Abstract

As a key element in optical systems, a broadband and omnidirectional polarization beam splitter has been long desired. Here, based on anisotropic metamaterials, a perfect polarizing beam splitter is theoretically designed for the extremely broad frequency and angle bands without energy loss. When an electromagnetic wave is incident on the beam splitter, the transverse magnetic-polarized component suffers total reflection, while the transverse electric-polarized component is completely transmitted within the incident angle range [-90°, 90°] for the white light. This study provides a new approach to design an efficient polarizing beam splitter and may promote the development and applications of anisotropic metamaterials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A broad-angle polarization beam splitter based on a simple dielectric periodic structure

Yuan Zhang, Yurong Jiang, Wei Xue, and Sailing He
Opt. Express 15(22) 14363-14368 (2007)

Polarizing beam splitter cube for circularly and elliptically polarized light

Sawyer Miller, Xingzhou Tu, Linan Jiang, and Stanley Pau
Opt. Express 27(11) 16258-16270 (2019)

Polarization beam splitter based on extremely anisotropic black phosphorus ribbons

Daxing Dong, Youwen Liu, Yue Fei, Yongqing Fan, Junsheng Li, and Yangyang Fu
Opt. Express 28(6) 8371-8383 (2020)

References

  • View by:
  • |
  • |
  • |

  1. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. L. Brubaker, A. L. Lentine, R. L. Morrison, S. J. Hinterlong, M. J. Herron, S. L. Walker, and J. M. Sasian, “Experimental investigation of a free-space optical switching network by using symmetric self-electro-optic-effect devices,” Appl. Opt. 31(26), 5431–5446 (1992).
    [Crossref] [PubMed]
  2. Q. W. Song, M. C. Lee, and P. J. Talbot, “Polarization sensitivity of birefringent photorefractive holograms and its applications to binary switching,” Appl. Opt. 31(29), 6240–6246 (1992).
    [Crossref] [PubMed]
  3. Y. T. Huang and Y. H. Chen, “Polarization-selective elements with a substrate-mode grating pair structure,” Opt. Lett. 18(11), 921–923 (1993).
    [Crossref] [PubMed]
  4. R. K. Kostuk, T. J. Kim, G. Campbell, and C. W. Han, “Diffractive-optic polarization-sensing element for magneto-optic storage heads,” Opt. Lett. 19(16), 1257–1259 (1994).
    [Crossref] [PubMed]
  5. M. Ojima, A. Saito, T. Kaku, M. Ito, Y. Tsunoda, S. Takayama, and Y. Sugita, “Compact magnetooptical disk for coded data storage,” Appl. Opt. 25(4), 483–489 (1986).
    [Crossref] [PubMed]
  6. L. B. Wolff, “Polarization Camera for Computer Vision with a Beam Splitter,” J. Opt. Soc. Am. A 11(11), 2935–2945 (1994).
    [Crossref]
  7. X. Y. Wang, J. W. Du, and S. Q. Zhu, “Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction,” Opt. Commun. 398, 77–84 (2017).
    [Crossref]
  8. H. Wolter, “Born, M — Principles of Optics Electromagnetic Theory of Propagation Interference and Diffraction of Light,” Zeitschrift Fur Angewandte Physik 21(6), 565 (1966).
  9. L. Li and J. A. Dobrowolski, “High-performance thin-film polarizing beam splitter operating at angles greater than the critical angle,” Appl. Opt. 39(16), 2754–2771 (2000).
    [Crossref] [PubMed]
  10. J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
    [Crossref]
  11. H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
    [Crossref]
  12. T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
    [Crossref] [PubMed]
  13. A. Haldar and A. O. Adeyeye, “Artificial metamaterials for reprogrammable magnetic and microwave properties,” Appl. Phys. Lett. 108(2), 022405 (2016).
    [Crossref]
  14. P. B. Catrysse and S. H. Fan, “Deep sub-wavelength beam propagation, beam manipulation and imaging with extreme anisotropic meta-materials,” 2012 Conference on Lasers and Electro-Optics, paper QTu1G.7 (2012).
    [Crossref]
  15. Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
    [Crossref]
  16. S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
    [Crossref] [PubMed]
  17. D. H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16(23), 18731–18738 (2008).
    [Crossref] [PubMed]
  18. M. Xu, H. Urbach, D. de Boer, and H. Cornelissen, “Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon,” Opt. Express 13(7), 2303–2320 (2005).
    [Crossref] [PubMed]
  19. D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29(7), 754–756 (2004).
    [Crossref] [PubMed]
  20. H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
    [Crossref]
  21. B. Wang, L. Chen, L. Lei, and J. Y. Zhou, “Diffractive polarizing beam splitter of two-layer grating for operation in reflection,” Opt. Commun. 311, 307–310 (2013).
    [Crossref]
  22. J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep-Uk 4 (2014).
  23. L. Li and J. A. Dobrowolski, “Visible broadband, wide-angle,thin-film multilayer polarizing beam splitter,” Appl. Opt. 35(13), 2221–2225 (1996).
    [Crossref] [PubMed]
  24. L. Zhou and W. Liu, “Broadband polarizing beam splitter with an embedded metal-wire nanograting,” Opt. Lett. 30(12), 1434–1436 (2005).
    [Crossref] [PubMed]
  25. M. C. Larciprete, M. Centini, R. Li Voti, M. Bertolotti, and C. Sibilia, “Aligned Ag nanowires for radiation manipulation: efficient and broadband infrared polarizing beam splitter,” J. Mod. Opt. 61(15), 1261–1268 (2014).
    [Crossref]
  26. T. Zhai, Y. Zhou, J. Zhou, and D. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17(20), 17206–17213 (2009).
    [Crossref] [PubMed]
  27. T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
    [Crossref]
  28. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  29. W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
    [Crossref]
  30. L. F. Shen, T. J. Yang, and Y. F. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B Condens. Matter Mater. Phys. 77(20), 205124 (2008).
    [Crossref]
  31. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
    [Crossref] [PubMed]
  32. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  33. K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12(3), 143–149 (2018).
    [Crossref]

2018 (1)

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12(3), 143–149 (2018).
[Crossref]

2017 (1)

X. Y. Wang, J. W. Du, and S. Q. Zhu, “Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction,” Opt. Commun. 398, 77–84 (2017).
[Crossref]

2016 (1)

A. Haldar and A. O. Adeyeye, “Artificial metamaterials for reprogrammable magnetic and microwave properties,” Appl. Phys. Lett. 108(2), 022405 (2016).
[Crossref]

2014 (1)

M. C. Larciprete, M. Centini, R. Li Voti, M. Bertolotti, and C. Sibilia, “Aligned Ag nanowires for radiation manipulation: efficient and broadband infrared polarizing beam splitter,” J. Mod. Opt. 61(15), 1261–1268 (2014).
[Crossref]

2013 (3)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

B. Wang, L. Chen, L. Lei, and J. Y. Zhou, “Diffractive polarizing beam splitter of two-layer grating for operation in reflection,” Opt. Commun. 311, 307–310 (2013).
[Crossref]

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

2012 (3)

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

2011 (2)

T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
[Crossref]

T. Weber, T. Käsebier, E. B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
[Crossref] [PubMed]

2010 (1)

J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
[Crossref]

2009 (1)

2008 (3)

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

L. F. Shen, T. J. Yang, and Y. F. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B Condens. Matter Mater. Phys. 77(20), 205124 (2008).
[Crossref]

D. H. Kwon and D. H. Werner, “Polarization splitter and polarization rotator designs based on transformation optics,” Opt. Express 16(23), 18731–18738 (2008).
[Crossref] [PubMed]

2007 (1)

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[Crossref]

2005 (2)

2004 (1)

2000 (2)

1996 (1)

1994 (2)

1993 (1)

1992 (2)

1986 (1)

1966 (1)

H. Wolter, “Born, M — Principles of Optics Electromagnetic Theory of Propagation Interference and Diffraction of Light,” Zeitschrift Fur Angewandte Physik 21(6), 565 (1966).

Adeyeye, A. O.

A. Haldar and A. O. Adeyeye, “Artificial metamaterials for reprogrammable magnetic and microwave properties,” Appl. Phys. Lett. 108(2), 022405 (2016).
[Crossref]

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Ben-Abdallah, P.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Bertolotti, M.

M. C. Larciprete, M. Centini, R. Li Voti, M. Bertolotti, and C. Sibilia, “Aligned Ag nanowires for radiation manipulation: efficient and broadband infrared polarizing beam splitter,” J. Mod. Opt. 61(15), 1261–1268 (2014).
[Crossref]

Biehs, S. A.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Brubaker, J. L.

Campbell, G.

Centini, M.

M. C. Larciprete, M. Centini, R. Li Voti, M. Bertolotti, and C. Sibilia, “Aligned Ag nanowires for radiation manipulation: efficient and broadband infrared polarizing beam splitter,” J. Mod. Opt. 61(15), 1261–1268 (2014).
[Crossref]

Chau, Y. F.

L. F. Shen, T. J. Yang, and Y. F. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B Condens. Matter Mater. Phys. 77(20), 205124 (2008).
[Crossref]

Chen, L.

B. Wang, L. Chen, L. Lei, and J. Y. Zhou, “Diffractive polarizing beam splitter of two-layer grating for operation in reflection,” Opt. Commun. 311, 307–310 (2013).
[Crossref]

Chen, S.

T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
[Crossref]

Chen, Y. H.

Cloonan, T. J.

Cornelissen, H.

de Boer, D.

Dobrowolski, J. A.

Du, J. W.

X. Y. Wang, J. W. Du, and S. Q. Zhu, “Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction,” Opt. Commun. 398, 77–84 (2017).
[Crossref]

Du, Y.

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

Gralak, B.

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

Guan, H. Y.

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

Guo, C. Q.

J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
[Crossref]

Haldar, A.

A. Haldar and A. O. Adeyeye, “Artificial metamaterials for reprogrammable magnetic and microwave properties,” Appl. Phys. Lett. 108(2), 022405 (2016).
[Crossref]

Han, C. W.

Herron, M. J.

Hinterlong, S. J.

Huang, Y. T.

Im, K.

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12(3), 143–149 (2018).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Ito, M.

Jacob, Z.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

Jin, G.

Jin, Y. X.

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

Kaku, T.

Kang, J. H.

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12(3), 143–149 (2018).
[Crossref]

Käsebier, T.

Kim, T. J.

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kivshar, Y. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Kley, E. B.

Kong, F. Y.

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

Kostuk, R. K.

Kwon, D. H.

Larciprete, M. C.

M. C. Larciprete, M. Centini, R. Li Voti, M. Bertolotti, and C. Sibilia, “Aligned Ag nanowires for radiation manipulation: efficient and broadband infrared polarizing beam splitter,” J. Mod. Opt. 61(15), 1261–1268 (2014).
[Crossref]

Lee, M. C.

Lei, L.

B. Wang, L. Chen, L. Lei, and J. Y. Zhou, “Diffractive polarizing beam splitter of two-layer grating for operation in reflection,” Opt. Commun. 311, 307–310 (2013).
[Crossref]

Lentine, A. L.

Li, F.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[Crossref]

Li, L.

Li Voti, R.

M. C. Larciprete, M. Centini, R. Li Voti, M. Bertolotti, and C. Sibilia, “Aligned Ag nanowires for radiation manipulation: efficient and broadband infrared polarizing beam splitter,” J. Mod. Opt. 61(15), 1261–1268 (2014).
[Crossref]

Liu, D.

T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
[Crossref]

T. Zhai, Y. Zhou, J. Zhou, and D. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17(20), 17206–17213 (2009).
[Crossref] [PubMed]

Liu, H.

Liu, S. J.

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

Liu, W.

Lu, S.

Luo, H.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[Crossref]

McCormick, F. B.

Morrison, R. L.

Narimanov, E. E.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

Ojima, M.

Park, Q. H.

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12(3), 143–149 (2018).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Ren, Z.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[Crossref]

Saito, A.

Sasian, J. M.

Shao, J. D.

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

Shen, L. F.

L. F. Shen, T. J. Yang, and Y. F. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B Condens. Matter Mater. Phys. 77(20), 205124 (2008).
[Crossref]

Shen, Y. F.

J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
[Crossref]

Shi, J.

T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
[Crossref]

Shu, W.

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[Crossref]

Sibilia, C.

M. C. Larciprete, M. Centini, R. Li Voti, M. Bertolotti, and C. Sibilia, “Aligned Ag nanowires for radiation manipulation: efficient and broadband infrared polarizing beam splitter,” J. Mod. Opt. 61(15), 1261–1268 (2014).
[Crossref]

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Smigaj, W.

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

Smolyaninov, I. I.

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

Song, Q. W.

Sugita, Y.

Takayama, S.

Talbot, P. J.

Tooley, F. A. P.

Tschikin, M.

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Tsunoda, Y.

Tünnermann, A.

Urbach, H.

Walker, S. L.

Wang, B.

B. Wang, L. Chen, L. Lei, and J. Y. Zhou, “Diffractive polarizing beam splitter of two-layer grating for operation in reflection,” Opt. Commun. 311, 307–310 (2013).
[Crossref]

Wang, J. P.

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

Wang, X. Y.

X. Y. Wang, J. W. Du, and S. Q. Zhu, “Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction,” Opt. Commun. 398, 77–84 (2017).
[Crossref]

Wang, Y. C.

J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
[Crossref]

Weber, T.

Werner, D. H.

Wolff, L. B.

Wolter, H.

H. Wolter, “Born, M — Principles of Optics Electromagnetic Theory of Propagation Interference and Diffraction of Light,” Zeitschrift Fur Angewandte Physik 21(6), 565 (1966).

Wu, F. F.

J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
[Crossref]

Xu, M.

Yan, Y.

Yang, T. J.

L. F. Shen, T. J. Yang, and Y. F. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B Condens. Matter Mater. Phys. 77(20), 205124 (2008).
[Crossref]

Yi, D.

Zhai, T.

T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
[Crossref]

T. Zhai, Y. Zhou, J. Zhou, and D. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17(20), 17206–17213 (2009).
[Crossref] [PubMed]

Zhan, Y. A.

J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
[Crossref]

Zhang, X.

T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
[Crossref]

Zhou, J.

J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
[Crossref]

T. Zhai, Y. Zhou, J. Zhou, and D. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17(20), 17206–17213 (2009).
[Crossref] [PubMed]

Zhou, J. Y.

B. Wang, L. Chen, L. Lei, and J. Y. Zhou, “Diffractive polarizing beam splitter of two-layer grating for operation in reflection,” Opt. Commun. 311, 307–310 (2013).
[Crossref]

Zhou, L.

Zhou, Y.

T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
[Crossref]

T. Zhai, Y. Zhou, J. Zhou, and D. Liu, “Polarization controller based on embedded optical transformation,” Opt. Express 17(20), 17206–17213 (2009).
[Crossref] [PubMed]

Zhu, S. Q.

X. Y. Wang, J. W. Du, and S. Q. Zhu, “Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction,” Opt. Commun. 398, 77–84 (2017).
[Crossref]

Adv. Mater. (1)

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Appl. Opt. (5)

Appl. Phys. B (2)

H. Luo, Z. Ren, W. Shu, and F. Li, “Construct a polarizing beam splitter by an anisotropic metamaterial slab,” Appl. Phys. B 87(2), 283–287 (2007).
[Crossref]

T. Zhai, S. Chen, Y. Zhou, J. Shi, X. Zhang, and D. Liu, “Beam controller using nonlinear embedded optical transformation,” Appl. Phys. B 104(4), 935–939 (2011).
[Crossref]

Appl. Phys. Lett. (2)

A. Haldar and A. O. Adeyeye, “Artificial metamaterials for reprogrammable magnetic and microwave properties,” Appl. Phys. Lett. 108(2), 022405 (2016).
[Crossref]

Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband Purcell effect: Radiative decay engineering with metamaterials,” Appl. Phys. Lett. 100(18), 181105 (2012).
[Crossref]

J. Mod. Opt. (1)

M. C. Larciprete, M. Centini, R. Li Voti, M. Bertolotti, and C. Sibilia, “Aligned Ag nanowires for radiation manipulation: efficient and broadband infrared polarizing beam splitter,” J. Mod. Opt. 61(15), 1261–1268 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. D Appl. Phys. (1)

J. Zhou, Y. F. Shen, Y. C. Wang, Y. A. Zhan, F. F. Wu, and C. Q. Guo, “Novel polarization beam splitter with a tolerance to large random disorder,” J. Phys. D Appl. Phys. 43(42), 425102 (2010).
[Crossref]

Nat. Photonics (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

K. Im, J. H. Kang, and Q. H. Park, “Universal impedance matching and the perfect transmission of white light,” Nat. Photonics 12(3), 143–149 (2018).
[Crossref]

Opt. Commun. (3)

B. Wang, L. Chen, L. Lei, and J. Y. Zhou, “Diffractive polarizing beam splitter of two-layer grating for operation in reflection,” Opt. Commun. 311, 307–310 (2013).
[Crossref]

H. Y. Guan, Y. X. Jin, S. J. Liu, J. P. Wang, F. Y. Kong, Y. Du, and J. D. Shao, “Optimization design of polarizing beam splitter based on metal-multilayer dielectric reflecting grating,” Opt. Commun. 287, 25–30 (2013).
[Crossref]

X. Y. Wang, J. W. Du, and S. Q. Zhu, “Symmetrical optical imaging system with bionic variable-focus lens for off-axis aberration correction,” Opt. Commun. 398, 77–84 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

W. Śmigaj and B. Gralak, “Validity of the effective-medium approximation of photonic crystals,” Phys. Rev. B Condens. Matter Mater. Phys. 77(23), 235445 (2008).
[Crossref]

L. F. Shen, T. J. Yang, and Y. F. Chau, “Effect of internal period on the optical dispersion of indefinite-medium materials,” Phys. Rev. B Condens. Matter Mater. Phys. 77(20), 205124 (2008).
[Crossref]

Phys. Rev. Lett. (2)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett. 109(10), 104301 (2012).
[Crossref] [PubMed]

Zeitschrift Fur Angewandte Physik (1)

H. Wolter, “Born, M — Principles of Optics Electromagnetic Theory of Propagation Interference and Diffraction of Light,” Zeitschrift Fur Angewandte Physik 21(6), 565 (1966).

Other (2)

P. B. Catrysse and S. H. Fan, “Deep sub-wavelength beam propagation, beam manipulation and imaging with extreme anisotropic meta-materials,” 2012 Conference on Lasers and Electro-Optics, paper QTu1G.7 (2012).
[Crossref]

J. Zheng, Z. C. Ye, N. L. Sun, R. Zhang, Z. M. Sheng, H. P. D. Shieh, and J. Zhang, “Highly anisotropic metasurface: a polarized beam splitter and hologram,” Sci. Rep-Uk 4 (2014).

Supplementary Material (1)

NameDescription
» Visualization 1       PPBS for Gaussian beams

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) A PPBS with thickness d is placed between medium 1 and medium 2. (b) Illustration of anti-reflection for TE wave in the PPBS.
Fig. 2
Fig. 2 (a) Huygens construction for direction of refraction wave. Circles represent isotropic dispersion relation of medium 1 and medium 2, the red line denotes a special dispersion relation of the PPBS,   θ 1 is incident angle, θ 2   is the refraction angle in the PPBS, and θ 3 is the refraction angle in medium 2. (b-d) The theoretically derived parameters of ε x = ε z (b), μ x = μ z (c), and μ y (d) for obtaining the perfect polarization beam splitter when the incident angle lies in the range [ 90 ° , 90 ° ] and the wavelength lies in the visible light spectrum; both medium 1 and 2 are air.
Fig. 3
Fig. 3 Optical characteristics of the PPBS in the materials with   ε 1 = 1 , μ 1 = 1 , ε 2 = 4 , μ 2 = 1 . (a) Transmittance of the PPBS for TE and TM waves at different incident angles at a wavelength of 400 nm. (b) Transmittance of the PPBS for the visible-range TE and TM waves at an incident angle of 30°. (c) Electrical field distribution when the incident wave is a plane TE wave polarized in the Z direction at a wavelength of 400 nm and an incident angle of 30°, demonstrating 100% transmittance. (d) Magnetic field distribution when the incident wave is a 400 nm plane TM wave polarized in the xy plane with an incident angle of 30°.
Fig. 4
Fig. 4 Optical characteristics of the perfect polarization beam splitter in air with ε 1 = 1 , μ 1 = 1 , ε 2 = 1 , μ 2 = 1 . (a) Transmittance of 400 nm TE and TM waves at an incident angle range of [-85°, 85°]. (b) Transmittance of TE and TM waves within the visible light spectrum at an incident angle of   30 ° . (c) Magnitude distribution of E z when a plane TE wave with a wavelength of 400 nm is incident on the PPBS at an angle of 30°. (d) Magnitude distribution of H z when a 400 nm plane TM wave is incident on the PPBS at an angle of 30°.
Fig. 5
Fig. 5 Polarization splitting of Gaussian beams induced by a PPBS placed in vacuum. The distribution of (a) electrical field component E z and (c) the x component of energy flow for a TE-polarized Gaussian beam incident on the PPBS. The distribution of (b) magnetic field component H z and (d) the x component of energy flow for a TM-polarized Gaussian beam incident on the PPBS. For both TE and TM beams, the waist is 0.2  μm , the wavelength is 400 nm, and the angle of incidence is 30 ° . (see Visualization 1)
Fig. 6
Fig. 6 (a) Reflectance of TM waves varying with PPBS thicknesses d and incident angle θ. (b) Reflectance of TM wave changing with the thickness d for a 400 nm plane wave incident on the PPBS at 30 ° . (c) Energy attenuation of TM wave inside a 200-nm-thick PPBS. (d) Polarization ratio varying with the incident angle for a 400 nm circularly polarized beam passing through the PPBS (M = 2).

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

ε ^ = ε 0 ( ε x 0 0 0 ε y 0 0 0 ε z )
μ ^ = μ 0 ( μ x 0 0 0 μ y 0 0 0 μ z )
{ k x 2 ε y + k y 2 ε x = μ z k 0 2   TM k x 2 μ y + k y 2 μ x = ε z k 0 2   TE ,
ε y μ z 0 and ε y μ z ε y ε x ε 1 μ 1
r iP = k ix μ y k x μ i k ix μ y + k x μ i = Z 2,eff Z 1,eff Z 2,eff + Z 1,eff
t iP = 2 k ix μ y k ix μ y + k x μ i = 2 Z 2,eff Z 2,eff + Z 1,eff
r total = r 1 P + r P 2 exp ( 2 i k x d ) 1 + r 1 P r P 2 exp ( 2 i k x d )
r 1 P = r P 2 exp ( 2 i k x d )
exp ( 2 i k x d ) = 1 , k x = ( 2 m 1 ) π 2 d ( m = 1 , 2 , 3 , 4 ... )
or exp ( 2 i k x d ) = 1 , k x = 2 m π 2 d ( m = 1 , 2 , 3 , 4 ... ) .
{ μ y = ( 2 m 1 ) π μ 1 μ 2 2 d ( ε 1 μ 1 k 0 2 k y 2 ) 1 4 ( ε 2 μ 2 k 0 2 k y 2 ) 1 4     ε z k 0 2 k y 2 μ x = ( 2 m 1 ) 2 π 2 4 d 2 μ y ( m = 1 , 2 , 3 )
or { k 1x μ 2 = k 2x μ 1 ε z k 0 2 k y 2 μ x = ( 2 m ) 2 π 2 4 d 2 μ y ( m = 1 , 2 , 3 )
( μ y = ( 2 m 1 ) π μ 1 μ 2 2 d ( ε 1 μ 1 k 0 2 k 0 2 sin 2 θ ) 1 4 ( ε 2 μ 2 k 0 2 k 0 2 sin 2 θ ) 1 4 μ x = μ z = 4 d 2 μ y ( ε 1 μ 1 k 0 2 k 0 2 sin 2 θ ) ( 2 m 1 ) 2 π 2 ε y = M ε x = ε z = ε 1 μ 1 μ x ( m =1,2,3,4 ...... ) .
γ = T TE T TM T TE + T TM

Metrics