Abstract

In this paper, we report the generation of an ultra-sharp asymmetric resonance spectrum through Fano-like interference. This generation is accomplished by weakly coupling a high-quality factor (Q factor) Fabry–Pérot (FP) cavity and a low-Q factor FP cavity through evanescent waves. The high-Q FP cavity is formed by Sagnac loop mirrors, whilst the low-Q one is built by partially transmitting Sagnac loop reflectors. The working principle has been analytically established and numerically modelled by using temporal coupled-mode-theory (CMT), and verified using a prototype device fabricated on the 340 nm silicon-on-insulator (SOI) platform, patterned by deep ultraviolet (DUV) lithography. Pronounced asymmetric resonances with slopes up to 0.77 dB/pm have been successfully measured, which, to the best of our knowledge, is higher than the results reported in state-of-the-art devices in on-chip integrated Si photonic studies. The established theoretical analysis method can provide excellent design guidelines for devices with Fano-like resonances. The design principle can be applied to ultra-sensitive sensing, ultra-high extinction ratio switching, and more applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Spectral symmetry of Fano resonances in a waveguide coupled to a microcavity

Andreas Dyhl Osterkryger, Jakob Rosenkrantz de Lasson, Mikkel Heuck, Yi Yu, Jesper Mørk, and Niels Gregersen
Opt. Lett. 41(9) 2065-2068 (2016)

Signal reshaping and noise suppression using photonic crystal Fano structures

Dagmawi A. Bekele, Yi Yu, Hao Hu, Pengyu Guan, Michael Galili, Luisa Ottaviano, Leif Katsuo Oxenløwe, Kresten Yvind, and Jesper Mork
Opt. Express 26(15) 19596-19605 (2018)

All-fiber Fabry–Perot resonators based on microfiber Sagnac loop mirrors

Shan-Shan Wang, Zhi-Fang Hu, Yu-Hang Li, and Li-Min Tong
Opt. Lett. 34(3) 253-255 (2009)

References

  • View by:
  • |
  • |
  • |

  1. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [Crossref]
  2. B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
    [Crossref] [PubMed]
  3. M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
    [Crossref]
  4. Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
    [Crossref]
  5. W. Zhang and J. Yao, “Thermally tunable ultracompact Fano resonator on a silicon photonic chip,” Opt. Lett. 43(21), 5415–5418 (2018).
    [Crossref] [PubMed]
  6. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21(10), 11877–11888 (2013).
    [Crossref] [PubMed]
  7. X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V-m silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
    [Crossref]
  8. Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
    [Crossref]
  9. D. A. Bekele, Y. Yu, H. Hu, P. Guan, M. Galili, L. Ottaviano, L. K. Oxenløwe, K. Yvind, and J. Mork, “Signal reshaping and noise suppression using photonic crystal Fano structures,” Opt. Express 26(15), 19596–19605 (2018).
    [Crossref] [PubMed]
  10. Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
    [Crossref]
  11. J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
    [Crossref]
  12. A. D. Osterkryger, J. R. de Lasson, M. Heuck, Y. Yu, J. Mørk, and N. Gregersen, “Spectral symmetry of Fano resonances in a waveguide coupled to a microcavity,” Opt. Lett. 41(9), 2065–2068 (2016).
    [Crossref] [PubMed]
  13. L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32(7), 781–783 (2007).
    [Crossref] [PubMed]
  14. F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009).
    [Crossref] [PubMed]
  15. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
    [Crossref]
  16. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [Crossref]
  17. W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. V. Campenhout, P. Bienstman, D. V. Thourhout, R. Baets, V. Wiaux, and S. Beckx, “Basic structures for photonic integrated circuits in Silicon-on-insulator,” Opt. Express 12(8), 1583–1591 (2004).
    [Crossref] [PubMed]
  18. W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, “Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography,” IEEE J. Sel. Top. Quantum Electron. 8(4), 928–934 (2002).
    [Crossref]
  19. A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25(25), 31688–31695 (2017).
    [Crossref] [PubMed]
  20. Q. Li, T. Wang, Y. Su, M. Yan, and M. Qiu, “Coupled mode theory analysis of mode-splitting in coupled cavity system,” Opt. Express 18(8), 8367–8382 (2010).
    [Crossref] [PubMed]
  21. H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
    [Crossref] [PubMed]
  22. Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
    [Crossref]
  23. M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006).
    [Crossref]
  24. X. Sun, L. Zhou, J. Xie, Z. Zou, L. Lu, H. Zhu, X. Li, and J. Chen, “Tunable silicon Fabry-Perot comb filters formed by Sagnac loop mirrors,” Opt. Lett. 38(4), 567–569 (2013).
    [Crossref] [PubMed]
  25. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
    [Crossref] [PubMed]
  26. http://www.cornerstone.sotonfab.co.uk/ , accessed on 02/11/18.

2018 (3)

W. Zhang and J. Yao, “Thermally tunable ultracompact Fano resonator on a silicon photonic chip,” Opt. Lett. 43(21), 5415–5418 (2018).
[Crossref] [PubMed]

D. A. Bekele, Y. Yu, H. Hu, P. Guan, M. Galili, L. Ottaviano, L. K. Oxenløwe, K. Yvind, and J. Mork, “Signal reshaping and noise suppression using photonic crystal Fano structures,” Opt. Express 26(15), 19596–19605 (2018).
[Crossref] [PubMed]

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

2017 (2)

A. Li and W. Bogaerts, “Tunable electromagnetically induced transparency in integrated silicon photonics circuit,” Opt. Express 25(25), 31688–31695 (2017).
[Crossref] [PubMed]

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

2016 (2)

A. D. Osterkryger, J. R. de Lasson, M. Heuck, Y. Yu, J. Mørk, and N. Gregersen, “Spectral symmetry of Fano resonances in a waveguide coupled to a microcavity,” Opt. Lett. 41(9), 2065–2068 (2016).
[Crossref] [PubMed]

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref] [PubMed]

2015 (1)

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

2014 (2)

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

2013 (3)

2012 (1)

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[Crossref]

2010 (1)

2009 (2)

F. Wang, X. Wang, H. Zhou, Q. Zhou, Y. Hao, X. Jiang, M. Wang, and J. Yang, “Fano-resonance-based Mach-Zehnder optical switch employing dual-bus coupled ring resonator as two-beam interferometer,” Opt. Express 17(9), 7708–7716 (2009).
[Crossref] [PubMed]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[Crossref]

2007 (2)

L. Zhou and A. W. Poon, “Fano resonance-based electrically reconfigurable add-drop filters in silicon microring resonator-coupled Mach-Zehnder interferometers,” Opt. Lett. 32(7), 781–783 (2007).
[Crossref] [PubMed]

X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V-m silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[Crossref]

2006 (1)

M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006).
[Crossref]

2005 (1)

2004 (1)

2002 (1)

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, “Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography,” IEEE J. Sel. Top. Quantum Electron. 8(4), 928–934 (2002).
[Crossref]

2000 (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Alonso-Ramos, C.

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Andreani, L. C.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[Crossref]

Asano, T.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[Crossref]

Baets, R.

Beckx, S.

Bekele, D. A.

Belotti, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[Crossref]

Bienstman, P.

Bogaerts, W.

Brandao, F. G. S. L.

M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006).
[Crossref]

Campenhout, J. V.

Cassan, E.

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Chau, F. S.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref] [PubMed]

Chen, G.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref] [PubMed]

Chen, J.

Chen, W.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Chen, Y.

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Chen, Y. H.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

de Lasson, J. R.

Deng, J.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref] [PubMed]

Du, H.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref] [PubMed]

Dumon, P.

Duran-Valdeiglesias, E.

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Fan, S.

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Galili, M.

Galli, M.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[Crossref]

Gregersen, N.

Guan, P.

Hao, Y.

Hartmann, M. J.

M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006).
[Crossref]

He, S. L.

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Heuck, M.

A. D. Osterkryger, J. R. de Lasson, M. Heuck, Y. Yu, J. Mørk, and N. Gregersen, “Spectral symmetry of Fano resonances in a waveguide coupled to a microcavity,” Opt. Lett. 41(9), 2065–2068 (2016).
[Crossref] [PubMed]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Hu, H.

D. A. Bekele, Y. Yu, H. Hu, P. Guan, M. Galili, L. Ottaviano, L. K. Oxenløwe, K. Yvind, and J. Mork, “Signal reshaping and noise suppression using photonic crystal Fano structures,” Opt. Express 26(15), 19596–19605 (2018).
[Crossref] [PubMed]

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Husko, C.

X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V-m silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[Crossref]

Jiang, X.

Kivshar, Y. S.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Krauss, T. F.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[Crossref]

Kuramochi, E.

Kwong, D. L.

X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V-m silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[Crossref]

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Leroux, X.

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Li, A.

Li, Q.

Li, X.

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Limonov, M. F.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Lu, L.

Luyssaert, B.

Ma, Z.

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Marris-Morini, D.

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Matsuo, S.

Mork, J.

D. A. Bekele, Y. Yu, H. Hu, P. Guan, M. Galili, L. Ottaviano, L. K. Oxenløwe, K. Yvind, and J. Mork, “Signal reshaping and noise suppression using photonic crystal Fano structures,” Opt. Express 26(15), 19596–19605 (2018).
[Crossref] [PubMed]

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Mørk, J.

Noda, S.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[Crossref]

Nori, F.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Notomi, M.

Nozaki, K.

O’Faolain, L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[Crossref]

Osterkryger, A. D.

Ottaviano, L.

Oxenlowe, L. K.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Oxenløwe, L. K.

Özdemir, S. K.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Peng, B.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Peucheret, C.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Plenio, M. B.

M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006).
[Crossref]

Poddubny, A. N.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Poon, A. W.

Portalupi, S. L.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[Crossref]

Qiu, M.

Rybin, M. V.

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Sato, T.

Sato, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[Crossref]

Seo, J.-H.

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Shinya, A.

Shuai, Y.

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Singh Chadha, A.

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Su, Y.

Sun, X.

Taillaert, D.

Takahashi, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[Crossref]

Tanaka, Y.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[Crossref]

Thourhout, D. V.

Upham, J.

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[Crossref]

Van Campenhout, J.

Van Thourhout, D.

Vivien, L.

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Wang, F.

Wang, M.

Wang, T.

Wang, X.

Wiaux, V.

Wong, C. W.

X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V-m silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[Crossref]

Xie, J.

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Xue, W.

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Xue, W. Q.

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Yan, M.

Yang, H.

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Yang, J.

Yang, L.

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Yang, X.

X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V-m silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[Crossref]

Yao, J.

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Yu, M. B.

X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V-m silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[Crossref]

Yu, Y.

D. A. Bekele, Y. Yu, H. Hu, P. Guan, M. Galili, L. Ottaviano, L. K. Oxenløwe, K. Yvind, and J. Mork, “Signal reshaping and noise suppression using photonic crystal Fano structures,” Opt. Express 26(15), 19596–19605 (2018).
[Crossref] [PubMed]

A. D. Osterkryger, J. R. de Lasson, M. Heuck, Y. Yu, J. Mørk, and N. Gregersen, “Spectral symmetry of Fano resonances in a waveguide coupled to a microcavity,” Opt. Lett. 41(9), 2065–2068 (2016).
[Crossref] [PubMed]

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Yvind, K.

D. A. Bekele, Y. Yu, H. Hu, P. Guan, M. Galili, L. Ottaviano, L. K. Oxenløwe, K. Yvind, and J. Mork, “Signal reshaping and noise suppression using photonic crystal Fano structures,” Opt. Express 26(15), 19596–19605 (2018).
[Crossref] [PubMed]

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

Zhang, J. H.

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Zhang, W.

Zhang, X.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref] [PubMed]

Zhao, D.

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Zhou, G.

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref] [PubMed]

Zhou, H.

Zhou, L.

Zhou, Q.

Zhou, W.

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Zhu, H.

Zou, Z.

ACS Photonics (1)

J. H. Zhang, X. Leroux, E. Duran-Valdeiglesias, C. Alonso-Ramos, D. Marris-Morini, L. Vivien, S. L. He, and E. Cassan, “Generating Fano Resonances in a Single-Waveguide Silicon Nanobeam Cavity for Efficient Electro-Optical Modulation,” ACS Photonics 5(11), 4229–4237 (2018).
[Crossref]

Appl. Phys. Lett. (4)

Y. Shuai, D. Zhao, A. Singh Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

X. Yang, C. Husko, C. W. Wong, M. B. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/V-m silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007).
[Crossref]

Y. Yu, M. Heuck, H. Hu, W. Q. Xue, C. Peucheret, Y. H. Chen, L. K. Oxenlowe, K. Yvind, and J. Mork, “Fano resonance control in a photonic crystal structure and its application to ultrafast switching,” Appl. Phys. Lett. 105(6), 061117 (2014).
[Crossref]

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O’Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, and R. Baets, “Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography,” IEEE J. Sel. Top. Quantum Electron. 8(4), 928–934 (2002).
[Crossref]

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

Y. Yu, Y. Chen, H. Hu, W. Xue, K. Yvind, and J. Mork, “Nonreciprocal transmission in a nonlinear photonic‐crystal Fano structure with broken symmetry,” Laser Photonics Rev. 9(2), 241–247 (2015).
[Crossref]

Nat. Commun. (1)

B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5(1), 5082 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nat. Photonics 11(9), 543–554 (2017).
[Crossref]

Y. Sato, Y. Tanaka, J. Upham, Y. Takahashi, T. Asano, and S. Noda, “Strong coupling between distant photonic nanocavities and its dynamic control,” Nat. Photonics 6(1), 56–61 (2012).
[Crossref]

Nat. Phys. (1)

M. J. Hartmann, F. G. S. L. Brandao, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2(12), 849–855 (2006).
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 62(55 Pt B), 7389–7404 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

H. Du, X. Zhang, G. Chen, J. Deng, F. S. Chau, and G. Zhou, “Precise control of coupling strength in photonic molecules over a wide range using nanoelectromechanical systems,” Sci. Rep. 6(1), 24766 (2016).
[Crossref] [PubMed]

Other (1)

http://www.cornerstone.sotonfab.co.uk/ , accessed on 02/11/18.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the low-Q cavity and high-Q cavity coupled configuration.
Fig. 2
Fig. 2 (a) Schematic of the prototype device. (b) Schematic of the high-Q cavity device to be integrated in the prototype device. (c) Schematic of the device used to measure the reflection ratio of the PTE, which is used to form the low-Q cavity.
Fig. 3
Fig. 3 Plotted power transmission results obtained from Eq. (7) for weak coupling cases with (a) ω2 = 0.7ω1, (b) ω2 = ω1 and (c) ω2 = 1.3ω1, and for (d) strong coupling case with ω2 = ω1. The transmission spectra are normalized to incident power. (e) Transmission results predicted using Eq. (7) with parameters derived from the fabricated devices. The pink curve denotes a transmission spectrum predicted with a higher Qc relative to the orange curve. λ1,2 denote the resonance wavelength of the two cavities.
Fig. 4
Fig. 4 Optical microscope images of the devices tested in this study. (a) The prototype device. (b) The high-Q cavity device to be integrated in the prototype device. (c) The device used to measure the reflection ratio of the PTE.
Fig. 5
Fig. 5 Experimental results. The transmission spectra are normalized to the incident power. (a) Spectrum acquired from device B to characterize the Q factor of the high-Q cavity. (b) Spectra acquired from device C to measure the reflection ratio of the PTE. Dashed lines are obtained through filtering interference fringes. (c) Spectrum of the prototype device (device A) to present the Fano-like resonance investigated in this study. A typical resonance on the spectrum in (c) is selected and re-plotted in (d), in which the sharp slope is fitted as the red dashed line. (e and f) Averaged maximum slope results and averaged maximum extinction ratio results measured from a device with lower Qc value (presented by the red bars) and a device with higher Qc (presented by the blue bars).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

d dt a 1 =(i ω 1 1 τ t1 ) a 1 +μ a 2 ,
d dt a 2 =(i ω 2 1 τ t2 ) a 2 +μ a 1 .
χ= ω 1 + ω 2 2 +i 1 2 ( 1 τ t1 + 1 τ t2 )± 1 4 (Δω+iΔ 1 τ t ) 2 + μ 2 ,
χ ω 1 + ω 2 2 +i 1 2 ( 1 τ t1 + 1 τ t2 )± 1 4 (Δω) 2 + μ 2 1 4 (Δ 1 τ t ) 2 .
d dt a 1 =(i ω 1 1 τ i1 1 τ c ) a 1 +μ a 2 + 1 τ c s i ,
d dt a 2 =(i ω 2 1 τ i2 ) a 2 +μ a 1 ,
t= ω 2 Q c iω(i ω 2 ω 2 2 Q 2 ) [ iω(i ω 1 ω 2 Q c ) ][ iω(i ω 2 ω 2 2 Q 2 ) ]+ μ 2 ,