Abstract

Many phenomena of interest in nature and industry occur rapidly and are difficult and cost-prohibitive to visualize properly without specialized cameras. Here we describe in detail the virtual frame technique (VFT), a simple, useful, and accessible mode of imaging that increases the frame acquisition rate of any camera by several orders of magnitude by leveraging its dynamic range. The VFT is a powerful tool for capturing rapid phenomena where the dynamics facilitate a transition between two states, and are thus binary. The advantages of the VFT are demonstrated by examining such dynamics in five physical processes at unprecedented rates and spatial resolution: fracture of an elastic solid, wetting of a solid surface, rapid fingerprint reading, peeling of adhesive tape, and impact of an elastic hemisphere on a hard surface. We show that the performance of the VFT exceeds that of any commercial high-speed camera not only in rate of imaging but also in field of view, achieving a 65MHz frame rate at 4MPx resolution. Finally, we discuss the performance of the VFT with several commercially available conventional and high-speed cameras. In principle, modern cell phones can achieve imaging rates of over a million frames per second using the VFT.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
216 shades of gray: high bit-depth projection using light intensity control

Jen-Hao Rick Chang, B. V. K. Vijaya Kumar, and Aswin C. Sankaranarayanan
Opt. Express 24(24) 27937-27950 (2016)

Visible light communication using mobile-phone camera with data rate higher than frame rate

Chi-Wai Chow, Chung-Yen Chen, and Shih-Hao Chen
Opt. Express 23(20) 26080-26085 (2015)

Peering through the flames: imaging techniques for reacting aluminum powders

Ethan T. Zepper, Michelle L. Pantoya, Sukalyan Bhattacharya, Jeremy O. Marston, Andreas A. Neuber, and Ronald J. Heaps
Appl. Opt. 56(9) 2535-2541 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in Drop Formation as Revealed by the High-speed Motion Camera,” J. Phys. Chem. 41, 1017–1028 (1937).
    [Crossref]
  2. S. M. Rubinstein, G. Cohen, and J. Fineberg, “Detachment fronts and the onset of dynamic friction,” Nature 430, 1005–1009 (2004).
    [Crossref] [PubMed]
  3. E. Schleip, R. Willnecker, D. M. Herlach, and G. P. Gorler, “Measurements of Ultrarapid Solidification Rates in Greatly Undercooled Bulk Melts with a High Speed Photosensing Device,” Mater. Sci. Eng. 98, 39–42 (1988).
    [Crossref]
  4. R. Long, V. R. Krishnan, and C.-Y. Hui, “Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress,” J. Mech. Phys. Solids 59, 672–695 (2011).
    [Crossref]
  5. J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
    [Crossref] [PubMed]
  6. tt = 0 corresponds to a pixel dark when the exposure begins, and tt=τ corresponds to a pixel that remains illuminated when the exposure is complete.
  7. L. B. Freund, Dynamic Fracture Mechanics (Cambridge University, 1998).
  8. A. Livne, E. Bouchbinder, and J. Fineberg, “Breakdown of Linear Elastic Fracture Mechanics near the Tip of a Rapid Crack,” Phys. Rev. Lett. 101, 264301 (2008).
    [Crossref]
  9. T. G. Boué, G. Cohen, and J. Fineberg, “Origin of the Microbranching Instability in Rapid Cracks,” Phys. Rev. Lett. 114, 054301 (2015).
    [Crossref] [PubMed]
  10. T. Goldman, A. Livne, and J. Fineberg, “Acquisition of Inertia by a Moving Crack,” Phys. Rev. Lett. 104, 114301 (2010).
    [Crossref] [PubMed]
  11. I. Kolvin, J. M. Kolinski, J. P. Gong, and J. Fineberg, “How supertough gels break,” Phys. Rev. Lett. 121, 135501 (2018).
    [Crossref] [PubMed]
  12. J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, “Instability in dynamic fracture,” Phys. Rev. Lett. 67, 457–460 (1991).
    [Crossref] [PubMed]
  13. E. Sharon and J. Fineberg, “Microbranching instability and the dynamic fracture of brittle materials,” Phys. Rev. B 54, 7128–7139 (1996).
    [Crossref]
  14. I. Kolvin, G. Cohen, and J. Fineberg, “Crack Front Dynamics: The Interplay of Singular Geometry and Crack Instabilities,” Phys. Rev. Lett. 114, 175501 (2015).
    [Crossref] [PubMed]
  15. I. Kolvin, G. Cohen, and J. Fineberg, “Topological defects govern crack front motion and facet formation on broken surfaces,” Nat. Mater. 17, 140–144 (2017).
    [Crossref] [PubMed]
  16. Here we have limited the virtual frame rate such that each frame corresponds to approximately one pixel of movement of the front. A higher frame rate is achievable with this data, but not especially useful for the purposes of measuring the front position.
  17. J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Lift-Off Instability During the Impact of a Drop on a Solid Surface,” Phys. Rev. Lett. 112, 134501 (2014).
    [Crossref] [PubMed]
  18. J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Drops can bounce from perfectly hydrophilic surfaces,” EPL 108, 24001 (2014).
    [Crossref]
  19. S. Mandre, M. Mani, and M. P. Brenner, “Precursors to Splashing of Liquid Droplets on a Solid Surface,” Phys. Rev. Lett. 102, 134502 (2009).
    [Crossref] [PubMed]
  20. M. Mani, S. Mandre, and M. P. Brenner, “Events before droplet splashing on a solid surface,” J. Fluid Mech. 647, 163–185 (2010).
    [Crossref]
  21. S. Mandre and M. P. Brenner, “The mechanism of a splash on a dry solid surface,” J. Fluid Mech. 690, 148–172 (2011).
    [Crossref]
  22. Again, we have limited the virtual frame rate such that each frame corresponds to approximately one pixel of movement of the front.
  23. J. E. Sprittles, “Kinetic Effects in Dynamic Wetting,” Phys. Rev. Lett. 118, 114502 (2017).
    [Crossref] [PubMed]
  24. The shape of the light pulse can be used to arbitrarily weight the timing of the virtual frames. For example, a triangular pulse envelope results in more virtual frames at t=τ/2, and fewer at t = 0 and t=τ.
  25. R. Merkel, J. Dittmann, and C. Vielhauer, “How contact pressure, contact time, smearing and oil/skin lotion influence the aging of latent fingerprint traces: First results for the binary pixel feature using a CWL sensor,” in 2011 IEEE International Workshop on Information Forensics and Security (WIFS), (IEEE, 2011), pp. 1–6.
  26. R. Villey, C. Creton, P. P. Cortet, M. J. Dalbe, and T. J. S. Matter, “Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives,” Soft Matter 11, 3480–3491 (2015).
    [Crossref] [PubMed]
  27. F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Oxford, 1950).
  28. B. Persson, “Theory of rubber friction and contact mechanics,” J. Chem. Phys. 115, 3840 (2001).
    [Crossref]
  29. K. L. Johnson, Contact Mechanics (Cambridge University, 1987).
  30. Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
    [Crossref] [PubMed]
  31. “Nac inc. datasheet, ultraubsi-12–24.pdf,” https://www.nacinc.com/pdf.php?pdf=/datasheets/UltraUBSi-12-24.pdf . Accessed: 2019-02-05.
  32. Continuity of recording is limited only by the reset time of the camera’s sensor.

2018 (1)

I. Kolvin, J. M. Kolinski, J. P. Gong, and J. Fineberg, “How supertough gels break,” Phys. Rev. Lett. 121, 135501 (2018).
[Crossref] [PubMed]

2017 (2)

I. Kolvin, G. Cohen, and J. Fineberg, “Topological defects govern crack front motion and facet formation on broken surfaces,” Nat. Mater. 17, 140–144 (2017).
[Crossref] [PubMed]

J. E. Sprittles, “Kinetic Effects in Dynamic Wetting,” Phys. Rev. Lett. 118, 114502 (2017).
[Crossref] [PubMed]

2015 (3)

R. Villey, C. Creton, P. P. Cortet, M. J. Dalbe, and T. J. S. Matter, “Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives,” Soft Matter 11, 3480–3491 (2015).
[Crossref] [PubMed]

I. Kolvin, G. Cohen, and J. Fineberg, “Crack Front Dynamics: The Interplay of Singular Geometry and Crack Instabilities,” Phys. Rev. Lett. 114, 175501 (2015).
[Crossref] [PubMed]

T. G. Boué, G. Cohen, and J. Fineberg, “Origin of the Microbranching Instability in Rapid Cracks,” Phys. Rev. Lett. 114, 054301 (2015).
[Crossref] [PubMed]

2014 (2)

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Lift-Off Instability During the Impact of a Drop on a Solid Surface,” Phys. Rev. Lett. 112, 134501 (2014).
[Crossref] [PubMed]

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Drops can bounce from perfectly hydrophilic surfaces,” EPL 108, 24001 (2014).
[Crossref]

2012 (1)

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
[Crossref] [PubMed]

2011 (2)

R. Long, V. R. Krishnan, and C.-Y. Hui, “Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress,” J. Mech. Phys. Solids 59, 672–695 (2011).
[Crossref]

S. Mandre and M. P. Brenner, “The mechanism of a splash on a dry solid surface,” J. Fluid Mech. 690, 148–172 (2011).
[Crossref]

2010 (2)

M. Mani, S. Mandre, and M. P. Brenner, “Events before droplet splashing on a solid surface,” J. Fluid Mech. 647, 163–185 (2010).
[Crossref]

T. Goldman, A. Livne, and J. Fineberg, “Acquisition of Inertia by a Moving Crack,” Phys. Rev. Lett. 104, 114301 (2010).
[Crossref] [PubMed]

2009 (1)

S. Mandre, M. Mani, and M. P. Brenner, “Precursors to Splashing of Liquid Droplets on a Solid Surface,” Phys. Rev. Lett. 102, 134502 (2009).
[Crossref] [PubMed]

2008 (1)

A. Livne, E. Bouchbinder, and J. Fineberg, “Breakdown of Linear Elastic Fracture Mechanics near the Tip of a Rapid Crack,” Phys. Rev. Lett. 101, 264301 (2008).
[Crossref]

2007 (1)

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

2004 (1)

S. M. Rubinstein, G. Cohen, and J. Fineberg, “Detachment fronts and the onset of dynamic friction,” Nature 430, 1005–1009 (2004).
[Crossref] [PubMed]

2001 (1)

B. Persson, “Theory of rubber friction and contact mechanics,” J. Chem. Phys. 115, 3840 (2001).
[Crossref]

1996 (1)

E. Sharon and J. Fineberg, “Microbranching instability and the dynamic fracture of brittle materials,” Phys. Rev. B 54, 7128–7139 (1996).
[Crossref]

1991 (1)

J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, “Instability in dynamic fracture,” Phys. Rev. Lett. 67, 457–460 (1991).
[Crossref] [PubMed]

1988 (1)

E. Schleip, R. Willnecker, D. M. Herlach, and G. P. Gorler, “Measurements of Ultrarapid Solidification Rates in Greatly Undercooled Bulk Melts with a High Speed Photosensing Device,” Mater. Sci. Eng. 98, 39–42 (1988).
[Crossref]

1937 (1)

H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in Drop Formation as Revealed by the High-speed Motion Camera,” J. Phys. Chem. 41, 1017–1028 (1937).
[Crossref]

Bouchbinder, E.

A. Livne, E. Bouchbinder, and J. Fineberg, “Breakdown of Linear Elastic Fracture Mechanics near the Tip of a Rapid Crack,” Phys. Rev. Lett. 101, 264301 (2008).
[Crossref]

Boué, T. G.

T. G. Boué, G. Cohen, and J. Fineberg, “Origin of the Microbranching Instability in Rapid Cracks,” Phys. Rev. Lett. 114, 054301 (2015).
[Crossref] [PubMed]

Bowden, F. P.

F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Oxford, 1950).

Brenner, M. P.

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
[Crossref] [PubMed]

S. Mandre and M. P. Brenner, “The mechanism of a splash on a dry solid surface,” J. Fluid Mech. 690, 148–172 (2011).
[Crossref]

M. Mani, S. Mandre, and M. P. Brenner, “Events before droplet splashing on a solid surface,” J. Fluid Mech. 647, 163–185 (2010).
[Crossref]

S. Mandre, M. Mani, and M. P. Brenner, “Precursors to Splashing of Liquid Droplets on a Solid Surface,” Phys. Rev. Lett. 102, 134502 (2009).
[Crossref] [PubMed]

Cain, C. A.

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

Chang, C.-W.

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

Cohen, G.

I. Kolvin, G. Cohen, and J. Fineberg, “Topological defects govern crack front motion and facet formation on broken surfaces,” Nat. Mater. 17, 140–144 (2017).
[Crossref] [PubMed]

I. Kolvin, G. Cohen, and J. Fineberg, “Crack Front Dynamics: The Interplay of Singular Geometry and Crack Instabilities,” Phys. Rev. Lett. 114, 175501 (2015).
[Crossref] [PubMed]

T. G. Boué, G. Cohen, and J. Fineberg, “Origin of the Microbranching Instability in Rapid Cracks,” Phys. Rev. Lett. 114, 054301 (2015).
[Crossref] [PubMed]

S. M. Rubinstein, G. Cohen, and J. Fineberg, “Detachment fronts and the onset of dynamic friction,” Nature 430, 1005–1009 (2004).
[Crossref] [PubMed]

Cortet, P. P.

R. Villey, C. Creton, P. P. Cortet, M. J. Dalbe, and T. J. S. Matter, “Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives,” Soft Matter 11, 3480–3491 (2015).
[Crossref] [PubMed]

Creton, C.

R. Villey, C. Creton, P. P. Cortet, M. J. Dalbe, and T. J. S. Matter, “Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives,” Soft Matter 11, 3480–3491 (2015).
[Crossref] [PubMed]

Dalbe, M. J.

R. Villey, C. Creton, P. P. Cortet, M. J. Dalbe, and T. J. S. Matter, “Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives,” Soft Matter 11, 3480–3491 (2015).
[Crossref] [PubMed]

Dittmann, J.

R. Merkel, J. Dittmann, and C. Vielhauer, “How contact pressure, contact time, smearing and oil/skin lotion influence the aging of latent fingerprint traces: First results for the binary pixel feature using a CWL sensor,” in 2011 IEEE International Workshop on Information Forensics and Security (WIFS), (IEEE, 2011), pp. 1–6.

Edgerton, H. E.

H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in Drop Formation as Revealed by the High-speed Motion Camera,” J. Phys. Chem. 41, 1017–1028 (1937).
[Crossref]

Fineberg, J.

I. Kolvin, J. M. Kolinski, J. P. Gong, and J. Fineberg, “How supertough gels break,” Phys. Rev. Lett. 121, 135501 (2018).
[Crossref] [PubMed]

I. Kolvin, G. Cohen, and J. Fineberg, “Topological defects govern crack front motion and facet formation on broken surfaces,” Nat. Mater. 17, 140–144 (2017).
[Crossref] [PubMed]

I. Kolvin, G. Cohen, and J. Fineberg, “Crack Front Dynamics: The Interplay of Singular Geometry and Crack Instabilities,” Phys. Rev. Lett. 114, 175501 (2015).
[Crossref] [PubMed]

T. G. Boué, G. Cohen, and J. Fineberg, “Origin of the Microbranching Instability in Rapid Cracks,” Phys. Rev. Lett. 114, 054301 (2015).
[Crossref] [PubMed]

T. Goldman, A. Livne, and J. Fineberg, “Acquisition of Inertia by a Moving Crack,” Phys. Rev. Lett. 104, 114301 (2010).
[Crossref] [PubMed]

A. Livne, E. Bouchbinder, and J. Fineberg, “Breakdown of Linear Elastic Fracture Mechanics near the Tip of a Rapid Crack,” Phys. Rev. Lett. 101, 264301 (2008).
[Crossref]

S. M. Rubinstein, G. Cohen, and J. Fineberg, “Detachment fronts and the onset of dynamic friction,” Nature 430, 1005–1009 (2004).
[Crossref] [PubMed]

E. Sharon and J. Fineberg, “Microbranching instability and the dynamic fracture of brittle materials,” Phys. Rev. B 54, 7128–7139 (1996).
[Crossref]

J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, “Instability in dynamic fracture,” Phys. Rev. Lett. 67, 457–460 (1991).
[Crossref] [PubMed]

Fowlkes, J. B.

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

Freund, L. B.

L. B. Freund, Dynamic Fracture Mechanics (Cambridge University, 1998).

Goldman, T.

T. Goldman, A. Livne, and J. Fineberg, “Acquisition of Inertia by a Moving Crack,” Phys. Rev. Lett. 104, 114301 (2010).
[Crossref] [PubMed]

Gong, J. P.

I. Kolvin, J. M. Kolinski, J. P. Gong, and J. Fineberg, “How supertough gels break,” Phys. Rev. Lett. 121, 135501 (2018).
[Crossref] [PubMed]

Gorler, G. P.

E. Schleip, R. Willnecker, D. M. Herlach, and G. P. Gorler, “Measurements of Ultrarapid Solidification Rates in Greatly Undercooled Bulk Melts with a High Speed Photosensing Device,” Mater. Sci. Eng. 98, 39–42 (1988).
[Crossref]

Gross, S. P.

J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, “Instability in dynamic fracture,” Phys. Rev. Lett. 67, 457–460 (1991).
[Crossref] [PubMed]

Hall, T. L.

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

Hauser, E. A.

H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in Drop Formation as Revealed by the High-speed Motion Camera,” J. Phys. Chem. 41, 1017–1028 (1937).
[Crossref]

Herlach, D. M.

E. Schleip, R. Willnecker, D. M. Herlach, and G. P. Gorler, “Measurements of Ultrarapid Solidification Rates in Greatly Undercooled Bulk Melts with a High Speed Photosensing Device,” Mater. Sci. Eng. 98, 39–42 (1988).
[Crossref]

Hui, C.-Y.

R. Long, V. R. Krishnan, and C.-Y. Hui, “Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress,” J. Mech. Phys. Solids 59, 672–695 (2011).
[Crossref]

Johnson, K. L.

K. L. Johnson, Contact Mechanics (Cambridge University, 1987).

Kolinski, J. M.

I. Kolvin, J. M. Kolinski, J. P. Gong, and J. Fineberg, “How supertough gels break,” Phys. Rev. Lett. 121, 135501 (2018).
[Crossref] [PubMed]

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Lift-Off Instability During the Impact of a Drop on a Solid Surface,” Phys. Rev. Lett. 112, 134501 (2014).
[Crossref] [PubMed]

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Drops can bounce from perfectly hydrophilic surfaces,” EPL 108, 24001 (2014).
[Crossref]

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
[Crossref] [PubMed]

Kolvin, I.

I. Kolvin, J. M. Kolinski, J. P. Gong, and J. Fineberg, “How supertough gels break,” Phys. Rev. Lett. 121, 135501 (2018).
[Crossref] [PubMed]

I. Kolvin, G. Cohen, and J. Fineberg, “Topological defects govern crack front motion and facet formation on broken surfaces,” Nat. Mater. 17, 140–144 (2017).
[Crossref] [PubMed]

I. Kolvin, G. Cohen, and J. Fineberg, “Crack Front Dynamics: The Interplay of Singular Geometry and Crack Instabilities,” Phys. Rev. Lett. 114, 175501 (2015).
[Crossref] [PubMed]

Krishnan, V. R.

R. Long, V. R. Krishnan, and C.-Y. Hui, “Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress,” J. Mech. Phys. Solids 59, 672–695 (2011).
[Crossref]

Livne, A.

T. Goldman, A. Livne, and J. Fineberg, “Acquisition of Inertia by a Moving Crack,” Phys. Rev. Lett. 104, 114301 (2010).
[Crossref] [PubMed]

A. Livne, E. Bouchbinder, and J. Fineberg, “Breakdown of Linear Elastic Fracture Mechanics near the Tip of a Rapid Crack,” Phys. Rev. Lett. 101, 264301 (2008).
[Crossref]

Long, R.

R. Long, V. R. Krishnan, and C.-Y. Hui, “Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress,” J. Mech. Phys. Solids 59, 672–695 (2011).
[Crossref]

Mahadevan, L.

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Lift-Off Instability During the Impact of a Drop on a Solid Surface,” Phys. Rev. Lett. 112, 134501 (2014).
[Crossref] [PubMed]

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Drops can bounce from perfectly hydrophilic surfaces,” EPL 108, 24001 (2014).
[Crossref]

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
[Crossref] [PubMed]

Mandre, S.

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
[Crossref] [PubMed]

S. Mandre and M. P. Brenner, “The mechanism of a splash on a dry solid surface,” J. Fluid Mech. 690, 148–172 (2011).
[Crossref]

M. Mani, S. Mandre, and M. P. Brenner, “Events before droplet splashing on a solid surface,” J. Fluid Mech. 647, 163–185 (2010).
[Crossref]

S. Mandre, M. Mani, and M. P. Brenner, “Precursors to Splashing of Liquid Droplets on a Solid Surface,” Phys. Rev. Lett. 102, 134502 (2009).
[Crossref] [PubMed]

Mani, M.

M. Mani, S. Mandre, and M. P. Brenner, “Events before droplet splashing on a solid surface,” J. Fluid Mech. 647, 163–185 (2010).
[Crossref]

S. Mandre, M. Mani, and M. P. Brenner, “Precursors to Splashing of Liquid Droplets on a Solid Surface,” Phys. Rev. Lett. 102, 134502 (2009).
[Crossref] [PubMed]

Marder, M.

J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, “Instability in dynamic fracture,” Phys. Rev. Lett. 67, 457–460 (1991).
[Crossref] [PubMed]

Matter, T. J. S.

R. Villey, C. Creton, P. P. Cortet, M. J. Dalbe, and T. J. S. Matter, “Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives,” Soft Matter 11, 3480–3491 (2015).
[Crossref] [PubMed]

Merkel, R.

R. Merkel, J. Dittmann, and C. Vielhauer, “How contact pressure, contact time, smearing and oil/skin lotion influence the aging of latent fingerprint traces: First results for the binary pixel feature using a CWL sensor,” in 2011 IEEE International Workshop on Information Forensics and Security (WIFS), (IEEE, 2011), pp. 1–6.

Mycek, M.-A.

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

Persson, B.

B. Persson, “Theory of rubber friction and contact mechanics,” J. Chem. Phys. 115, 3840 (2001).
[Crossref]

Raghavan, M.

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

Rubinstein, S. M.

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Drops can bounce from perfectly hydrophilic surfaces,” EPL 108, 24001 (2014).
[Crossref]

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Lift-Off Instability During the Impact of a Drop on a Solid Surface,” Phys. Rev. Lett. 112, 134501 (2014).
[Crossref] [PubMed]

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
[Crossref] [PubMed]

S. M. Rubinstein, G. Cohen, and J. Fineberg, “Detachment fronts and the onset of dynamic friction,” Nature 430, 1005–1009 (2004).
[Crossref] [PubMed]

Schleip, E.

E. Schleip, R. Willnecker, D. M. Herlach, and G. P. Gorler, “Measurements of Ultrarapid Solidification Rates in Greatly Undercooled Bulk Melts with a High Speed Photosensing Device,” Mater. Sci. Eng. 98, 39–42 (1988).
[Crossref]

Sharon, E.

E. Sharon and J. Fineberg, “Microbranching instability and the dynamic fracture of brittle materials,” Phys. Rev. B 54, 7128–7139 (1996).
[Crossref]

Sprittles, J. E.

J. E. Sprittles, “Kinetic Effects in Dynamic Wetting,” Phys. Rev. Lett. 118, 114502 (2017).
[Crossref] [PubMed]

Swinney, H. L.

J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, “Instability in dynamic fracture,” Phys. Rev. Lett. 67, 457–460 (1991).
[Crossref] [PubMed]

Tabor, D.

F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Oxford, 1950).

Tucker, W. B.

H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in Drop Formation as Revealed by the High-speed Motion Camera,” J. Phys. Chem. 41, 1017–1028 (1937).
[Crossref]

Vielhauer, C.

R. Merkel, J. Dittmann, and C. Vielhauer, “How contact pressure, contact time, smearing and oil/skin lotion influence the aging of latent fingerprint traces: First results for the binary pixel feature using a CWL sensor,” in 2011 IEEE International Workshop on Information Forensics and Security (WIFS), (IEEE, 2011), pp. 1–6.

Villey, R.

R. Villey, C. Creton, P. P. Cortet, M. J. Dalbe, and T. J. S. Matter, “Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives,” Soft Matter 11, 3480–3491 (2015).
[Crossref] [PubMed]

Weitz, D. A.

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
[Crossref] [PubMed]

Willnecker, R.

E. Schleip, R. Willnecker, D. M. Herlach, and G. P. Gorler, “Measurements of Ultrarapid Solidification Rates in Greatly Undercooled Bulk Melts with a High Speed Photosensing Device,” Mater. Sci. Eng. 98, 39–42 (1988).
[Crossref]

Xu, Z.

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

EPL (1)

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Drops can bounce from perfectly hydrophilic surfaces,” EPL 108, 24001 (2014).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

Z. Xu, M. Raghavan, T. L. Hall, C.-W. Chang, M.-A. Mycek, J. B. Fowlkes, and C. A. Cain, “High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2091–2101 (2007).
[Crossref] [PubMed]

J. Chem. Phys. (1)

B. Persson, “Theory of rubber friction and contact mechanics,” J. Chem. Phys. 115, 3840 (2001).
[Crossref]

J. Fluid Mech. (2)

M. Mani, S. Mandre, and M. P. Brenner, “Events before droplet splashing on a solid surface,” J. Fluid Mech. 647, 163–185 (2010).
[Crossref]

S. Mandre and M. P. Brenner, “The mechanism of a splash on a dry solid surface,” J. Fluid Mech. 690, 148–172 (2011).
[Crossref]

J. Mech. Phys. Solids (1)

R. Long, V. R. Krishnan, and C.-Y. Hui, “Finite strain analysis of crack tip fields in incompressible hyperelastic solids loaded in plane stress,” J. Mech. Phys. Solids 59, 672–695 (2011).
[Crossref]

J. Phys. Chem. (1)

H. E. Edgerton, E. A. Hauser, and W. B. Tucker, “Studies in Drop Formation as Revealed by the High-speed Motion Camera,” J. Phys. Chem. 41, 1017–1028 (1937).
[Crossref]

Mater. Sci. Eng. (1)

E. Schleip, R. Willnecker, D. M. Herlach, and G. P. Gorler, “Measurements of Ultrarapid Solidification Rates in Greatly Undercooled Bulk Melts with a High Speed Photosensing Device,” Mater. Sci. Eng. 98, 39–42 (1988).
[Crossref]

Nat. Mater. (1)

I. Kolvin, G. Cohen, and J. Fineberg, “Topological defects govern crack front motion and facet formation on broken surfaces,” Nat. Mater. 17, 140–144 (2017).
[Crossref] [PubMed]

Nature (1)

S. M. Rubinstein, G. Cohen, and J. Fineberg, “Detachment fronts and the onset of dynamic friction,” Nature 430, 1005–1009 (2004).
[Crossref] [PubMed]

Phys. Rev. B (1)

E. Sharon and J. Fineberg, “Microbranching instability and the dynamic fracture of brittle materials,” Phys. Rev. B 54, 7128–7139 (1996).
[Crossref]

Phys. Rev. Lett. (10)

I. Kolvin, G. Cohen, and J. Fineberg, “Crack Front Dynamics: The Interplay of Singular Geometry and Crack Instabilities,” Phys. Rev. Lett. 114, 175501 (2015).
[Crossref] [PubMed]

J. M. Kolinski, L. Mahadevan, and S. M. Rubinstein, “Lift-Off Instability During the Impact of a Drop on a Solid Surface,” Phys. Rev. Lett. 112, 134501 (2014).
[Crossref] [PubMed]

J. M. Kolinski, S. M. Rubinstein, S. Mandre, M. P. Brenner, D. A. Weitz, and L. Mahadevan, “Skating on a Film of Air: Drops Impacting on a Surface,” Phys. Rev. Lett. 108, 074503 (2012).
[Crossref] [PubMed]

A. Livne, E. Bouchbinder, and J. Fineberg, “Breakdown of Linear Elastic Fracture Mechanics near the Tip of a Rapid Crack,” Phys. Rev. Lett. 101, 264301 (2008).
[Crossref]

T. G. Boué, G. Cohen, and J. Fineberg, “Origin of the Microbranching Instability in Rapid Cracks,” Phys. Rev. Lett. 114, 054301 (2015).
[Crossref] [PubMed]

T. Goldman, A. Livne, and J. Fineberg, “Acquisition of Inertia by a Moving Crack,” Phys. Rev. Lett. 104, 114301 (2010).
[Crossref] [PubMed]

I. Kolvin, J. M. Kolinski, J. P. Gong, and J. Fineberg, “How supertough gels break,” Phys. Rev. Lett. 121, 135501 (2018).
[Crossref] [PubMed]

J. Fineberg, S. P. Gross, M. Marder, and H. L. Swinney, “Instability in dynamic fracture,” Phys. Rev. Lett. 67, 457–460 (1991).
[Crossref] [PubMed]

S. Mandre, M. Mani, and M. P. Brenner, “Precursors to Splashing of Liquid Droplets on a Solid Surface,” Phys. Rev. Lett. 102, 134502 (2009).
[Crossref] [PubMed]

J. E. Sprittles, “Kinetic Effects in Dynamic Wetting,” Phys. Rev. Lett. 118, 114502 (2017).
[Crossref] [PubMed]

Soft Matter (1)

R. Villey, C. Creton, P. P. Cortet, M. J. Dalbe, and T. J. S. Matter, “Rate-dependent elastic hysteresis during the peeling of pressure sensitive adhesives,” Soft Matter 11, 3480–3491 (2015).
[Crossref] [PubMed]

Other (10)

F. P. Bowden and D. Tabor, The Friction and Lubrication of Solids (Clarendon Oxford, 1950).

The shape of the light pulse can be used to arbitrarily weight the timing of the virtual frames. For example, a triangular pulse envelope results in more virtual frames at t=τ/2, and fewer at t = 0 and t=τ.

R. Merkel, J. Dittmann, and C. Vielhauer, “How contact pressure, contact time, smearing and oil/skin lotion influence the aging of latent fingerprint traces: First results for the binary pixel feature using a CWL sensor,” in 2011 IEEE International Workshop on Information Forensics and Security (WIFS), (IEEE, 2011), pp. 1–6.

Again, we have limited the virtual frame rate such that each frame corresponds to approximately one pixel of movement of the front.

K. L. Johnson, Contact Mechanics (Cambridge University, 1987).

“Nac inc. datasheet, ultraubsi-12–24.pdf,” https://www.nacinc.com/pdf.php?pdf=/datasheets/UltraUBSi-12-24.pdf . Accessed: 2019-02-05.

Continuity of recording is limited only by the reset time of the camera’s sensor.

tt = 0 corresponds to a pixel dark when the exposure begins, and tt=τ corresponds to a pixel that remains illuminated when the exposure is complete.

L. B. Freund, Dynamic Fracture Mechanics (Cambridge University, 1998).

Here we have limited the virtual frame rate such that each frame corresponds to approximately one pixel of movement of the front. A higher frame rate is achievable with this data, but not especially useful for the purposes of measuring the front position.

Supplementary Material (5)

NameDescription
» Visualization 1       The VFT is tested by recording images simultaneously using a slow camera and a traditional high-speed camera.
» Visualization 2       Here a droplet impacts upon a surface.
» Visualization 3       Virtual frames are recorded at 1.6 Mfps, and replayed at 300 fps (slowed by 5333).
» Visualization 4       Elastic tape is peeled away from a smooth solid surface as described in the text.
» Visualization 5       An elastic sphere impacts upon a solid surface as described in the text.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Virtual Frame Technique: Schematic Demonstration of Working Principle The dynamics of a v-shaped front propagating at velocity V and traversing the field of view of a camera is shown schematically in both an instantaneous snapshot (a) and a resulting camera image (b), referred to as a Compressed Frame Stack (CFS), recorded with exposure time τ. The grayscale intensity I(x) recorded in the CFS is a convolution of the spatio-temporal dynamics of the propagating front, and thus appears blurred. (c) The dynamics are both binary and monotonic, therefore the instantaneous front position can be obtained by deconvolving the compressed frame stack, I(x). By way of example, five virtual frames are reconstructed by thresholding I(x); these virtual frames correspond to the indicated fractional exposure times t. (d) Two additional hypothetical processes that satisfy the binary and monotonic requirements are shown. The relevant CFS (left) is deconvolved into its constituent virtual frames (right) through thresholding. Note that the dynamics may be evolving in all directions, and from light to dark or vice versa.
Fig. 2
Fig. 2 VFT and Fast Camera Comparison Using Fracture Dynamics (a) Experimental setup for measurement of a propagating crack tip. A dynamic fracture is initiated in a strained elastomer made of PVS (polyvinyl siloxane). (b) Background lighting and sample opacity were tuned such that the process appears binary at any instant. Two cameras simultaneously record the dynamics such that the crack moves from left to right across both fields of view. Camera one (red) films at 40KHz with a resolution of 320x208 pixels with a total of 60 kilopixels. Six contrast enhanced images from camera one are shown outlined in red. Camera two (purple) films at 5KHz with a resolution of 1280x1000 pixels with a total of nearly 1.3 megapixels; a compressed frame stack is shown outlined in purple at right. The field of view of camera one is superimposed upon the raw image from camera two with a red dashed box. (c) Virtual frames reconstructed from the raw image in (b) are cropped to match the field of view of camera one. The fractional exposure times are chosen such that they correspond to the images recorded by the fast camera in (b). (d) Top: The crack tip location (ΔL) is measured using both the images of camera one and the virtual frames of camera two. The effective frame rate achieved using VFT is 1MHz, corresponding to β = 200. Because the field of view of the virtual frames is larger than the fast camera frames, the VFT camera (cam two) tracks the crack tip for nearly three times as long as the camera simply filming (cam one). Bottom: A sub-set of the data plotted on a smaller scale highlights the enhanced temporal resolution of the VFT. Full video comparison presented in Visualization 1.
Fig. 3
Fig. 3 Wetting Front Propagation Recorded with the VFT a) Experimental and imaging setup. A water droplet impacts a glass prism at velocity Vimpact. The surface is illuminated in total internal reflection (TIR) using a collimated LED. The reflected light is imaged upon the camera’s sensor using a long-working distance microscope objective. Because a wetted surface is no longer totally internally reflecting, pixels sampling the wetted area appear black. b) A typical compressed frame stack of the TIR signal with Vimpact = 3.5m/s and exposure time τ = 100μs. c) Virtual frames are created by thresholding the compressed frame stack. The small divot at the top of the circular front is an optical aberration. d) Contact radius of many virtual frames vs time. Note that the contact initially spreads at a rate exceeding 50 m/s. The inward-propagating front (bottom) moves much more slowly, at approximately 1.5 m/s. Within the first 5 microseconds of the dynamics, a total of 38 front positions are recorded for a virtual frame rate of nearly 8 MHz. Full video of the dynamics presented in Visualization 2.
Fig. 4
Fig. 4 Time-Gated VFT with a ‘Slow’ Camera a) Three experiments - an impacting finger, peeling tape, and an impacting elastic hemisphere - generate compressed frame stacks (CFS’s) using a rectangular light pulse of length 10ms, 1ms, and 250μs respectively. The images are taken using the TIR lighting setup shown in Fig. 3, and have a resolution of 2000x2000 pixels. b) Cropped subsections of the field of view are thresholded to generate virtual frames. Color denotes change from the previous virtual frame. c) Zoom in on fingerprint. Note the contact spreading from many small points to form the larger bands. d) Zoom in on peeling detachment front, Note the cavitation occurring ahead of the front, and the resulting rough contact line. e) Percent contact of the shown subsection over time at 65MHz. Note that this graph represents 1.5% of the field of view and 0.4% of the exposure time. Full videos of the dynamics presented in Visualization 3, Visualization 4, and Visualization 5
Fig. 5
Fig. 5 VFT Capability Phase Space Conventional fast cameras demand a tradeoff between pixel resolution and frame rate (bright lines, dark gray area on left); VFT introduces an alternative tradeoff between bit depth and frame rate resulting in an enhanced frame rate without loss of spatialre solution (faded lines, medium gray area in middle). Note that β ≡ 2#bits−2 to account for potential sensor and signal noise. This enhanced virtual frame rate does not require any change in the operation of the camera; indeed, the dynamics can be continuously recorded over many exposure times. Using time-gated VFT with a controlled exposure time τ, the frame rate may be increased arbitrarily to β/τ using Eq. (3), shown using the most faded lines and the lightestgray area (on right) for τ = 250μs. Black symbols indicate experimental data from Figs. 2, 3, and 4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = 1 τ 0 τ i ( x , y , t ) d t
I ( x , y ) = a t t ( x , y ) τ + b τ t t ( x , y ) τ t t ( I ) τ = b I b a
f p s m a x = | b a | * 2 # b i t s / τ β / τ
Δ t = τ Δ I b a τ Δ I m i n b a