Abstract

Recently a hybrid-type terahertz (THz) pulse source was proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a nonlinear crystal with a transmission stair-step echelon of period in the hundred-micrometer range etched into the front face. The tilt angle introduced by the conventional tilted-pulse-front setup (pre-tilt) was chosen to be equal to the tilt-angle needed inside the nonlinear crystal (62° for lithium niobate (LN)) in order to fulfill velocity-matching. In this case, plane-parallel nonlinear optical crystals can be used. The possibility of using a plane-parallel nonlinear optical crystal for producing good-quality, symmetric THz beams was considered the most important advantage of this setup. In the present paper, a thorough numerical investigation of a modified version of that setup is presented. In the new version, the tilted pulse-front is created by a transmission grating without any imaging optics, and a wedged nonlinear optical crystal with a small wedge angle is supposed. According to a 1D numerical code, significantly higher THz generation efficiency can be achieved with a transmission stair-step echelon-faced nonlinear crystal having a 5 – 15-degree wedge angle than with a plane-parallel one or with the conventional tilted-pulse-front setup. Because of the spatially-dependent group-delay dispersion introduced by the transmission grating, a small wedge in the nonlinear crystal improves the spatial homogeneity of the THz-generation process, resulting in higher efficiencies and better beam profiles. At 100 K temperature, and by using 800 nm pump pulses with 20 mJ pulse energy, 100 fs pulse length and 8 mm beam spot radius, approximately 4.5% conversion efficiency and close to 1 mJ terahertz pulse energy can be reached with the newly-proposed setup.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation

László Pálfalvi, György Tóth, Levente Tokodi, Zsuzsanna Márton, József András Fülöp, Gábor Almási, and János Hebling
Opt. Express 25(24) 29560-29573 (2017)

Hybrid tilted-pulse-front excitation scheme for efficient generation of high-energy terahertz pulses

L. Pálfalvi, Z. Ollmann, L. Tokodi, and J. Hebling
Opt. Express 24(8) 8156-8169 (2016)

Theory of terahertz generation by optical rectification using tilted-pulse-fronts

Koustuban Ravi, Wenqian Ronny Huang, Sergio Carbajo, Emilio A. Nanni, Damian N. Schimpf, Erich P. Ippen, and Franz. X. Kärtner
Opt. Express 23(4) 5253-5276 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Kapfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
    [Crossref]
  2. D. Nicoletti and A. Cavalleri, “Nonlinear light–matter interaction at terahertz frequencies,” Adv. Opt. Photonics 8(3), 401 (2016).
    [Crossref]
  3. E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
    [Crossref] [PubMed]
  4. D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
    [Crossref] [PubMed]
  5. Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
    [Crossref]
  6. L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17, 031301 (2014).
  7. A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
    [Crossref]
  8. J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
    [Crossref] [PubMed]
  9. Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
    [Crossref]
  10. J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
    [Crossref]
  11. J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
    [Crossref] [PubMed]
  12. J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
    [Crossref]
  13. G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of Semiconductor Terahertz Pulse Sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
    [Crossref]
  14. J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
    [Crossref] [PubMed]
  15. M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schöffler, H. Schmidt-Böcking, H. G. Roskos, and R. Dörner, “Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses,” Opt. Express 21(6), 6826–6836 (2013).
    [Crossref] [PubMed]
  16. L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
    [Crossref]
  17. Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
    [Crossref]
  18. M. Tsubouchi, K. Nagashima, F. Yoshida, Y. Ochi, and M. Maruyama, “Contact grating device with Fabry-Perot resonator for effective terahertz light generation,” Opt. Lett. 39(18), 5439–5442 (2014).
    [Crossref] [PubMed]
  19. J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
    [Crossref]
  20. B. K. Ofori-Okai, P. Sivarajah, W. Ronny Huang, and K. A. Nelson, “THz generation using a reflective stair-step echelon,” Opt. Express 24(5), 5057–5068 (2016).
    [Crossref] [PubMed]
  21. L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
    [Crossref] [PubMed]
  22. P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.
  23. M. I. Bakunov and S. B. Bodrov, “Terahertz generation with tilted-front laser pulses in a contact-grating scheme,” J. Opt. Soc. Am. B 31(11), 2549–2557 (2014).
    [Crossref]
  24. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14(6), 2263–2276 (2006).
    [Crossref] [PubMed]
  25. X. J. Wu, J. L. Ma, B. L. Zhang, S. S. Chai, Z. J. Fang, C. Y. Xia, D. Y. Kong, J. G. Wang, H. Liu, C. Q. Zhu, X. Wang, C. J. Ruan, and Y. T. Li, “Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses,” Opt. Express 26(6), 7107–7116 (2018).
    [Crossref] [PubMed]
  26. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
    [Crossref] [PubMed]
  27. K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
    [Crossref] [PubMed]
  28. L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
    [Crossref]
  29. X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
    [Crossref] [PubMed]

2018 (3)

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

X. J. Wu, J. L. Ma, B. L. Zhang, S. S. Chai, Z. J. Fang, C. Y. Xia, D. Y. Kong, J. G. Wang, H. Liu, C. Q. Zhu, X. Wang, C. J. Ruan, and Y. T. Li, “Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses,” Opt. Express 26(6), 7107–7116 (2018).
[Crossref] [PubMed]

2017 (2)

2016 (4)

2015 (2)

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

2014 (5)

2013 (2)

2012 (1)

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

2010 (1)

2008 (1)

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

2006 (1)

2005 (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

2004 (1)

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

2002 (1)

1996 (2)

Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[Crossref]

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

1995 (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Ahr, F.

Almási, G.

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref] [PubMed]

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Andriukaitis, G.

Arthur, G.

Bakunov, M. I.

Balciunas, T.

Baltuska, A.

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Bodrov, S. B.

Calendron, A.-L.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Cankaya, H.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Carbajo, S.

Cavalleri, A.

D. Nicoletti and A. Cavalleri, “Nonlinear light–matter interaction at terahertz frequencies,” Adv. Opt. Photonics 8(3), 401 (2016).
[Crossref]

Chai, S. S.

Dörner, R.

Fakhari, M.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Fallahi, A.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Fang, Z. J.

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Fülöp, J. A.

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of Semiconductor Terahertz Pulse Sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref] [PubMed]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17, 031301 (2014).

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Hebling, J.

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of Semiconductor Terahertz Pulse Sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref] [PubMed]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17, 031301 (2014).

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Hemmer, M.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Hong, K.-H.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Hua, Y.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Huang, W. R.

Jahnke, T.

Kapfrath, T.

T. Kapfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Karsch, S.

Kärtner, F.

Kärtner, F. X.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref] [PubMed]

Klingebiel, S.

Kong, D. Y.

Kozma, I.

Krausz, F.

Krizsán, G.

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Kuhl, J.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

Kunitski, M.

Li, Y. T.

Liu, H.

Lombosi, C.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Ma, J. L.

Márton, Z.

Maruyama, M.

Matlis, N. H.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Mechler, M. I.

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of Semiconductor Terahertz Pulse Sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

Miller, R. J.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Monoszlai, B.

Moriena, G.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Nagashima, K.

Nanni, E. A.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Nelson, K. A.

B. K. Ofori-Okai, P. Sivarajah, W. Ronny Huang, and K. A. Nelson, “THz generation using a reflective stair-step echelon,” Opt. Express 24(5), 5057–5068 (2016).
[Crossref] [PubMed]

T. Kapfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Nicoletti, D.

D. Nicoletti and A. Cavalleri, “Nonlinear light–matter interaction at terahertz frequencies,” Adv. Opt. Photonics 8(3), 401 (2016).
[Crossref]

Nugraha, P. S.

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Ochi, Y.

Ofori-Okai, B. K.

Ollmann, Z.

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

Pálfalvi, L.

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17, 031301 (2014).

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Peter, A.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Polgar, K.

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

Polónyi, G.

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of Semiconductor Terahertz Pulse Sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

J. A. Fülöp, G. Polónyi, B. Monoszlai, G. Andriukaitis, T. Balciunas, A. Pugzlys, G. Arthur, A. Baltuska, and J. Hebling, “Highly efficient scalable monolithic semiconductor terahertz pulse source,” Optica 3(10), 1075–1078 (2016).
[Crossref]

Pugzlys, A.

Ravi, K.

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

Richter, M.

Ronny Huang, W.

Roskos, H. G.

Ruan, C. J.

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Schmidt-Böcking, H.

Schöffler, M.

Sharma, A.

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Sivarajah, P.

Skrobol, C.

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Tanaka, K.

T. Kapfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Thomson, M. D.

Tibai, Z.

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

Tokodi, L.

Tóth, G.

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref] [PubMed]

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17, 031301 (2014).

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Tsubouchi, M.

Turnár, S.

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

Unferdorben, M.

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

Vodopyanov, K. L.

Vredenborg, A.

Wang, J. G.

Wang, X.

Wu, J.

Wu, Q.

Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[Crossref]

Wu, X.

Wu, X. J.

Xia, C. Y.

Yoshida, F.

Zapata, L. E.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Zhang, B. L.

Zhang, D.

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

Zhang, X. C.

Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[Crossref]

Zhou, C.

Zhu, C. Q.

Adv. Opt. Photonics (1)

D. Nicoletti and A. Cavalleri, “Nonlinear light–matter interaction at terahertz frequencies,” Adv. Opt. Photonics 8(3), 401 (2016).
[Crossref]

Appl. Phys. B (2)

J. Hebling, A. G. Stepanov, G. Almási, B. Bartal, and J. Kuhl, “Tunable THz pulse generation by optical rectification of ultrashort laser pulses with tilted pulse fronts,” Appl. Phys. B 78, 593–599 (2004).
[Crossref]

Z. Ollmann, J. Hebling, and G. Almási, “Design of a contact grating setup for mJ-energy THz pulse generation by optical rectification,” Appl. Phys. B 108(4), 821–826 (2012).
[Crossref]

Appl. Phys. Lett. (2)

Q. Wu and X. C. Zhang, “Ultrafast electro-optic field sensors,” Appl. Phys. Lett. 68(12), 1604–1606 (1996).
[Crossref]

L. Pálfalvi, J. A. Fülöp, G. Almási, and J. Hebling, “Novel setups for extremely high power single-cycle terahertz pulse generation by optical rectification,” Appl. Phys. Lett. 92(17), 171107 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Polónyi, M. I. Mechler, J. Hebling, and J. A. Fülöp, “Prospects of Semiconductor Terahertz Pulse Sources,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–8 (2017).
[Crossref]

J. Appl. Phys. (1)

L. Pálfalvi, J. Hebling, J. Kuhl, A. Peter, and K. Polgar, “Temperature dependence of the absorption and refraction of Mg-doped congruent and stoichometric LiNbO3 in the THz range,” J. Appl. Phys. 97(12), 123505 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. At. Mol. Opt. Phys. (1)

Z. Tibai, M. Unferdorben, S. Turnár, A. Sharma, J. A. Fülöp, G. Almási, and J. Hebling, “Relativistic electron acceleration by focused THz pulses,” J. Phys. At. Mol. Opt. Phys. 51(13), 134004 (2018).
[Crossref]

Nat. Commun. (1)

E. A. Nanni, W. R. Huang, K.-H. Hong, K. Ravi, A. Fallahi, G. Moriena, R. J. Miller, and F. X. Kärtner, “Terahertz-driven linear electron acceleration,” Nat. Commun. 6(1), 8486 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

D. Zhang, A. Fallahi, M. Hemmer, X. Wu, M. Fakhari, Y. Hua, H. Cankaya, A.-L. Calendron, L. E. Zapata, N. H. Matlis, and F. X. Kärtner, “Segmented terahertz electron accelerator and manipulator (STEAM),” Nat. Photonics 12(6), 336–342 (2018).
[Crossref] [PubMed]

T. Kapfrath, K. Tanaka, and K. A. Nelson, “Resonant and nonresonant control over matter and light by intense terahertz transients,” Nat. Photonics 7(9), 680–690 (2013).
[Crossref]

Opt. Express (10)

J. Hebling, G. Almási, I. Kozma, and J. Kuhl, “Velocity matching by pulse front tilting for large area THz-pulse generation,” Opt. Express 10(21), 1161–1166 (2002).
[Crossref] [PubMed]

K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14(6), 2263–2276 (2006).
[Crossref] [PubMed]

J. A. Fülöp, L. Pálfalvi, G. Almási, and J. Hebling, “Design of high-energy terahertz sources based on optical rectification,” Opt. Express 18(12), 12311–12327 (2010).
[Crossref] [PubMed]

M. Kunitski, M. Richter, M. D. Thomson, A. Vredenborg, J. Wu, T. Jahnke, M. Schöffler, H. Schmidt-Böcking, H. G. Roskos, and R. Dörner, “Optimization of single-cycle terahertz generation in LiNbO3 for sub-50 femtosecond pump pulses,” Opt. Express 21(6), 6826–6836 (2013).
[Crossref] [PubMed]

J. A. Fülöp, Z. Ollmann, C. Lombosi, C. Skrobol, S. Klingebiel, L. Pálfalvi, F. Krausz, S. Karsch, and J. Hebling, “Efficient generation of THz pulses with 0.4 mJ energy,” Opt. Express 22(17), 20155–20163 (2014).
[Crossref] [PubMed]

K. Ravi, W. R. Huang, S. Carbajo, X. Wu, and F. Kärtner, “Limitations to THz generation by optical rectification using tilted pulse fronts,” Opt. Express 22(17), 20239–20251 (2014).
[Crossref] [PubMed]

X. Wu, C. Zhou, W. R. Huang, F. Ahr, and F. X. Kärtner, “Temperature dependent refractive index and absorption coefficient of congruent lithium niobate crystals in the terahertz range,” Opt. Express 23(23), 29729–29737 (2015).
[Crossref] [PubMed]

B. K. Ofori-Okai, P. Sivarajah, W. Ronny Huang, and K. A. Nelson, “THz generation using a reflective stair-step echelon,” Opt. Express 24(5), 5057–5068 (2016).
[Crossref] [PubMed]

L. Pálfalvi, G. Tóth, L. Tokodi, Z. Márton, J. A. Fülöp, G. Almási, and J. Hebling, “Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation,” Opt. Express 25(24), 29560–29573 (2017).
[Crossref] [PubMed]

X. J. Wu, J. L. Ma, B. L. Zhang, S. S. Chai, Z. J. Fang, C. Y. Xia, D. Y. Kong, J. G. Wang, H. Liu, C. Q. Zhu, X. Wang, C. J. Ruan, and Y. T. Li, “Highly efficient generation of 0.2 mJ terahertz pulses in lithium niobate at room temperature with sub-50 fs chirped Ti:sapphire laser pulses,” Opt. Express 26(6), 7107–7116 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

J. Hebling, “Derivation of the pulse front tilt caused by angular dispersion,” Opt. Quantum Electron. 28(12), 1759–1763 (1996).
[Crossref]

Optica (1)

Phys. Plasmas (1)

A. Sharma, Z. Tibai, and J. Hebling, “Intense tera-hertz laser driven proton acceleration in plasmas,” Phys. Plasmas 23(6), 063111 (2016).
[Crossref]

Phys. Rev. Accel. Beams (1)

L. Pálfalvi, J. A. Fülöp, G. Tóth, and J. Hebling, “Evanescent-wave proton postaccelerator driven by intense THz pulse,” Phys. Rev. Accel. Beams 17, 031301 (2014).

Phys. Rev. Lett. (1)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-Induced Damage in Dielectrics with Nanosecond to Subpicosecond Pulses,” Phys. Rev. Lett. 74(12), 2248–2251 (1995).
[Crossref] [PubMed]

Other (1)

P. S. Nugraha, G. Krizsán, C. Lombosi, L. Pálfalvi, G. Tóth, G. Almási, J. A. Fülöp, and J. Hebling, “Demonstration of a tilted-pulse-front pumped plane-parallel slab terahertz source,” Opt. Lett.submitted.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 The setup of the investigated hybrid NLES THz source. The dark blue lines represent the pump pulse front at different moments. After diffraction of the pump beam on the transmission grating (TG), it propagates horizontally. Consequently, the phase-fronts are vertical. All γ is measured from a vertical line.
Fig. 2
Fig. 2 (a) The dependence of the γslab tilt angle and of the δw wedge angle of the NLES, and the ε angle between the plane of the TG and the plane of the average input surface of the NLES on the γ0 pre-tilt angle. (b) The most important range of (a) on an expanded scale. The temperature was supposed to be 100 K.
Fig. 3
Fig. 3 Illustration for the determination of the local pump pulse length (a) along the center of the THz beam (z’) and (b) along an axis parallel with z’ at a distance of rNM in the lateral plane.
Fig. 4
Fig. 4 The efficiency versus the step width and the phase matching frequency for four different cases. The values of pump pulse duration, pre-tilt angle, and temperature are indicated on the top of the contour plots.
Fig. 5
Fig. 5 THz generation efficiency curves plotted versus the crystal length for certain pre-tilt angles and for the conventional setup as well. The pump wavelength was 800 nm and the temperature was 100 K in all cases. The pulse durations and the intensities are indicated in the Figs.
Fig. 6
Fig. 6 Waveforms of the generated THz pulse for four different pre-tilt angles (a, b) and their spectra (c).
Fig. 7
Fig. 7 Waveforms of the THz pulses generated by the NLES setup. The three curves on every graph belong to three different points on the beam cross section. 800 nm wavelength, 100 fs pump pulse length and 100 K temperature were assumed. The pre-tilt angles are (a) 61° (b) 65° (c) 68° and (d) 72°, respectively.
Fig. 8
Fig. 8 Variation of the pump pulse length along the propagation of the given THz wavelet. All parameters are identical to those of Fig. 7.
Fig. 9
Fig. 9 Pulse shape of the generated THz pulse using the NLES setup (a)-(b) and the conventional tilting pulse front based setup (c)-(d).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

v p,gr cos( γ )= v THz,ph ,
tan( γ slab )= h w = n p,gr tan( γ )tan( γ 0 ) n p,gr 1 ,
δ w =γ γ slab
Δτ( z )=Δ τ 0 + λ 0 c ( DFAC ) [ tan( γ 0 ) λ 0 ] 2 Δλ+ λ 0 c FG{ n p,ph [ tan( γ 0 ) n p,ph λ 0 ] d 2 n p,ph d λ 2 }Δλ,
DFAC= z sin( γ )[ tan( γ G )tan( γ slab ) ],
FG= z [ cos( γ )+sin( γ )tan( γ slab ) ].
Δ τ C' =Δ τ 0 + λ 0 c r[ tan( γ slab )tan( γ G ) ] ( tan( γ 0 ) λ 0 ) 2 Δλ.
z E THz ( Ω, z )=i Ω d eff E 0 2 τ 0 2 4πln( 2 ) c n THz,ph ( Ω ) exp[ ( τ 0 2 +Δτ ( z ) 2 ) 2 Ω 2 16ln( 2 ) ]× exp[ i Ω c ( n THz,ph ( Ω ) n p,gr cos( γ ) ) z ]f( z )g( z ) α( Ω ) 2 E THz ( Ω, z )
w ( z )=w+ z p λ 0 w n p,ph =w+ z' λ 0 w n p,ph [ cos( γ )+sin( γ )tan( γ slab ) ].
f( z )= 1 1+ z p λ 0 w 2 n p,ph = 1 1+ z' λ 0 w 2 n p,ph [ cos( γ )+sin( γ )tan( γ slab ) ] .
g( z )=sinc[ π x ( z ) ],
Fluenc e THz = ε 0 c 2 2π 0 | E THz ( Ω,L ) 2 n THz,ph n THz,ph +1 | 2 dΩ.
Fluenc e p = π 2 c ε 0 n p,ph 2 E 0 2 τ 0 2ln( 2 )
η= Fluenc e THz Fluenc e p .

Metrics