Abstract

As the ultrafast laser has been developed, the measurement of ultra-speed transient and dynamic processes has gained much attention. An ultrafast oscilloscope based on the optical stretch method is promising to address this problem, but the measurement is restricted to the temporal profile. This means that the temporal phase is lost. In this work, we propose a full-field ultrafast oscilloscope using two temporal phase retrieval methods: the temporal annealing Gerchberg-Saxton (TAGS) algorithm and temporal ptychography. These could provide complete information, including temporal profile and phase, of high-rate repetitive transient pulses. The functions of an ultrafast oscilloscope with 230 GHz bandwidth and the two phase retrieval methods are verified by simulation and experimental results. This full-field ultrafast oscilloscope promises more applications in phase encoding, phase-contrast imaging, and sensing in the time domain.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Parabolic temporal lensing and spectrotemporal imaging: a femtosecond optical oscilloscope

Tigran Mansuryan, Aram Zeytunyan, Meri Kalashyan, Garegin Yesayan, Levon Mouradian, Frédéric Louradour, and Alain Barthélémy
J. Opt. Soc. Am. B 25(6) A101-A110 (2008)

Characterization of ultrashort pulses by time–frequency conversion and temporal magnification based on four-wave mixing at 1  μm

Zhi Qiao, Xue Pan, Xiaochao Wang, Tingrui Huang, Peng Zhang, Wei Fan, Xuechun Li, and Zunqi Lin
Appl. Opt. 56(8) 2294-2300 (2017)

Femtosecond pulse imaging: ultrafast optical oscilloscope

P. C. Sun, Y. T. Mazurenko, and Y. Fainman
J. Opt. Soc. Am. A 14(5) 1159-1170 (1997)

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
    [Crossref]
  2. P. O’shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
    [Crossref]
  3. D. J. Kane, “Recent progress toward real-time measurement of ultrashort laser pulses,” IEEE J. Quantum Electron. 35, 421–431 (1999).
    [Crossref]
  4. A. Müller and M. Laubscher, “Spectral phase and amplitude interferometry for direct electric-field reconstruction,” Opt. letters 26, 1915–1917 (2001).
    [Crossref]
  5. N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete characterization of optical pulses by real-time spectral interferometry,” Appl. optics 44, 7862–7866 (2005).
    [Crossref]
  6. T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. letters 34, 881–883 (2009).
    [Crossref]
  7. A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
    [Crossref]
  8. R. Itakura, T. Kumada, M. Nakano, and H. Akagi, “Frequency-resolved optical gating for characterization of vuv pulses using ultrafast plasma mirror switching,” Opt. express 23, 10914–10924 (2015).
    [Crossref] [PubMed]
  9. Z. Geng, B. Corcoran, C. Zhu, and A. J. Lowery, “Time-lenses for time-division multiplexing of optical ofdm channels,” Opt. express 23, 29788–29801 (2015).
    [Crossref] [PubMed]
  10. A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
    [Crossref]
  11. A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Phase and amplitude single-shot measurement by using time-lens and ultrafast time-holography,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), (IEEE, 2017), p. 1.
  12. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
    [Crossref]
  13. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
    [Crossref]
  14. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. i. system configurations,” IEEE J. Quantum Electron. 36, 430–437 (2000).
    [Crossref]
  15. C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. ii. system performance,” IEEE J. Quantum Electron. 36, 649–655 (2000).
    [Crossref]
  16. Z. Qiao, X. Pan, X. Wang, T. Huang, P. Zhang, W. Fan, X. Li, and Z. Lin, “Characterization of ultrashort pulses by time–frequency conversion and temporal magnification based on four-wave mixing at 1 μm,” Appl. Opt. 56, 2294–2300 (2017).
    [Crossref] [PubMed]
  17. C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100 gb/s optical data with an up-conversion time microscope,” Appl. physics letters 65, 2513–2515 (1994).
    [Crossref]
  18. R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
    [Crossref]
  19. P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
    [Crossref]
  20. M. R. Arnison, K. G. Larkin, C. J. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. microscopy 214, 7–12 (2004).
    [Crossref]
  21. R. Wilson, “Slodar: measuring optical turbulence altitude with a shack–hartmann wavefront sensor,” Mon. Notices Royal Astron. Soc. 337, 103–108 (2002).
    [Crossref]
  22. B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
    [Crossref] [PubMed]
  23. C. Guo, S. Liu, and J. T. Sheridan, “Iterative phase retrieval algorithms. i: optimization,” Appl. optics 54, 4698–4708 (2015).
    [Crossref]
  24. C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
    [Crossref] [PubMed]
  25. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. optics 21, 2758–2769 (1982).
    [Crossref]
  26. H. Faulkner and J. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. review letters 93, 023903 (2004).
    [Crossref]
  27. A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
    [Crossref] [PubMed]
  28. J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. physics letters 85, 4795–4797 (2004).
    [Crossref]
  29. M. Lucchini, M. Brügmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, “Ptychographic reconstruction of attosecond pulses,” Opt. express 23, 29502–29513 (2015).
    [Crossref] [PubMed]
  30. T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
    [Crossref]
  31. J. Hyyti, E. Escoto, G. Steinmeyer, and T. Witting, “Interferometric time-domain ptychography for ultrafast pulse characterization,” Opt. Lett. 42, 2185–2188 (2017).
    [Crossref] [PubMed]
  32. D. Solli, S. Gupta, and B. Jalali, “Optical phase recovery in the dispersive fourier transform,” Appl. Phys. Lett. 95, 231108 (2009).
    [Crossref]
  33. Y. Xu, Z. Ren, K. K. Wong, and K. Tsia, “Overcoming the limitation of phase retrieval using gerchberg–saxton-like algorithm in optical fiber time-stretch systems,” Opt. letters 40, 3595–3598 (2015).
    [Crossref]
  34. Z. Qiao, Y. Yao, X. Wang, W. Fan, and L. Zunqi, “Single-shot full-field characterization of short pulses by using temporal annealing modified gerchberg–saxton algorithm,” J. Light. Technol. 35, 2541 (2017).
    [Crossref]
  35. D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91, 021803 (2015).
    [Crossref]
  36. P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
    [Crossref]
  37. P. Sidorenko, O. Lahav, Z. Avnat, and O. Cohen, “Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness,” Optica 3, 1320–1330 (2016).
    [Crossref]
  38. R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
    [Crossref]
  39. G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, (Springer, 2000), pp. 195–211.
    [Crossref]

2018 (1)

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
[Crossref]

2017 (3)

2016 (3)

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
[Crossref]

P. Sidorenko, O. Lahav, Z. Avnat, and O. Cohen, “Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness,” Optica 3, 1320–1330 (2016).
[Crossref]

2015 (7)

R. Itakura, T. Kumada, M. Nakano, and H. Akagi, “Frequency-resolved optical gating for characterization of vuv pulses using ultrafast plasma mirror switching,” Opt. express 23, 10914–10924 (2015).
[Crossref] [PubMed]

Z. Geng, B. Corcoran, C. Zhu, and A. J. Lowery, “Time-lenses for time-division multiplexing of optical ofdm channels,” Opt. express 23, 29788–29801 (2015).
[Crossref] [PubMed]

Y. Xu, Z. Ren, K. K. Wong, and K. Tsia, “Overcoming the limitation of phase retrieval using gerchberg–saxton-like algorithm in optical fiber time-stretch systems,” Opt. letters 40, 3595–3598 (2015).
[Crossref]

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91, 021803 (2015).
[Crossref]

M. Lucchini, M. Brügmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, “Ptychographic reconstruction of attosecond pulses,” Opt. express 23, 29502–29513 (2015).
[Crossref] [PubMed]

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
[Crossref]

C. Guo, S. Liu, and J. T. Sheridan, “Iterative phase retrieval algorithms. i: optimization,” Appl. optics 54, 4698–4708 (2015).
[Crossref]

2013 (1)

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

2009 (3)

T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. letters 34, 881–883 (2009).
[Crossref]

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

D. Solli, S. Gupta, and B. Jalali, “Optical phase recovery in the dispersive fourier transform,” Appl. Phys. Lett. 95, 231108 (2009).
[Crossref]

2008 (2)

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
[Crossref]

2006 (1)

A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
[Crossref]

2005 (1)

N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete characterization of optical pulses by real-time spectral interferometry,” Appl. optics 44, 7862–7866 (2005).
[Crossref]

2004 (3)

J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. physics letters 85, 4795–4797 (2004).
[Crossref]

M. R. Arnison, K. G. Larkin, C. J. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. microscopy 214, 7–12 (2004).
[Crossref]

H. Faulkner and J. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. review letters 93, 023903 (2004).
[Crossref]

2002 (1)

R. Wilson, “Slodar: measuring optical turbulence altitude with a shack–hartmann wavefront sensor,” Mon. Notices Royal Astron. Soc. 337, 103–108 (2002).
[Crossref]

2001 (3)

B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[Crossref] [PubMed]

P. O’shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
[Crossref]

A. Müller and M. Laubscher, “Spectral phase and amplitude interferometry for direct electric-field reconstruction,” Opt. letters 26, 1915–1917 (2001).
[Crossref]

2000 (2)

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. i. system configurations,” IEEE J. Quantum Electron. 36, 430–437 (2000).
[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. ii. system performance,” IEEE J. Quantum Electron. 36, 649–655 (2000).
[Crossref]

1999 (1)

D. J. Kane, “Recent progress toward real-time measurement of ultrashort laser pulses,” IEEE J. Quantum Electron. 35, 421–431 (1999).
[Crossref]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

1994 (2)

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100 gb/s optical data with an up-conversion time microscope,” Appl. physics letters 65, 2513–2515 (1994).
[Crossref]

1982 (1)

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. optics 21, 2758–2769 (1982).
[Crossref]

1978 (1)

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Adachi, S.

A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, (Springer, 2000), pp. 195–211.
[Crossref]

Akagi, H.

Arnison, M. R.

M. R. Arnison, K. G. Larkin, C. J. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. microscopy 214, 7–12 (2004).
[Crossref]

Austin, D. R.

T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. letters 34, 881–883 (2009).
[Crossref]

Avnat, Z.

Barillot, T.

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

Bennett, C.

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100 gb/s optical data with an up-conversion time microscope,” Appl. physics letters 65, 2513–2515 (1994).
[Crossref]

Bennett, C. V.

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. i. system configurations,” IEEE J. Quantum Electron. 36, 430–437 (2000).
[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. ii. system performance,” IEEE J. Quantum Electron. 36, 649–655 (2000).
[Crossref]

Berger, N. K.

N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete characterization of optical pulses by real-time spectral interferometry,” Appl. optics 44, 7862–7866 (2005).
[Crossref]

Bianchetti, A.

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
[Crossref]

Bielawski, S.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Phase and amplitude single-shot measurement by using time-lens and ultrafast time-holography,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), (IEEE, 2017), p. 1.

Billet, C.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
[Crossref]

Boye, P.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Brügmann, M.

Brügmann, M. H.

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91, 021803 (2015).
[Crossref]

Burghammer, M.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Cogswell, C. J.

M. R. Arnison, K. G. Larkin, C. J. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. microscopy 214, 7–12 (2004).
[Crossref]

Cohen, O.

Corcoran, B.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Dudley, J.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
[Crossref]

Escoto, E.

Etchepareborda, P.

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
[Crossref]

Fan, W.

Z. Qiao, Y. Yao, X. Wang, W. Fan, and L. Zunqi, “Single-shot full-field characterization of short pulses by using temporal annealing modified gerchberg–saxton algorithm,” J. Light. Technol. 35, 2541 (2017).
[Crossref]

Z. Qiao, X. Pan, X. Wang, T. Huang, P. Zhang, W. Fan, X. Li, and Z. Lin, “Characterization of ultrashort pulses by time–frequency conversion and temporal magnification based on four-wave mixing at 1 μm,” Appl. Opt. 56, 2294–2300 (2017).
[Crossref] [PubMed]

Faulkner, H.

H. Faulkner and J. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. review letters 93, 023903 (2004).
[Crossref]

Faulkner, H. M.

J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. physics letters 85, 4795–4797 (2004).
[Crossref]

Federico, A.

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
[Crossref]

Feldkamp, J.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Feurer, T.

M. Lucchini, M. Brügmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, “Ptychographic reconstruction of attosecond pulses,” Opt. express 23, 29502–29513 (2015).
[Crossref] [PubMed]

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91, 021803 (2015).
[Crossref]

Fienup, J. R.

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. optics 21, 2758–2769 (1982).
[Crossref]

Fischer, B.

N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete characterization of optical pulses by real-time spectral interferometry,” Appl. optics 44, 7862–7866 (2005).
[Crossref]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Foster, M. A.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
[Crossref]

Gaeta, A. L.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
[Crossref]

Gallmann, L.

Geng, Z.

Genty, G.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
[Crossref]

Geraghty, D. F.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
[Crossref]

Greening, D.

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

Gu, X.

Guo, C.

C. Guo, S. Liu, and J. T. Sheridan, “Iterative phase retrieval algorithms. i: optimization,” Appl. optics 54, 4698–4708 (2015).
[Crossref]

Gupta, S.

D. Solli, S. Gupta, and B. Jalali, “Optical phase recovery in the dispersive fourier transform,” Appl. Phys. Lett. 95, 231108 (2009).
[Crossref]

Huang, T.

Hyyti, J.

Itakura, R.

Jalali, B.

D. Solli, S. Gupta, and B. Jalali, “Optical phase recovery in the dispersive fourier transform,” Appl. Phys. Lett. 95, 231108 (2009).
[Crossref]

Kanai, T.

A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
[Crossref]

Kane, D. J.

D. J. Kane, “Recent progress toward real-time measurement of ultrashort laser pulses,” IEEE J. Quantum Electron. 35, 421–431 (1999).
[Crossref]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Kaufmann, G. H.

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
[Crossref]

Keller, U.

Kimmel, M.

Kolner, B.

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100 gb/s optical data with an up-conversion time microscope,” Appl. physics letters 65, 2513–2515 (1994).
[Crossref]

Kolner, B. H.

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. i. system configurations,” IEEE J. Quantum Electron. 36, 430–437 (2000).
[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. ii. system performance,” IEEE J. Quantum Electron. 36, 649–655 (2000).
[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

Kosuge, A.

A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
[Crossref]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Kumada, T.

Lahav, O.

Larkin, K. G.

M. R. Arnison, K. G. Larkin, C. J. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. microscopy 214, 7–12 (2004).
[Crossref]

Lau, A. K.

A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
[Crossref]

Laubscher, M.

A. Müller and M. Laubscher, “Spectral phase and amplitude interferometry for direct electric-field reconstruction,” Opt. letters 26, 1915–1917 (2001).
[Crossref]

Levit, B.

N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete characterization of optical pulses by real-time spectral interferometry,” Appl. optics 44, 7862–7866 (2005).
[Crossref]

Li, X.

Lin, C.

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Lin, Z.

Lipson, M.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
[Crossref]

Liu, S.

C. Guo, S. Liu, and J. T. Sheridan, “Iterative phase retrieval algorithms. i: optimization,” Appl. optics 54, 4698–4708 (2015).
[Crossref]

Lowery, A. J.

Lucchini, M.

Ludwig, A.

Maiden, A. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Marangos, J.

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

Matia-Hernando, P.

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

Merolla, J.-M.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
[Crossref]

Müller, A.

A. Müller and M. Laubscher, “Spectral phase and amplitude interferometry for direct electric-field reconstruction,” Opt. letters 26, 1915–1917 (2001).
[Crossref]

Nakano, M.

Närhi, M.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
[Crossref]

Neethling, P.

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91, 021803 (2015).
[Crossref]

O’shea, P.

Pan, X.

Patommel, J.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Platt, B. C.

B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[Crossref] [PubMed]

Qiao, Z.

Z. Qiao, X. Pan, X. Wang, T. Huang, P. Zhang, W. Fan, X. Li, and Z. Lin, “Characterization of ultrashort pulses by time–frequency conversion and temporal magnification based on four-wave mixing at 1 μm,” Appl. Opt. 56, 2294–2300 (2017).
[Crossref] [PubMed]

Z. Qiao, Y. Yao, X. Wang, W. Fan, and L. Zunqi, “Single-shot full-field characterization of short pulses by using temporal annealing modified gerchberg–saxton algorithm,” J. Light. Technol. 35, 2541 (2017).
[Crossref]

Randoux, S.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Phase and amplitude single-shot measurement by using time-lens and ultrafast time-holography,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), (IEEE, 2017), p. 1.

Ren, Z.

Y. Xu, Z. Ren, K. K. Wong, and K. Tsia, “Overcoming the limitation of phase retrieval using gerchberg–saxton-like algorithm in optical fiber time-stretch systems,” Opt. letters 40, 3595–3598 (2015).
[Crossref]

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Riekel, C.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Rodenburg, J.

H. Faulkner and J. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. review letters 93, 023903 (2004).
[Crossref]

Rodenburg, J. M.

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. physics letters 85, 4795–4797 (2004).
[Crossref]

Rohwer, E.

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91, 021803 (2015).
[Crossref]

Ryczkowski, P.

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
[Crossref]

Salem, R.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
[Crossref]

Schöder, S.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Schroer, C.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Schropp, A.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Schwab, A.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Scott, R.

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100 gb/s optical data with an up-conversion time microscope,” Appl. physics letters 65, 2513–2515 (1994).
[Crossref]

Sekikawa, T.

A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
[Crossref]

Shack, R.

B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[Crossref] [PubMed]

Sheppard, C. J.

M. R. Arnison, K. G. Larkin, C. J. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. microscopy 214, 7–12 (2004).
[Crossref]

Sheridan, J. T.

C. Guo, S. Liu, and J. T. Sheridan, “Iterative phase retrieval algorithms. i: optimization,” Appl. optics 54, 4698–4708 (2015).
[Crossref]

Sidorenko, P.

Smith, N. I.

M. R. Arnison, K. G. Larkin, C. J. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. microscopy 214, 7–12 (2004).
[Crossref]

Smulakovsky, V.

N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete characterization of optical pulses by real-time spectral interferometry,” Appl. optics 44, 7862–7866 (2005).
[Crossref]

Solli, D.

D. Solli, S. Gupta, and B. Jalali, “Optical phase recovery in the dispersive fourier transform,” Appl. Phys. Lett. 95, 231108 (2009).
[Crossref]

Spangenberg, D.

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91, 021803 (2015).
[Crossref]

Steinmeyer, G.

Stephan, S.

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Stolen, R.

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[Crossref]

Suret, P.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Phase and amplitude single-shot measurement by using time-lens and ultrafast time-holography,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), (IEEE, 2017), p. 1.

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Szwaj, C.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Phase and amplitude single-shot measurement by using time-lens and ultrafast time-holography,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), (IEEE, 2017), p. 1.

Tang, A. H.

A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
[Crossref]

Tikan, A.

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Phase and amplitude single-shot measurement by using time-lens and ultrafast time-holography,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), (IEEE, 2017), p. 1.

Tisch, J.

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

Trebino, R.

P. O’shea, M. Kimmel, X. Gu, and R. Trebino, “Highly simplified device for ultrashort-pulse measurement,” Opt. Lett. 26, 932–934 (2001).
[Crossref]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Tsia, K.

Y. Xu, Z. Ren, K. K. Wong, and K. Tsia, “Overcoming the limitation of phase retrieval using gerchberg–saxton-like algorithm in optical fiber time-stretch systems,” Opt. letters 40, 3595–3598 (2015).
[Crossref]

Tsia, K. K.

A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
[Crossref]

Turner, A. C.

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
[Crossref]

Vadnjal, A. L.

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
[Crossref]

Veiras, F. E.

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
[Crossref]

Walke, D.

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

Walmsley, I. A.

T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. letters 34, 881–883 (2009).
[Crossref]

Wang, X.

Z. Qiao, X. Pan, X. Wang, T. Huang, P. Zhang, W. Fan, X. Li, and Z. Lin, “Characterization of ultrashort pulses by time–frequency conversion and temporal magnification based on four-wave mixing at 1 μm,” Appl. Opt. 56, 2294–2300 (2017).
[Crossref] [PubMed]

Z. Qiao, Y. Yao, X. Wang, W. Fan, and L. Zunqi, “Single-shot full-field characterization of short pulses by using temporal annealing modified gerchberg–saxton algorithm,” J. Light. Technol. 35, 2541 (2017).
[Crossref]

Watanabe, S.

A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
[Crossref]

Wei, X.

A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
[Crossref]

Wilson, R.

R. Wilson, “Slodar: measuring optical turbulence altitude with a shack–hartmann wavefront sensor,” Mon. Notices Royal Astron. Soc. 337, 103–108 (2002).
[Crossref]

Witting, T.

J. Hyyti, E. Escoto, G. Steinmeyer, and T. Witting, “Interferometric time-domain ptychography for ultrafast pulse characterization,” Opt. Lett. 42, 2185–2188 (2017).
[Crossref] [PubMed]

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. letters 34, 881–883 (2009).
[Crossref]

Wong, K. K.

A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
[Crossref]

Y. Xu, Z. Ren, K. K. Wong, and K. Tsia, “Overcoming the limitation of phase retrieval using gerchberg–saxton-like algorithm in optical fiber time-stretch systems,” Opt. letters 40, 3595–3598 (2015).
[Crossref]

Xu, J.

A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
[Crossref]

Xu, Y.

Y. Xu, Z. Ren, K. K. Wong, and K. Tsia, “Overcoming the limitation of phase retrieval using gerchberg–saxton-like algorithm in optical fiber time-stretch systems,” Opt. letters 40, 3595–3598 (2015).
[Crossref]

Yao, Y.

Z. Qiao, Y. Yao, X. Wang, W. Fan, and L. Zunqi, “Single-shot full-field characterization of short pulses by using temporal annealing modified gerchberg–saxton algorithm,” J. Light. Technol. 35, 2541 (2017).
[Crossref]

Zhang, P.

Zhou, X.

A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
[Crossref]

Zhu, C.

Zunqi, L.

Z. Qiao, Y. Yao, X. Wang, W. Fan, and L. Zunqi, “Single-shot full-field characterization of short pulses by using temporal annealing modified gerchberg–saxton algorithm,” J. Light. Technol. 35, 2541 (2017).
[Crossref]

Adv. Opt. Photonics (1)

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photonics 5, 274–317 (2013).
[Crossref]

Appl. Opt. (1)

Appl. optics (4)

P. Etchepareborda, A. Bianchetti, F. E. Veiras, A. L. Vadnjal, A. Federico, and G. H. Kaufmann, “Comparison of real-time phase-reconstruction methods in temporal speckle-pattern interferometry,” Appl. optics 54, 7663–7672 (2015).
[Crossref]

C. Guo, S. Liu, and J. T. Sheridan, “Iterative phase retrieval algorithms. i: optimization,” Appl. optics 54, 4698–4708 (2015).
[Crossref]

N. K. Berger, B. Levit, V. Smulakovsky, and B. Fischer, “Complete characterization of optical pulses by real-time spectral interferometry,” Appl. optics 44, 7862–7866 (2005).
[Crossref]

J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. optics 21, 2758–2769 (1982).
[Crossref]

Appl. Phys. Lett. (1)

D. Solli, S. Gupta, and B. Jalali, “Optical phase recovery in the dispersive fourier transform,” Appl. Phys. Lett. 95, 231108 (2009).
[Crossref]

Appl. physics letters (2)

J. M. Rodenburg and H. M. Faulkner, “A phase retrieval algorithm for shifting illumination,” Appl. physics letters 85, 4795–4797 (2004).
[Crossref]

C. Bennett, R. Scott, and B. Kolner, “Temporal magnification and reversal of 100 gb/s optical data with an up-conversion time microscope,” Appl. physics letters 65, 2513–2515 (1994).
[Crossref]

IEEE J. Quantum Electron. (4)

D. J. Kane, “Recent progress toward real-time measurement of ultrashort laser pulses,” IEEE J. Quantum Electron. 35, 421–431 (1999).
[Crossref]

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30, 1951–1963 (1994).
[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. i. system configurations,” IEEE J. Quantum Electron. 36, 430–437 (2000).
[Crossref]

C. V. Bennett and B. H. Kolner, “Principles of parametric temporal imaging. ii. system performance,” IEEE J. Quantum Electron. 36, 649–655 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. K. Lau, A. H. Tang, J. Xu, X. Wei, K. K. Wong, and K. K. Tsia, “Optical time stretch for high-speed and high-throughput imaging—from single-cell to tissue-wide scales,” IEEE J. Sel. Top. Quantum Electron. 22, 89–103 (2016).
[Crossref]

J. Light. Technol. (1)

Z. Qiao, Y. Yao, X. Wang, W. Fan, and L. Zunqi, “Single-shot full-field characterization of short pulses by using temporal annealing modified gerchberg–saxton algorithm,” J. Light. Technol. 35, 2541 (2017).
[Crossref]

J. microscopy (1)

M. R. Arnison, K. G. Larkin, C. J. Sheppard, N. I. Smith, and C. J. Cogswell, “Linear phase imaging using differential interference contrast microscopy,” J. microscopy 214, 7–12 (2004).
[Crossref]

J. Refract. Surg. (1)

B. C. Platt and R. Shack, “History and principles of shack-hartmann wavefront sensing,” J. Refract. Surg. 17, S573–S577 (2001).
[Crossref] [PubMed]

Mon. Notices Royal Astron. Soc. (1)

R. Wilson, “Slodar: measuring optical turbulence altitude with a shack–hartmann wavefront sensor,” Mon. Notices Royal Astron. Soc. 337, 103–108 (2002).
[Crossref]

Nat. Photonics (1)

P. Ryczkowski, M. Närhi, C. Billet, J.-M. Merolla, G. Genty, and J. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221 (2018).
[Crossref]

Opt. express (3)

Opt. Lett. (2)

Opt. letters (5)

T. Witting, D. Greening, D. Walke, P. Matia-Hernando, T. Barillot, J. Marangos, and J. Tisch, “Time-domain ptychography of over-octave-spanning laser pulses in the single-cycle regime,” Opt. letters 41, 4218–4221 (2016).
[Crossref]

Y. Xu, Z. Ren, K. K. Wong, and K. Tsia, “Overcoming the limitation of phase retrieval using gerchberg–saxton-like algorithm in optical fiber time-stretch systems,” Opt. letters 40, 3595–3598 (2015).
[Crossref]

R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, and A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. letters 33, 1047–1049 (2008).
[Crossref]

A. Müller and M. Laubscher, “Spectral phase and amplitude interferometry for direct electric-field reconstruction,” Opt. letters 26, 1915–1917 (2001).
[Crossref]

T. Witting, D. R. Austin, and I. A. Walmsley, “Improved ancilla preparation in spectral shearing interferometry for accurate ultrafast pulse characterization,” Opt. letters 34, 881–883 (2009).
[Crossref]

Optica (1)

Phys. Rev. A (2)

R. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448 (1978).
[Crossref]

D. Spangenberg, P. Neethling, E. Rohwer, M. H. Brügmann, and T. Feurer, “Time-domain ptychography,” Phys. Rev. A 91, 021803 (2015).
[Crossref]

Phys. Rev. Lett. (1)

C. Schroer, P. Boye, J. Feldkamp, J. Patommel, A. Schropp, A. Schwab, S. Stephan, M. Burghammer, S. Schöder, and C. Riekel, “Coherent x-ray diffraction imaging with nanofocused illumination,” Phys. Rev. Lett. 101, 090801 (2008).
[Crossref] [PubMed]

Phys. review letters (2)

A. Kosuge, T. Sekikawa, X. Zhou, T. Kanai, S. Adachi, and S. Watanabe, “Frequency-resolved optical gating of isolated attosecond pulses in the extreme ultraviolet,” Phys. review letters 97, 263901 (2006).
[Crossref]

H. Faulkner and J. Rodenburg, “Movable aperture lensless transmission microscopy: a novel phase retrieval algorithm,” Phys. review letters 93, 023903 (2004).
[Crossref]

Rev. Sci. Instruments (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instruments 68, 3277–3295 (1997).
[Crossref]

Ultramicroscopy (1)

A. M. Maiden and J. M. Rodenburg, “An improved ptychographical phase retrieval algorithm for diffractive imaging,” Ultramicroscopy 109, 1256–1262 (2009).
[Crossref] [PubMed]

Other (2)

G. P. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, (Springer, 2000), pp. 195–211.
[Crossref]

A. Tikan, S. Bielawski, C. Szwaj, S. Randoux, and P. Suret, “Phase and amplitude single-shot measurement by using time-lens and ultrafast time-holography,” in Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC, 2017 Conference on), (IEEE, 2017), p. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic of four-wave mixing-effect temporal imaging.
Fig. 2
Fig. 2 Retrieval results of temporal waveform and phase. (a), (c), (e): Temporal profile for nonlinear phase of 0.2π, 2π and 4π; (b), (d), (f): Temporal phase for nonlinear phase of 0.2π, 2π and 4π (Black line: original profile and phase; Pink line: recovered profile and phase).
Fig. 3
Fig. 3 Influence of temporal imaged waveform number on the retrieval results: (a) Temporal intensity; (b) Temporal phase; (c) Iteration error.(Black line, actual value; Blue square: N = 2; Red square: N = 4)
Fig. 4
Fig. 4 Retrieval results with time shifting error: (a)Temporal intensity; (b) Temporal phase;(Black line, actual waveform; Pink square: without timing correction; Red square: with timing correction); (c) Iteration error (Black: with timing correction; Red: without timing correction).
Fig. 5
Fig. 5 Schematic of the temporal ptychography algorithm
Fig. 6
Fig. 6 Retrieval results with the temporal ptychography algorithm: (a) Dispersed waveforms for different time delay; (b) Spectrum for different time delay;(c),(d) Retrieved signal with 2π nonlinear phase and pump laser; (e),(f) Retrieved signal with 4π nonlinear phase and pump laser; (g),(h) Retrieved signal with 6π nonlinear phase and pump laser;(Black line: actual waveform; Green square: retrieved waveform; Red line: actual phase; Red square: retrieved phase.
Fig. 7
Fig. 7 Influence of time step on the retrieval error.
Fig. 8
Fig. 8 Experimental structure of temporal imaging system: (a) Experimental Structure; (b) Idler laser generated in the FWM process; (c) Temporal imaged waveforms after dispersion. (BPF: bandpass filter; FA: fiber amplifier; TDL: time delay line; HNLF: high nonlinear fiber; LPF: long pass filter)
Fig. 9
Fig. 9 Retrieved results of signal laser with TAGS algorithm: (a) Retrieved temporal profile; (b) Retrieved temporal phase; (c) Iteration error
Fig. 10
Fig. 10 Retrieved spectrum and waveforms of signal pulse: (a) Retrieved spectrum (red) and measured spectrum (black); (b) Retrieved waveforms (square) and measured waveforms
Fig. 11
Fig. 11 Retrieved results for different nonlinear phases: (a, b) Retrieved waveform, phase, and spectrum for π nonlinear phase;(c, d) Retrieved waveform, phase, and spectrum for 2π nonlinear phase; (e, f) Retrieved waveform, phase, and spectrum for 3π nonlinear phase; (Black line: measured spectrum; Red square: retrieved spectrum)
Fig. 12
Fig. 12 Measurement results of temporal ptychography: (a) Experimental measured waveforms with different relative time delay; (b) Retrieved temporal profile and phase of signal laser after pre-dispersion; (c) Retrieved temporal profile and phase of signal laser before pre-dispersion; (d) Retrieved temporal profile and phase of the pump laser after pre-dispersion; Retrieved waveform.
Fig. 13
Fig. 13 Spectrum retrieved by temporal ptychography: (a) Retrieved temporal profile and phase of signal pulse; (b) Retrieved spectrum (red) and measured spectrum (black) of pump pulse;(c) Error evolution during iteration.
Fig. 14
Fig. 14 Results retrieved by the TAGS method with pre-calibration through temporal ptychography: (a) Retrieved spectrum (red) and measured spectrum (black) of signal pulse; (b) Retrieved temporal profile and phase of signal pulse; (c) Recovered dispersed waveforms (solid line) and measured waveforms (square).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

u i d l e r = κ u s * u p 2
u i d l e r = κ [ F 1 [ F ( A i n ) exp ( j ω 2 ϕ 1 2 ) ] ] * × [ exp ( j t 2 2 ϕ p ) ]
A o u t = F 1 [ κ π j ϕ p exp ( j ϕ 2 ω 2 2 ) [ A ˜ i n * ( ω ) exp ( j ϕ 2 ω 2 2 ) exp ( j ϕ p ω 2 4 ) ] ] = κ ϕ p ϕ p + 2 ϕ 2 exp ( j t 2 ϕ p + 2 ϕ 2 ) A ˜ i n * ( Ω ) × e j Ω 2 [ ϕ p 2 4 ( ϕ p + 2 ϕ 2 ) + 2 ϕ 1 ϕ p 4 ] exp ( j ϕ p ϕ p + ϕ 2 Ω t ) d Ω
w m r ( t ) = I m ( t ) w m ( t ) | w m ( t ) |
u r ( t ) = u ( t ) + ϕ * ( t + Δ t m ) | ϕ ( t + Δ t m ) | 2 ( v m r ( t ) v m ( t ) ) ϕ r ( t + Δ t m ) = ϕ ( t + Δ t m ) + u * ( t ) | u ( t ) | 2 ( v m r ( t ) v m ( t ) )

Metrics