–537 (2008).
[Crossref] [PubMed]

Nagel, S. R.

J. C. Burton, A. L. Sharpe, R. C. van der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett. 109(7), 074301 (2012).
[Crossref] [PubMed]

Nam, K. T.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Naomi, J. H.

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

Nielsen, M. P.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Nordlander, P.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Norwood, R. A.

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater. 23(41), 4782–4787 (2011).
[Crossref] [PubMed]

Nuzzo, R. G.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Oulton, R. F.

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Pan, Z. Y.

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
[Crossref]

Panat, R.

M. S. Saleh, C. Hu, and R. Panat, “Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing,” Sci. Adv. 3(3), e1601986 (2017).
[Crossref] [PubMed]

Park, C.

J. Park, C. Park, K. Lee, Y.-H. Cho, and Y. Park, “Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light,” Sci. Rep. 7(1), 41384 (2017).
[Crossref] [PubMed]

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Park, J.

J. Park, C. Park, K. Lee, Y.-H. Cho, and Y. Park, “Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light,” Sci. Rep. 7(1), 41384 (2017).
[Crossref] [PubMed]

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Park, J. H.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Park, S. I.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Park, Y.

J. Park, C. Park, K. Lee, Y.-H. Cho, and Y. Park, “Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light,” Sci. Rep. 7(1), 41384 (2017).
[Crossref] [PubMed]

Park, Y. K.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Peter, N.

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

Petryakov, V. N.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Peyghambarian, N.

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater. 23(41), 4782–4787 (2011).
[Crossref] [PubMed]

Polushkin, N. I.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Pomeau, Y.

F. Celestini, T. Frisch, and Y. Pomeau, “Take Off of Small Leidenfrost Droplets,” Phys. Rev. Lett. 109(3), 034501 (2012).
[Crossref] [PubMed]

Radovic, M.

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

Ricci, D.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Rogers, J. A.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
[Crossref] [PubMed]

Rolandi, M.

Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
[Crossref]

Salashchenko, N. N.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Saleh, M. S.

M. S. Saleh, C. Hu, and R. Panat, “Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing,” Sci. Adv. 3(3), e1601986 (2017).
[Crossref] [PubMed]

Sellmyer, D. J.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Semmlinger, M.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

Serra, P.

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength laser nanopatterning using droplet lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref] [PubMed]

Shah, S.

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

Shalaev, V. M.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett. 35(20), 3396–3398 (2010).
[Crossref] [PubMed]

Sharpe, A. L.

J. C. Burton, A. L. Sharpe, R. C. van der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett. 109(7), 074301 (2012).
[Crossref] [PubMed]

Shim, M.

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

Shin, J.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Skomski, R.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Smolyaninov, I. I.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett. 35(20), 3396–3398 (2010).
[Crossref] [PubMed]

Smolyaninova, V. N.

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett. 35(20), 3396–3398 (2010).
[Crossref] [PubMed]

Sobhani, A.

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

Song, W. D.

Y. W. Zheng, B. S. Luk’yanchuk, Y. F. Lu, W. D. Song, and Z. H. Mai, “Dry laser cleaning of particles from solid substrates: experiments and theory,” J. Appl. Phys. 90(5), 2135–2142 (2001).
[Crossref]

Stefan, A.

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

Sun, Y.

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

Tan, J.

J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “Subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Sci. Rep. 7(1), 7380 (2017).
[Crossref] [PubMed]

Theppakuttai, S.

S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83(4), 758–760 (2003).
[Crossref]

Thomas, J.

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater. 23(41), 4782–4787 (2011).
[Crossref] [PubMed]

Tow, C. C.

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

Tsai, D. P.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Tsai, W. Y.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

Tseng, M. L.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

Turduev, M.

E. Bor, M. Turduev, and H. Kurt, “Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light,” Sci. Rep. 6(1), 30871 (2016).
[Crossref] [PubMed]

van der Veen, R. C.

J. C. Burton, A. L. Sharpe, R. C. van der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett. 109(7), 074301 (2012).
[Crossref] [PubMed]

Verevkin, Y. K.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Vomero, M.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Wang, C.

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

Wang, D. W.

Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
[Crossref]

Wang, Q. F.

Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Wang, Z.

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

Wang, Z. B.

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(3), 035418 (2004).
[Crossref]

Wiederrecht, G. P.

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
[Crossref] [PubMed]

Woo, S. H.

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

Word, R. C.

A. Nadarajah, R. C. Word, J. Meiss, and R. Könenkamp, “Flexible inorganic nanowire light-emitting diode,” Nano Lett. 8(2), 534–537 (2008).
[Crossref] [PubMed]

Wu, P. C.

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

Xiong, Y.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Xue, X. J.

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

Yang, J.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

Yoon, J.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Yu, H. S.

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

Yu, M.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Zhang, C.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

Zhang, J.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Zhang, M.

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

Zhang, T.

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

Zhang, X. Y.

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

Zhang, Y. G.

Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
[Crossref]

Zheng, M.

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

Zheng, Y. W.

Y. W. Zheng, B. S. Luk’yanchuk, Y. F. Lu, W. D. Song, and Z. H. Mai, “Dry laser cleaning of particles from solid substrates: experiments and theory,” J. Appl. Phys. 90(5), 2135–2142 (2001).
[Crossref]

B. S. Luk’yanchuk, Y. W. Zheng, and Y. Lu, “Laser cleaning of solid surface: optical resonance and near-field effects,” High-Power Laser Ablation III 4065, 576–587 (2000).
[Crossref]

Zhou, Y.

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

Zhu, Z. T.

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

Zimmermann, J.

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

Zucchini, E.

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

Adv. Mater. (2)

J. Thomas, P. Gangopadhyay, E. Araci, R. A. Norwood, and N. Peyghambarian, “Nanoimprinting by melt processing: an easy technique to fabricate versatile nanostructures,” Adv. Mater. 23(41), 4782–4787 (2011).
[Crossref] [PubMed]

Q. Cao, S. H. Hur, Z. T. Zhu, Y. Sun, C. Wang, M. A. Meitl, M. Shim, and J. A. Rogers, “Highly bendable, transparent thin film transistors that use carbon nanotube based conductors and semiconductors with elastomeric dielectrics,” Adv. Mater. 18(3), 304–309 (2006).
[Crossref]

Appl. Phys. Lett. (2)

M. Zheng, M. Yu, Y. Liu, R. Skomski, S. H. Liou, D. J. Sellmyer, V. N. Petryakov, Y. K. Verevkin, N. I. Polushkin, and N. N. Salashchenko, “Magnetic nanodot arrays produced by direct laser interference lithography,” Appl. Phys. Lett. 79(16), 2606–2608 (2001).
[Crossref]

S. Theppakuttai and S. Chen, “Nanoscale surface modification of glass using a 1064 nm pulsed laser,” Appl. Phys. Lett. 83(4), 758–760 (2003).
[Crossref]

ASC nano (1)

X. Y. Zhang, A. Hu, T. Zhang, W. Lei, X. J. Xue, Y. Zhou, and W. W. Duley, “Self-assembly of large-scale and ultrathin silver nanoplate films with tunable plasmon resonance properties,” ASC nano 5, 9082–9092 (2011).

High-Power Laser Ablation III (1)

B. S. Luk’yanchuk, Y. W. Zheng, and Y. Lu, “Laser cleaning of solid surface: optical resonance and near-field effects,” High-Power Laser Ablation III 4065, 576–587 (2000).
[Crossref]

J. Appl. Phys. (2)

Y. W. Zheng, B. S. Luk’yanchuk, Y. F. Lu, W. D. Song, and Z. H. Mai, “Dry laser cleaning of particles from solid substrates: experiments and theory,” J. Appl. Phys. 90(5), 2135–2142 (2001).
[Crossref]

Z. Wang, M. Hong, B. S. Luk’yanchuk, Y. Lin, Q. F. Wang, and T. C. Chong, “Angle effect in laser nanopatterning with particle-mask,” J. Appl. Phys. 96(11), 6845–6850 (2004).
[Crossref]

J. Microsc. (1)

H. J. Münzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202(1), 129–135 (2001).
[Crossref] [PubMed]

J. Opt. (1)

S. Lee, L. Li, Y. Ben-Aryeh, Z. Wang, and W. Guo, “Overcoming the diffraction limit induced by microsphere optical nanoscopy,” J. Opt. 15(12), 125710 (2013).
[Crossref]

J. Phys. Chem. B (1)

Y. M. Li, W. Kim, Y. G. Zhang, M. Rolandi, D. W. Wang, and H. J. Dai, “Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes,” J. Phys. Chem. B 105(46), 11424–11431 (2001).
[Crossref]

Langmuir (1)

T. Y. Liu, H. C. Liao, C. C. Lin, S. H. Hu, and S. Y. Chen, “Biofunctional ZnO nanorod arrays grown on flexible substrates,” Langmuir 22(13), 5804–5809 (2006).
[Crossref] [PubMed]

Nano Lett. (4)

A. Nadarajah, R. C. Word, J. Meiss, and R. Könenkamp, “Flexible inorganic nanowire light-emitting diode,” Nano Lett. 8(2), 534–537 (2008).
[Crossref] [PubMed]

M. Semmlinger, M. L. Tseng, J. Yang, M. Zhang, C. Zhang, W. Y. Tsai, D. P. Tsai, P. Nordlander, and N. J. Halas, “Vacuum Ultraviolet Light-Generating Metasurface,” Nano Lett. 18(9), 5738–5743 (2018).
[Crossref] [PubMed]

A. Sobhani, A. Manjavacas, Y. Cao, M. J. McClain, F. J. García de Abajo, P. Nordlander, and N. J. Halas, “Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film,” Nano Lett. 15(10), 6946–6951 (2015).
[Crossref] [PubMed]

G. Grinblat, Y. Li, M. P. Nielsen, R. F. Oulton, and S. A. Maier, “Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode,” Nano Lett. 16(7), 4635–4640 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

H. H. Lee, K. S. Chou, and K. C. Huang, “Inkjet printing of nanosized silver colloids,” Nanotechnology 16(10), 2436–2441 (2005).
[Crossref] [PubMed]

Nat. Commun. (1)

Z. Wang, W. Guo, L. Li, B. Luk’yanchuk, A. Khan, Z. Liu, Z. Chen, and M. Hong, “Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope,” Nat. Commun. 2(1), 218 (2011).
[Crossref] [PubMed]

Nat. Mater. (1)

L. Boris, ZheludevI. N. Maier, A. Stefan, J. H. Naomi, N. Peter, G. Harald, and C. C. Tow, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707 (2010).

Nat. Photonics (2)

T. H. Han, Y. Lee, M. R. Choi, S. H. Woo, S. H. Bae, B. H. Hong, J. H. Ahn, and T. W. Lee, “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nat. Photonics 6(2), 105–110 (2012).
[Crossref]

J. H. Park, C. Park, H. S. Yu, J. Park, S. Han, J. Shin, S. H. Ko, K. T. Nam, Y. H. Cho, and Y. K. Park, “Subwavelength light focusing using random nanoparticles,” Nat. Photonics 7(6), 454–458 (2013).
[Crossref]

New J. Phys. (1)

J. C. Miñano, P. Benítez, and J. C. González, “Perfect imaging with geodesic waveguides,” New J. Phys. 12(12), 123023 (2010).
[Crossref]

Opt. Express (6)

J. C. Miñano, “Perfect imaging in a homogeneous threedimensional region,” Opt. Express 14(21), 9627–9635 (2006).
[Crossref] [PubMed]

S. Jeon, V. Malyarchuk, J. A. Rogers, and G. P. Wiederrecht, “Fabricating three-dimensional nanostructures using two photon lithography in a single exposure step,” Opt. Express 14(6), 2300–2308 (2006).
[Crossref] [PubMed]

M. L. Tseng, C. M. Chang, B. H. Cheng, P. C. Wu, K. S. Chung, M. K. Hsiao, H. W. Huang, D. W. Huang, H. P. Chiang, P. T. Leung, and D. P. Tsai, “Multi-level surface enhanced Raman scattering using AgOx thin film,” Opt. Express 21(21), 24460–24467 (2013).
[Crossref] [PubMed]

M. L. Tseng, B. H. Chen, C. H. Chu, C. M. Chang, W. C. Lin, N. N. Chu, M. Mansuripur, A. Q. Liu, and D. P. Tsai, “Fabrication of phase-change chalcogenide Ge2Sb2Te5 patterns by laser-induced forward transfer,” Opt. Express 19(18), 16975–16984 (2011).
[Crossref] [PubMed]

C. H. Chu, M. L. Tseng, C. Da Shiue, S. W. Chen, H.-P. Chiang, M. Mansuripur, and D. P. Tsai, “Fabrication of phase-change Ge2Sb2Te5 nano-rings,” Opt. Express 19(13), 12652–12657 (2011).
[Crossref] [PubMed]

A. I. Kuznetsov, J. Koch, and B. N. Chichkov, “Laser-induced backward transfer of gold nanodroplets,” Opt. Express 17(21), 18820–18825 (2009).
[Crossref] [PubMed]

Opt. Lett. (1)

V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, “Maxwell fish-eye and Eaton lenses emulated by microdroplets,” Opt. Lett. 35(20), 3396–3398 (2010).
[Crossref] [PubMed]

Opt. Mater. Express (1)

Z. C. Chen, N. R. Han, Z. Y. Pan, Y. D. Gong, T. C. Chong, and M. H. Hong, “Tunable resonance enhancement of multi-layer terahertz metamaterials fabricated by parallel laser micro-lens array lithography on flexible substrates,” Opt. Mater. Express 1(2), 151–157 (2011).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

Z. B. Wang, B. S. Luk’yanchuk, M. H. Hong, Y. Lin, and T. C. Chong, “Energy flow around a small particle investigated by classical Mie theory,” Phys. Rev. B Condens. Matter Mater. Phys. 70(3), 035418 (2004).
[Crossref]

Phys. Rev. Lett. (2)

J. C. Burton, A. L. Sharpe, R. C. van der Veen, A. Franco, and S. R. Nagel, “Geometry of the vapor layer under a Leidenfrost drop,” Phys. Rev. Lett. 109(7), 074301 (2012).
[Crossref] [PubMed]

F. Celestini, T. Frisch, and Y. Pomeau, “Take Off of Small Leidenfrost Droplets,” Phys. Rev. Lett. 109(3), 034501 (2012).
[Crossref] [PubMed]

Sci. Adv. (2)

M. S. Saleh, C. Hu, and R. Panat, “Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing,” Sci. Adv. 3(3), e1601986 (2017).
[Crossref] [PubMed]

H. An, T. Habib, S. Shah, H. Gao, M. Radovic, M. J. Green, and J. L. Lutkenhaus, “Surface- agnostic highly stretchable and bendable conductive mxene multilayers,” Sci. Adv. 4, 118 (2018).

Sci. Rep. (7)

M. Vomero, E. Castagnola, F. Ciarpella, E. Maggiolini, N. Goshi, E. Zucchini, S. Carli, L. Fadiga, S. Kassegne, and D. Ricci, “Highly stable glassy carbon interfaces for long-term neural stimulation and low-noise recording of brain activity,” Sci. Rep. 7(1), 40332 (2017).
[Crossref] [PubMed]

E. Bor, M. Turduev, and H. Kurt, “Differential evolution algorithm based photonic structure design: numerical and experimental verification of subwavelength λ/5 focusing of light,” Sci. Rep. 6(1), 30871 (2016).
[Crossref] [PubMed]

J. Guan, J. Lin, Y. Ma, J. Tan, and P. Jin, “Subwavelength spot and a three-dimensional optical trap formed by a single planar element with azimuthal light,” Sci. Rep. 7(1), 7380 (2017).
[Crossref] [PubMed]

M. Duocastella, C. Florian, P. Serra, and A. Diaspro, “Sub-wavelength laser nanopatterning using droplet lenses,” Sci. Rep. 5(1), 16199 (2015).
[Crossref] [PubMed]

E. Castillo-Orozco, A. Kar, and R. Kumar, “Electrospray mode transition of microdroplets with semiconductor nanoparticle suspension,” Sci. Rep. 7(1), 5144 (2017).
[Crossref] [PubMed]

J. Park, C. Park, K. Lee, Y.-H. Cho, and Y. Park, “Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light,” Sci. Rep. 7(1), 41384 (2017).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and B. Luk’yanchuk, “Magnetic light,” Sci. Rep. 2(1), 492 (2012).
[Crossref] [PubMed]

Science (3)

B. D. Gates, “Flexible electronics,” Science 323(5921), 1566–1567 (2009).
[Crossref] [PubMed]

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Microdroplet superlens of dual role for carrying nanoparticles and subwavelength focusing: (a) An experimental setup for dispensing aqueous microdroplets of nanoparticle suspension into a conical hollow laser beam to achieve subwavelength focusing by the microdroplets, (b) Gaussian laser beam produced by the Nd:YAG laser system, and (c) Collimated laser beam of annular irradiance profile.
Fig. 2
Fig. 2 Optical properties of nanosuspensions. (a) Reflectance data based on 0.012 mm think Ag20 sample and 1 mm thickness for other samples. (b) Absorption coefficient determined by measuring the optical density of the nanosuspensions.
Fig. 3
Fig. 3 Laser-droplet interactions for heating the droplets: (a) Geometrical focusing of the laser beam when the microdroplet acts as a lens. (b) Incident laser on top of the microdroplet and intensity enhancement below the same microdroplet. The photographic inset shows the fringe patterns caused by the interference of the annular laser at the focal volume. The intensity enhancement at the bottom of microdroplet is observed by image processing of the droplet photograph. (c) Incident laser on an evaporating droplet after the droplet impinges on the substrate, exhibiting a wavy top surface with ripples of radii much smaller than the radius of the microdroplet so that each curved segment can focus a portion of the laser beam. The composition of droplets depicted in (b) and (c) is Ge, 2 wt% in DI water.
Fig. 4
Fig. 4 Germanium nanodots on a silicon substrate: (a) SEM image of a linear array of Ge nanodots produced by microdroplets of Ge suspension, 5 wt% Ge in DI water and incident laser power 17 W, and (b) SEM image at a higher magnification, showing a nanodot of approximately 500 nm diameter.
Fig. 5
Fig. 5 Silicon nanodots on a silicon substrate: (a) SEM image of Si nanodots (cluster of Si nanoparticles) of diameters ranging from 100 nm to 500 nm that were produced by microdroplets of Si suspension, 5 wt% Si in DI water and an incident laser power 17W, and (b) SEM image at a higher magnification, showing the shapes of the nanodots.
Fig. 6
Fig. 6 Subwavelength holes on a silicon substrate: (a) SEM image of subwavelength holes of size ranging from 100 nm to 200 nm produced with a laser of incident power 17 W, and (b) Optical profiles of the holes obtained with a laser interferometer. Three-dimensional surface measurement shows the presence of tiny indentations with the depth of the crater approximately 120 nm and the height of a typical rim formed from the recast silicon approximately 30 nm above the original substrate surface.
Fig. 7
Fig. 7 Feature sizes as a function of the incident laser power for microdroplets of liquids containing 0 wt%, 2 wt%, 5 wt%, and 10 wt% Ge nanoparticles in DI water.
Fig. 8
Fig. 8 Deposition of a Ge line on a Si wafer: (a) SEM image of a thin line of Ge deposited by the NELD process on a Si substrate using microdroplets of a suspension of 10 wt% Ge nanoparticles in DI water at the flow rate of 50 μL/min and a laser of incident power 17 W. The 50 μm wide film was constructed by depositing a new layer after the previous one for five times. (b) EDS analysis of the Ge film, showing the presence of Ge in the laser-sintered line.
Fig. 9
Fig. 9 Deposition of thin films on flexible and rigid substrates: (a) Bending test for a silver thin film of approximately 2 mm wide deposited on a paper cardstock, and (b) Deposition of silver thin film tracks on a smooth silicon wafer.

Tables (1)

Tables Icon

Table 1 Physical properties and relevant parameters of nanoparticle suspensions in DI water.

Metrics