Abstract

We experimentally demonstrate on-chip plasmon-induced transparency at THz frequencies using a meta-structure deposited on a 50 μm-thick dielectric subwavelength waveguide. The obvious plasmon-induced transparency results from strong coupling between the respective modes of a cut wire and a double-gap split ring resonator. The simulation and experimental results are consistent. Based on our numerical simulations of the temporal evolution of plasmon-induced transparency, a π/2 phase difference at the transparency peak between the above two modes is observed, i.e., there is energy oscillating between them that exhibits Rabi oscillation-like behavior. In addition, at the transparency peak, a strong local-field enhancement effect and high transmission can be obtained simultaneously, which can be tuned by changing the separation between the cut wire and the double-gap split ring resonator. These results will facilitate the design of THz integrated photonic devices and serve as an excellent platform for nonlinear optics and sensing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules

Xiaobo Zheng, Zhenyu Zhao, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 7(3) 1035-1047 (2017)

Plasmon-induced transparency-like behavior at terahertz region via dipole oscillation detuning in a hybrid planar metamaterial

Zhenyu Zhao, Zhiqiang Song, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 6(7) 2190-2200 (2016)

Manipulating the plasmon-induced transparency in terahertz metamaterials

Zhongyang Li, Yingfang Ma, Ran Huang, Ranjan Singh, Jianqiang Gu, Zhen Tian, Jiaguang Han, and Weili Zhang
Opt. Express 19(9) 8912-8919 (2011)

References

  • View by:
  • |
  • |
  • |

  1. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
    [Crossref]
  2. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref] [PubMed]
  3. Z. Chai, X. Hu, H. Yang, and Q. Gong, “All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption,” Appl. Phys. Lett. 108, 151104 (2016).
    [Crossref]
  4. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref] [PubMed]
  5. J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159–25166 (2013).
    [Crossref] [PubMed]
  6. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [Crossref] [PubMed]
  7. Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
    [Crossref]
  8. S. Zhan, H. Li, Z. He, B. Li, Z. Chen, and H. Xu, “Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide,” Opt. Express 23, 20313–20320 (2015).
    [Crossref] [PubMed]
  9. Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
    [Crossref] [PubMed]
  10. Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
    [Crossref]
  11. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
    [Crossref] [PubMed]
  12. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
    [Crossref] [PubMed]
  13. J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37, 5133–5135 (2012).
    [Crossref] [PubMed]
  14. X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20, 18994–18999 (2012).
    [Crossref] [PubMed]
  15. Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19, 3251–3257 (2011).
    [Crossref] [PubMed]
  16. A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
    [Crossref]
  17. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
    [Crossref]
  18. D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
    [Crossref]
  19. T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
    [Crossref]
  20. X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25, 278–283 (2017).
    [Crossref] [PubMed]
  21. A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
    [Crossref]
  22. P. Tang, J. Li, L. Du, Q. Liu, Q. Peng, J. Zhao, B. Zhu, Z. Li, and L. Zhu, “Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure,” Opt. Express 26, 30655–30666 (2018).
    [Crossref] [PubMed]
  23. R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
    [Crossref]
  24. C. A. Werley, THz Polaritonics: Optical THz Generation, Detection, and Control on a Chip (Massachusetts Institute of Technology, 2009).
  25. C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20, 8551–8567 (2012).
    [Crossref] [PubMed]
  26. R. Wang, Q. Wu, Q. Zhang, Y. Lu, W. Zhao, W. Ca, J. Qi, J. Yao, and J. Xu, “Conversion from terahertz-guided waves to surface waves with metasurface,” Opt. Express 26, 31233–31243 (2018).
    [Crossref]
  27. B. Zhang, Q. Wu, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, “THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide,” Opt. Express 23, 16042–16051 (2015).
    [Crossref] [PubMed]
  28. C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. T. Hill, and J. Xu, “Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with bragg mirrors,” Opt. Express 25, 9768–9777 (2017).
    [Crossref] [PubMed]
  29. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985).
    [Crossref] [PubMed]
  30. Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17, 9219–9225 (2009).
    [Crossref] [PubMed]
  31. C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18, 26351–26364 (2010).
    [Crossref] [PubMed]
  32. A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006).
    [Crossref] [PubMed]
  33. R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16, 18131–18144 (2008).
    [Crossref] [PubMed]
  34. Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
    [Crossref]
  35. C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
    [Crossref]
  36. G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
    [Crossref]
  37. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [Crossref]
  38. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
    [Crossref]
  39. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
    [Crossref] [PubMed]

2018 (2)

2017 (2)

2016 (2)

Z. Chai, X. Hu, H. Yang, and Q. Gong, “All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption,” Appl. Phys. Lett. 108, 151104 (2016).
[Crossref]

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

2015 (4)

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
[Crossref]

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

B. Zhang, Q. Wu, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, “THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide,” Opt. Express 23, 16042–16051 (2015).
[Crossref] [PubMed]

S. Zhan, H. Li, Z. He, B. Li, Z. Chen, and H. Xu, “Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide,” Opt. Express 23, 20313–20320 (2015).
[Crossref] [PubMed]

2014 (3)

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
[Crossref]

2013 (2)

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
[Crossref]

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159–25166 (2013).
[Crossref] [PubMed]

2012 (6)

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20, 8551–8567 (2012).
[Crossref] [PubMed]

X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20, 18994–18999 (2012).
[Crossref] [PubMed]

J. Chen, C. Wang, R. Zhang, and J. Xiao, “Multiple plasmon-induced transparencies in coupled-resonator systems,” Opt. Lett. 37, 5133–5135 (2012).
[Crossref] [PubMed]

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
[Crossref] [PubMed]

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

2011 (1)

2010 (3)

C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18, 26351–26364 (2010).
[Crossref] [PubMed]

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[Crossref] [PubMed]

2009 (3)

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17, 9219–9225 (2009).
[Crossref] [PubMed]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[Crossref]

2008 (3)

R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16, 18131–18144 (2008).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

2006 (2)

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006).
[Crossref] [PubMed]

2005 (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

2004 (1)

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
[Crossref]

2002 (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

2000 (1)

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
[Crossref]

1985 (1)

Alexander, R. W.

Al-Naib, I.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Altug, H.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[Crossref]

Averitt, R. D.

Aydin, K.

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006).
[Crossref] [PubMed]

Barnard, E. S.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[Crossref] [PubMed]

Bawendi, M. G.

Bell, R. J.

Bettiol, A. A.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[Crossref]

Bozhevolnyi, S. I.

Brongersma, M. L.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[Crossref] [PubMed]

Burnett, A. D.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Ca, W.

Cai, W.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[Crossref] [PubMed]

Cao, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Çetin, A. E.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[Crossref]

Chai, Z.

Z. Chai, X. Hu, H. Yang, and Q. Gong, “All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption,” Appl. Phys. Lett. 108, 151104 (2016).
[Crossref]

Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
[Crossref]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
[Crossref]

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Chen, J.

Chen, Z.

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[Crossref]

Cong, L.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Cunningham, J. E.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Dai, J.

Davies, A. G.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Ding, P.

Dorn, A.

Dragoman, D.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
[Crossref]

Dragoman, M.

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
[Crossref]

Du, L.

Ducournau, G.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

Economou, E. N.

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Erramilli, S.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[Crossref]

Fan, C.

Fan, K.

Fan, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Fan, W.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Feng, R.

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Friesem, A. A.

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

Gong, Q.

Z. Chai, X. Hu, H. Yang, and Q. Gong, “All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption,” Appl. Phys. Lett. 108, 151104 (2016).
[Crossref]

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
[Crossref]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Han, Z.

He, J.

He, Z.

Hen, X.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
[Crossref]

Hill, W. T.

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Hu, Q.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

Hu, X.

Z. Chai, X. Hu, H. Yang, and Q. Gong, “All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption,” Appl. Phys. Lett. 108, 151104 (2016).
[Crossref]

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
[Crossref]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
[Crossref]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
[Crossref] [PubMed]

Kafesaki, M.

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

Kekatpure, R. D.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[Crossref] [PubMed]

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
[Crossref] [PubMed]

R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16, 18131–18144 (2008).
[Crossref] [PubMed]

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

Lederer, F.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[Crossref]

Levy-Yurista, G.

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
[Crossref]

Li, B.

Li, H.

Li, J.

Li, Z.

Liang, E.

Lin, K.-H.

Linfield, E. H.

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Lipson, M.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

Liu, Q.

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Long, L. L.

Lou, C.

Lu, C.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

Lu, Y.

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Mertiri, A.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[Crossref]

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Müstecaplioglu, Ö. E.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[Crossref]

Nagatsuma, T.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

Nelson, K. A.

Ordal, M. A.

Ozbay, E.

Pan, C.

Park, N.

Penciu, R. S.

Peng, Q.

Peng, W.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
[Crossref]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

Piao, X.

Povinelli, M. L.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Qi, J.

Qin, J.

Querry, M. R.

Renaud, C. C.

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

Rockstuhl, C.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[Crossref]

Sandhu, S.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Shakya, J.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Shi, K.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

Shi, X.

Singh, R.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[Crossref]

Song, Z.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
[Crossref]

Sonnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
[Crossref] [PubMed]

R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16, 18131–18144 (2008).
[Crossref] [PubMed]

Strikwerda, A. C.

Sun, S.

Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
[Crossref]

Tang, P.

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
[Crossref] [PubMed]

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Teo, S. M.

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Wang, C.

Wang, J.

Wang, R.

Wang, W.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
[Crossref]

Wang, X.

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

Werley, C. A.

Withayachumnankul, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Wu, Q.

Xiao, J.

Xu, H.

Xu, J.

Xu, Q.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

Xue, Q.

Yang, C.

Yang, F.

Yang, H.

Z. Chai, X. Hu, H. Yang, and Q. Gong, “All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption,” Appl. Phys. Lett. 108, 151104 (2016).
[Crossref]

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
[Crossref]

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
[Crossref]

Yanik, A. A.

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[Crossref]

Yao, J.

Yu, S.

Yuan, B.

Zhan, S.

Zhang, B.

Zhang, C.

Zhang, F.

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
[Crossref]

Zhang, L.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
[Crossref] [PubMed]

Zhang, Q.

Zhang, R.

Zhang, S.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhang, W.

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[Crossref]

A. K. Azad, J. Dai, and W. Zhang, “Transmission properties of terahertz pulses through subwavelength double split-ring resonators,” Opt. Lett. 31, 634–636 (2006).
[Crossref] [PubMed]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20, 8551–8567 (2012).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

Zhao, H.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
[Crossref]

Zhao, J.

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
[Crossref] [PubMed]

Zhao, W.

Zhao, Z.

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
[Crossref]

Zhu, B.

Zhu, L.

Zhu, R.

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

Zhu, Y.

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
[Crossref]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
[Crossref]

Adv. Opt. Mater. (1)

Z. Chai, X. Hu, Y. Zhu, S. Sun, H. Yang, and Q. Gong, “Ultracompact chip-integrated electromagnetically induced transparency in a single plasmonic composite nanocavity,” Adv. Opt. Mater. 2, 320–325 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filters with multilayered grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
[Crossref]

R. Singh, W. Cao, I. Al-Naib, L. Cong, W. Withayachumnankul, and W. Zhang, “Ultrasensitive THz sensing with high-Q Fano resonances in metasurfaces,” Appl. Phys. Lett. 105, 171101 (2014).
[Crossref]

Z. Chai, X. Hu, H. Yang, and Q. Gong, “All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption,” Appl. Phys. Lett. 108, 151104 (2016).
[Crossref]

Z. Chai, X. Hu, Y. Zhu, F. Zhang, H. Yang, and Q. Gong, “Low-power and ultrafast all-optical tunable plasmon-induced transparency in plasmonic nanostructures,” Appl. Phys. Lett. 102, 201119 (2013).
[Crossref]

A. E. Çetin, A. A. Yanik, A. Mertiri, S. Erramilli, Ö. E. Müstecaplıoğlu, and H. Altug, “Field-effect active plasmonics for ultracompact electro-optic switching,” Appl. Phys. Lett. 101, 121113 (2012).
[Crossref]

J. Appl. Phys. (1)

Z. Song, Z. Zhao, H. Zhao, W. Peng, X. Hen, and W. Wang, “Teeter-totter effect of terahertz dual modes in C-shaped complementary split-ring resonators,” J. Appl. Phys. 118, 043108 (2015).
[Crossref]

Light. Sci. Appl. (1)

C. Lu, X. Hu, K. Shi, Q. Hu, R. Zhu, H. Yang, and Q. Gong, “An actively ultrafast tunable giant slow-light effect in ultrathin nonlinear metasurfaces,” Light. Sci. Appl. 4, e302 (2015).
[Crossref]

Mater. Today (1)

A. G. Davies, A. D. Burnett, W. Fan, E. H. Linfield, and J. E. Cunningham, “Terahertz spectroscopy of explosives and drugs,” Mater. Today 11, 18–26 (2008).
[Crossref]

Nano Lett. (1)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
[Crossref]

Nat. Commun. (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002).
[Crossref]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[Crossref] [PubMed]

Nat. Photon. (1)

T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz communications accelerated by photonics,” Nat. Photon. 10, 371–379 (2016).
[Crossref]

Opt. Express (13)

J. Wang, B. Yuan, C. Fan, J. He, P. Ding, Q. Xue, and E. Liang, “A novel planar metamaterial design for electromagnetically induced transparency and slow light,” Opt. Express 21, 25159–25166 (2013).
[Crossref] [PubMed]

B. Zhang, Q. Wu, C. Pan, R. Feng, J. Xu, C. Lou, X. Wang, and F. Yang, “THz band-stop filter using metamaterials surfaced on LiNbO3 sub-wavelength slab waveguide,” Opt. Express 23, 16042–16051 (2015).
[Crossref] [PubMed]

S. Zhan, H. Li, Z. He, B. Li, Z. Chen, and H. Xu, “Sensing analysis based on plasmon induced transparency in nanocavity-coupled waveguide,” Opt. Express 23, 20313–20320 (2015).
[Crossref] [PubMed]

X. Shi, J. Qin, and Z. Han, “Enhanced terahertz sensing with a coupled comb-shaped spoof surface plasmon waveguide,” Opt. Express 25, 278–283 (2017).
[Crossref] [PubMed]

C. Pan, Q. Wu, Q. Zhang, W. Zhao, J. Qi, J. Yao, C. Zhang, W. T. Hill, and J. Xu, “Direct visualization of light confinement and standing wave in THz Fabry-Perot resonator with bragg mirrors,” Opt. Express 25, 9768–9777 (2017).
[Crossref] [PubMed]

P. Tang, J. Li, L. Du, Q. Liu, Q. Peng, J. Zhao, B. Zhu, Z. Li, and L. Zhu, “Ultrasensitive specific terahertz sensor based on tunable plasmon induced transparency of a graphene micro-ribbon array structure,” Opt. Express 26, 30655–30666 (2018).
[Crossref] [PubMed]

R. Wang, Q. Wu, Q. Zhang, Y. Lu, W. Zhao, W. Ca, J. Qi, J. Yao, and J. Xu, “Conversion from terahertz-guided waves to surface waves with metasurface,” Opt. Express 26, 31233–31243 (2018).
[Crossref]

R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Multi-gap individual and coupled split-ring resonator structures,” Opt. Express 16, 18131–18144 (2008).
[Crossref] [PubMed]

Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17, 9219–9225 (2009).
[Crossref] [PubMed]

C. Yang, Q. Wu, J. Xu, K. A. Nelson, and C. A. Werley, “Experimental and theoretical analysis of THz-frequency, direction-dependent, phonon polariton modes in a subwavelength, anisotropic slab waveguide,” Opt. Express 18, 26351–26364 (2010).
[Crossref] [PubMed]

Z. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19, 3251–3257 (2011).
[Crossref] [PubMed]

C. A. Werley, K. Fan, A. C. Strikwerda, S. M. Teo, X. Zhang, R. D. Averitt, and K. A. Nelson, “Time-resolved imaging of near-fields in THz antennas and direct quantitative measurement of field enhancements,” Opt. Express 20, 8551–8567 (2012).
[Crossref] [PubMed]

X. Piao, S. Yu, and N. Park, “Control of Fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20, 18994–18999 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (1)

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80, 153103 (2009).
[Crossref]

Phys. Rev. Lett. (4)

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, and C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
[Crossref] [PubMed]

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006).
[Crossref] [PubMed]

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104, 243902 (2010).
[Crossref] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog. Quantum Electron. 28, 1–66 (2004).
[Crossref]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[Crossref]

Sci. Rep. (1)

Y. Zhu, X. Hu, H. Yang, and Q. Gong, “On-chip plasmon-induced transparency based on plasmonic coupled nanocavities,” Sci. Rep. 4, 3752 (2014).
[Crossref] [PubMed]

Other (1)

C. A. Werley, THz Polaritonics: Optical THz Generation, Detection, and Control on a Chip (Massachusetts Institute of Technology, 2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Experimental scheme: a PIT meta-structure on a 50 μm-thick LN planar waveguide. A femtosecond pump laser was focused into a line on the front of the LN slab to generate a THz wave in the crystal slab. The coordinate system and C-axis of the crystal are also shown in the Fig. 1(a). The electric field of the THz wave was polarized along the optical axis. (b) The on-chip PIT meta-structure unit is composed of a cut wire and a DSRR, with geometric parameters L = 66 μm, w = 6 μm, a = 46 μm, P = 100 μm, g = 6 μm, and s = 10 μm. (c) Optical microscope image of the PIT meta-structure. Scale bar: 50 μm. (d) Schematic illustration of the experimental setup.
Fig. 2
Fig. 2 (a) Experimental and (b) simulated space-time plots of the propagating THz wave in the PIT meta-structure sample. Two black dashed lines show the meta-structure edges. The plots are divided into an incidence (Inci.) and reflection region (Refl.), meta-structure region (Meta. region), and transmitted region (Tran.). The horizontal axis corresponds to the x-axis of the coordinate system in Fig. 1(a). The vertical axis is the delay time between the probe and pump pulses. The black line at x = 1.22 mm in Tran. was selected for further analysis. (c)–(e) Experimental and (f)–(h) simulated dispersion curves, which were obtained by applying a 2D Fourier transform to the region shown in the red dashed rectangle in Figs. 2(a) and 2(b), corresponding to the DSRRs, cut wires, and meta-structure, respectively. The dispersion curves shown with green dashed lines are the theoretical results for a bare 50 μm-thick LN waveguide.
Fig. 3
Fig. 3 (a) Experimental and (b) simulated transmission spectra for the DSRR, cut wire, and PIT meta-structure samples. The inset shows the simulated Ey distributions of a single DSRR (red) and single cut wire (blue), respectively. (c)–(e) show calculated Ey distributions corresponding to the first transmission valley νL, transparency peak νT, and second transmission valley νH, respectively.
Fig. 4
Fig. 4 (a), (b), and (c) show the time evolution of Ey for the cut wire mode [point 1 in Fig. 3(c)] and DSRR mode [point 2 in Fig. 3(c)] at frequencies of νL, νT, and νH, respectively; the incident waves originate from the ultra-narrowband source with center frequencies of νL, νT, and νH, respectively.
Fig. 5
Fig. 5 (a) Calculated transmission spectrum and (b) localization coefficient for the PIT meta-structure with different gap separations between the DSRR and cut wire. (c) Calculated Ey distributions corresponding to the transparency peak. The gaps between the DSRR and the cut wire are 3 μm, 8 μm, 10 μm, 20 μm, 30 μm and 40 μm, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ φ ( x , y , t ) = 2 π L λ Δ n ( x , y , t ) = 2 π L λ n e o 3 r 33 2 E T H z ( x , y , t ) ,
I ( x , y ) = I 0 ( x , y ) [ 1 2 Δ φ ( x , y ) ] ,
Δ φ ( x , y ) = 1 2 [ 1 S ( x , y ) R ( x , y ) ] = 1 2 Δ I ( x , y ) I ( x , y ) ,
T ( ν ) = E T ( ν ) / E T , ref ( ν ) ,
l = | E | 2 d V | E 0 | 2 d V ,
p ( ω ) = D d ( ω ) D d ( ω ) D r ( ω ) κ 2 f ( ω ) ,
q ( ω ) = κ D d ( ω ) D r ( ω ) κ 2 f ( ω ) .

Metrics