Abstract

We numerically study a dielectric coupled guided-mode resonant (GMR) system, which includes two silicon (Si) grating waveguide layers (GWLs) stacked on CaF2 substrates. It is confirmed that the coupling between the top and bottom GMR modes starts once a Fabry-Perot (F-P) resonator is introduced, and electromagnetically induced transparency (EIT)-like spectral responses occur in the coupled GMR systems. A very narrow transparency window with a high-quality (Q) factor EIT-like effect of up to 288,892 was demonstrated. Furthermore, EIT-like response wavelengths can be flexibly designed in wide wavelength range by modifying either the GMR resonance frequencies or the space between two GWLs. Therefore, this EIT-like response in coupled GMR systems would pave the way towards novel sensors with extremely high sensitivity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced transparency-like effect in microring-Bragg gratings based coupling resonant system

Zecen Zhang, Geok Ing Ng, Ting Hu, Haodong Qiu, Xin Guo, Mohamed Saïd Rouifed, Chongyang Liu, and Hong Wang
Opt. Express 24(22) 25665-25675 (2016)

Electromagnetically induced transparency-like effect in a two-bus waveguides coupled microdisk resonator

Qingzhong Huang, Zhan Shu, Ge Song, Juguang Chen, Jinsong Xia, and Jinzhong Yu
Opt. Express 22(3) 3219-3227 (2014)

Electromagnetically induced transparency in hybrid plasmonic-dielectric system

Bin Tang, Lei Dai, and Chun Jiang
Opt. Express 19(2) 628-637 (2011)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
    [Crossref]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
    [Crossref]
  3. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
    [Crossref] [PubMed]
  4. C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
    [Crossref]
  5. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 63833 (2007).
    [Crossref]
  6. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
    [Crossref] [PubMed]
  7. E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
    [Crossref] [PubMed]
  8. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
    [Crossref] [PubMed]
  9. Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
    [Crossref]
  10. W. Liang, L. Yang, J. K. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
    [Crossref] [PubMed]
  11. H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
    [Crossref] [PubMed]
  12. J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37(24), 5133–5135 (2012).
    [Crossref] [PubMed]
  13. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
    [Crossref] [PubMed]
  14. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
    [Crossref] [PubMed]
  15. J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16(12), 125102 (2014).
    [Crossref]
  16. Y. Sun, H. Chen, X. Li, and Z. Hong, “Electromagnetically induced transparency in planar metamaterials based on guided mode resonance,” Opt. Commun. 392(1), 142–146 (2017).
    [Crossref]
  17. Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
    [Crossref] [PubMed]
  18. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
    [Crossref] [PubMed]
  19. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [Crossref] [PubMed]
  20. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref] [PubMed]
  21. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [Crossref] [PubMed]
  22. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [Crossref] [PubMed]
  23. Y. F. Xiao, S. K. Ozdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16(26), 21462–21475 (2008).
    [Crossref] [PubMed]
  24. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
    [Crossref] [PubMed]
  25. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
    [Crossref] [PubMed]
  26. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
    [Crossref] [PubMed]
  27. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
    [Crossref]
  28. S. S. Wang, M. G. Moharam, R. Magnusson, and J. S. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470 (1990).
    [Crossref]
  29. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [Crossref] [PubMed]
  30. P. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83(16), 3248–3250 (2003).
    [Crossref]
  31. S. G. Lee, S. Y. Jung, H. S. Kim, S. Lee, and J. M. Park, “Electromagnetically induced transparency based on guided-mode resonances,” Opt. Lett. 40(18), 4241–4244 (2015).
    [Crossref] [PubMed]
  32. S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
    [Crossref]
  33. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
    [Crossref]
  34. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  35. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
    [Crossref]
  36. T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett. 87(15), 151106 (2005).
    [Crossref]

2018 (1)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

2017 (4)

Y. Sun, H. Chen, X. Li, and Z. Hong, “Electromagnetically induced transparency in planar metamaterials based on guided mode resonance,” Opt. Commun. 392(1), 142–146 (2017).
[Crossref]

C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
[Crossref]

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

2015 (1)

2014 (3)

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16(12), 125102 (2014).
[Crossref]

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

2012 (1)

2010 (3)

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

2009 (2)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

2008 (3)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Y. F. Xiao, S. K. Ozdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16(26), 21462–21475 (2008).
[Crossref] [PubMed]

2007 (3)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 63833 (2007).
[Crossref]

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

2006 (4)

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

W. Liang, L. Yang, J. K. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
[Crossref] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

2005 (2)

T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett. 87(15), 151106 (2005).
[Crossref]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

2004 (2)

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[Crossref] [PubMed]

2003 (3)

P. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83(16), 3248–3250 (2003).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

1990 (1)

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Bagby, J. S.

Bai, R.

C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
[Crossref]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Briggs, D. P.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Chen, D. R.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

Chen, H.

Y. Sun, H. Chen, X. Li, and Z. Hong, “Electromagnetically induced transparency in planar metamaterials based on guided mode resonance,” Opt. Commun. 392(1), 142–146 (2017).
[Crossref]

Chen, J.

Chen, Y. L.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 63833 (2007).
[Crossref]

Cook, A. K.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Dong, C. H.

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Gaddam, V.

Gan, X.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Guo, G. C.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 63833 (2007).
[Crossref]

Hane, K.

T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett. 87(15), 151106 (2005).
[Crossref]

He, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Hong, Z.

Y. Sun, H. Chen, X. Li, and Z. Hong, “Electromagnetically induced transparency in planar metamaterials based on guided mode resonance,” Opt. Commun. 392(1), 142–146 (2017).
[Crossref]

Huang, Y.

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[Crossref] [PubMed]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Imoto, N.

Jia, B.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Jiang, W.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 63833 (2007).
[Crossref]

Jung, S. Y.

Kanamori, Y.

T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett. 87(15), 151106 (2005).
[Crossref]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Kee, C. S.

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

Khaleque, T.

Kim, H. S.

Kim, K. J.

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

Kim, S. H.

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

Kippenberg, T. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Kobayashi, N.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Kobayashi, T.

T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett. 87(15), 151106 (2005).
[Crossref]

Kravchenko, I. I.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Lee, S.

Lee, S. G.

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

S. G. Lee, S. Y. Jung, H. S. Kim, S. Lee, and J. M. Park, “Electromagnetically induced transparency based on guided-mode resonances,” Opt. Lett. 40(18), 4241–4244 (2015).
[Crossref] [PubMed]

Li, B. B.

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

Li, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

Li, X.

Y. Sun, H. Chen, X. Li, and Z. Hong, “Electromagnetically induced transparency in planar metamaterials based on guided mode resonance,” Opt. Commun. 392(1), 142–146 (2017).
[Crossref]

Liang, W.

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Liu, W.

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16(12), 125102 (2014).
[Crossref]

Liu, Y. C.

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

Lu, H.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Magnusson, R.

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

P. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83(16), 3248–3250 (2003).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

S. S. Wang, M. G. Moharam, R. Magnusson, and J. S. Bagby, “Guided-mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470 (1990).
[Crossref]

Maldonado, T. A.

P. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83(16), 3248–3250 (2003).
[Crossref]

Maleki, L.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[Crossref] [PubMed]

Mao, D.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Matsko, A. B.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[Crossref] [PubMed]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Moharam, M. G.

Ozdemir, S. K.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

Y. F. Xiao, S. K. Ozdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16(26), 21462–21475 (2008).
[Crossref] [PubMed]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Park, J. M.

Park, Y. S.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Poon, J. K.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Priambodo, P.

P. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83(16), 3248–3250 (2003).
[Crossref]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Qian, Z. H.

C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
[Crossref]

Qin, S.

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16(12), 125102 (2014).
[Crossref]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Savchenkov, A. A.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[Crossref] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Sun, Y.

Y. Sun, H. Chen, X. Li, and Z. Hong, “Electromagnetically induced transparency in planar metamaterials based on guided mode resonance,” Opt. Commun. 392(1), 142–146 (2017).
[Crossref]

Tian, H.

C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
[Crossref]

Tomita, M.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Totsuka, K.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

Uddin, M. J.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

W. Liang, L. Yang, J. K. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

Valentine, J.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Vuckovic, J.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

Waks, E.

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

Wang, C.

Wang, H.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

Wang, S. S.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Wang, Z.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Xiao, J.

Xiao, Y. F.

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Y. F. Xiao, S. K. Ozdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16(26), 21462–21475 (2008).
[Crossref] [PubMed]

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 63833 (2007).
[Crossref]

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

Yang, L.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Y. F. Xiao, S. K. Ozdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16(26), 21462–21475 (2008).
[Crossref] [PubMed]

W. Liang, L. Yang, J. K. Poon, Y. Huang, K. J. Vahala, and A. Yariv, “Transmission characteristics of a Fabry-Perot etalon-microtoroid resonator coupled system,” Opt. Lett. 31(4), 510–512 (2006).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Yanik, M. F.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

Yariv, A.

Yu, C. Q.

C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
[Crossref]

Yuan, X.

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16(12), 125102 (2014).
[Crossref]

Zhang, J.

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16(12), 125102 (2014).
[Crossref]

Zhang, R.

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Zhang, Y. D.

C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
[Crossref]

Zhao, J.

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

Zhu, J.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

Zhu, L. Y.

C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
[Crossref]

Zou, X. B.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 63833 (2007).
[Crossref]

Appl. Phys. Express (1)

C. Q. Yu, H. Tian, Z. H. Qian, R. Bai, L. Y. Zhu, and Y. D. Zhang, “Tunable Fano and coupled-resonator-induced transparency resonances in the waveguide-coupled inverted nested ring resonator,” Appl. Phys. Express 10(12), 122202 (2017).
[Crossref]

Appl. Phys. Lett. (5)

Y. F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane-coated silica microtoroid,” Appl. Phys. Lett. 94(23), 231115 (2009).
[Crossref]

P. Priambodo, T. A. Maldonado, and R. Magnusson, “Fabrication and characterization of high-quality waveguide-mode resonant optical filters,” Appl. Phys. Lett. 83(16), 3248–3250 (2003).
[Crossref]

S. G. Lee, S. H. Kim, K. J. Kim, and C. S. Kee, “Polarization-independent electromagnetically induced transparency-like transmission in coupled guided-mode resonance structures,” Appl. Phys. Lett. 110(11), 111106 (2017).
[Crossref]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61(9), 1022–1024 (1992).
[Crossref]

T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett. 87(15), 151106 (2005).
[Crossref]

J. Opt. (1)

J. Zhang, W. Liu, X. Yuan, and S. Qin, “Electromagnetically induced transparency-like optical responses in all-dielectric metamaterials,” J. Opt. 16(12), 125102 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9(1), 161–290 (1980).
[Crossref]

Nano Lett. (2)

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10(4), 1103–1107 (2010).
[Crossref] [PubMed]

Nanophotonics (1)

Y. C. Liu, B. B. Li, and Y. F. Xiao, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5), 789–811 (2017).
[Crossref]

Nat. Commun. (1)

Y. Yang, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “All-dielectric metasurface analogue of electromagnetically induced transparency,” Nat. Commun. 5(1), 5753 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[Crossref] [PubMed]

Nat. Photonics (1)

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(2), 122 (2010).
[Crossref]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[Crossref] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

Y. Sun, H. Chen, X. Li, and Z. Hong, “Electromagnetically induced transparency in planar metamaterials based on guided mode resonance,” Opt. Commun. 392(1), 142–146 (2017).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 63833 (2007).
[Crossref]

Phys. Rev. Lett. (8)

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007).
[Crossref] [PubMed]

E. Waks and J. Vuckovic, “Dipole induced transparency in drop-filter cavity-waveguide systems,” Phys. Rev. Lett. 96(15), 153601 (2006).
[Crossref] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93(23), 233903 (2004).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010).
[Crossref] [PubMed]

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101(25), 253903 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006).
[Crossref] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77(2), 633–673 (2005).
[Crossref]

Sci. Rep. (1)

H. Lu, X. Gan, D. Mao, B. Jia, and J. Zhao, “Flexibly tunable high-quality-factor induced transparency in plasmonic systems,” Sci. Rep. 8(1), 1558 (2018).
[Crossref] [PubMed]

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities,” Science 317(5839), 783–787 (2007).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Transmittance spectra of the coupled GMR systems (p = 1.6 μm) with two GWLs and one single GWL1 (GWL2). The inset shows the real part of refractive index for CaF2 and silicon as a function of wavelength. (b) Schematic of the coupled GMR system and geometrical parameters. (c) Magnified view of the transmission features around resonant wavelengths for the coupled GMR system (p = 1.6 μm). (d) Three-level model of the EIT-like effect in our system.
Fig. 2
Fig. 2 Electric field (a) - (c) and magnetic field (d) - (f) distributions for the coupled GMR system (p = 1.6 μm) near the resonant wavelengths as indicated by blue dash lines in Fig. 1(c). (a) and (d) At the off EIT wavelength of 3.410370 μm. (b) and (e) At the EIT-resonant wavelength of 3.410830 μm. (c) and (f) At the off EIT wavelength of 3.411120 μm.
Fig. 3
Fig. 3 Numerically simulated transmittance spectra of the coupled GMR systems (a) - (e) for p = 1.4 μm with space D = 3.135, 3.235, 3.335, 3.435 and 3.535 μm, and (f) - (j) for p = 1.6 μm with spacing D = 3.335, 3.535, 3.585, 3.635 and 3.735 μm respectively. The full width at half maximum (Δλ) for the EIT resonances (b) - (d) and (g) - (i) are 0.346 nm, 0.011 nm, 1.007 nm, 0.057 nm, 0.012 nm and 0.152 nm, and corresponding Q factors are about 9181, 288892, 3157, 59839, 284285 and 22447. The insets in (c) and (h) show magnified images of the spectrum near the resonance wavelength.
Fig. 4
Fig. 4 (a) Transmittance spectra of the structure with one single GWL1 for different periods (p = 1.4, 1.6, 1.8 and 2.0 μm). The full width at half maximum (Δλ) for each curves are noted. (b) Resonant wavelength with respect to grating period. A linear fit is expressed by the red line.

Metrics