Abstract

Nanoscale plasmonic particles represent a crucial transformation on optical and electronic properties exhibited by advanced materials. Herein are reported remarkable interferometric optical effects with dependence on polarization for filtering or modulating electronic signals in multilayer nanostructures. Metallic nanoparticles were incorporated in randomly distributed networks of reduced graphene oxide by an in-situ vapor-phase deposition method. The polarization-selectable nonlinear optical absorption contribution on the photoconductivity of reduced graphene oxide decorated with gold nanoparticles was analyzed. Nanosecond pulses at 532 nm wavelength were employed in a two-wave mixing experiment to study photoconduction and nonlinear optical absorption in this nanohybrid material. The ablation threshold of the sample was measured in 0.4 J/cm2. Electrochemical impedance spectroscopy measurements revealed a capacitive response that can be enhanced by gold decoration in carbon nanostructures. A strong two-photon absorption process characterized by 5 × 10−7 m/W was identified as a physical mechanism responsible for the nonlinear photoconductive behavior of the nanostructures. Experimental shift of 1 MHz for the cutoff frequency associated with an electrical filter function performed by the sample in film form was demonstrated. Moreover, amplitude modulation of electronic signals controlled by the polarization of a two-wave mixing experiment was proposed. All-optical and optoelectronic nanosystems controlled by multi-photonic interactions in carbon-based materials were discussed. The key role of the vectorial nature of light in two-wave mixing experiments is a fascinating tool for the exploration of low-dimensional systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum and bistable magneto-conductive signatures in multiwall carbon nanotubes decorated with bimetallic Ni and Pt nanoparticles driven by phonons

J. A. García-Merino, E. Jiménez-Marín, C. Mercado-Zúñiga, M. Trejo-Valdez, J. R. Vargas-García, and C. Torres-Torres
OSA Continuum 2(4) 1285-1295 (2019)

Magneto-conductivity and magnetically-controlled nonlinear optical transmittance in multi-wall carbon nanotubes

J. A. García-Merino, C. L. Martínez-González, C. R. Torres San Miguel, M. Trejo-Valdez, H. Martínez-Gutiérrez, and C. Torres-Torres
Opt. Express 24(17) 19552-19557 (2016)

Measurement of the third order optical nonlinearities of graphene quantum dots in water at 355 nm, 532 nm and 1064 nm

Hongzhen Wang, Charles Ciret, Christophe Cassagne, and Georges Boudebs
Opt. Mater. Express 9(2) 339-351 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2D materials for flexible supercapacitors,” J. Energy Chem. 27(1), 57–72 (2018).
    [Crossref]
  2. F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
    [Crossref]
  3. B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
    [Crossref]
  4. J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
    [Crossref]
  5. Y. Huang, J. Liang, and Y. Chen, “An overview of the applications of graphene-based materials in supercapacitors,” Small 8(12), 1805–1834 (2012).
    [Crossref] [PubMed]
  6. K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
    [Crossref] [PubMed]
  7. V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. 66, 460–468 (2017).
    [Crossref]
  8. Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
    [Crossref]
  9. T. S. Sreeprasad and V. Berry, “How do the electrical properties of graphene change with its functionalization?” Small 9(3), 341–350 (2013).
    [Crossref] [PubMed]
  10. Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
    [Crossref]
  11. S. Bai and X. P. Shen, “Graphene-inorganic nanocoposites,” RSC Advances 2(1), 64–98 (2012).
    [Crossref]
  12. H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
    [Crossref] [PubMed]
  13. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  14. B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24(9), 9955–9965 (2016).
    [Crossref] [PubMed]
  15. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  16. E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
    [Crossref]
  17. S. R. Syed, G.-H. Lim, B. Lim, and J. W. Chon, “Measurement of the third order non-linearity of gold-graphene hybrid nanocomposite for near-infrared wavelengths,” Proc. SPIE 9894, Nonlinear Optics and its Applications IV, 98941G (27 April 2016).
  18. X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
    [Crossref]
  19. Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
    [Crossref] [PubMed]
  20. S. M. Tabakman, Z. Chen, H. S. Casalongue, H. Wang, and H. Dai, “A new approach to solution-phase gold seeding for SERS substrates,” Small 7(4), 499–505 (2011).
    [Crossref] [PubMed]
  21. M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
    [Crossref] [PubMed]
  22. E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, “Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA,” Sensor. Actuat. B-Chem. 215, 159–165 (2015).
  23. N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40(3), 1647–1671 (2011).
    [Crossref] [PubMed]
  24. C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
    [Crossref]
  25. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
    [Crossref]
  26. A. L. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
    [Crossref]
  27. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
    [Crossref] [PubMed]
  28. Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
    [Crossref]
  29. N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
    [Crossref] [PubMed]
  30. N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
    [Crossref]
  31. P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
    [Crossref]
  32. K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Sci. Rep. 7(1), 40163 (2017).
    [Crossref] [PubMed]
  33. G. Sahoo, N. Sarkar, D. Sahu, and S. K. Swain, “Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications,” RSC Advances 7(4), 2137–2150 (2017).
    [Crossref]
  34. A. Bonanni, M. Pumera, and Y. Miyahara, “Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study,” Phys. Chem. Chem. Phys. 13(11), 4980–4986 (2011).
    [Crossref] [PubMed]
  35. S. A. Ng, K. A. Razak, A. A. Aziz, and K. Y. Cheong, “The effect of size and shape of gold nanoparticles on thin film properties,” J. Exp. Nanosci. 9(1), 64–77 (2014).
    [Crossref]
  36. C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
    [Crossref]
  37. R. Torres-Torres, “Extracting characteristic impedance in low-loss substrate,” Electron. Lett. 47(3), 191–193 (2011).
    [Crossref]
  38. I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, and M. V. Partyka, “Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures,” Nanoscale Res. Lett. 12(1), 272 (2017).
    [Crossref] [PubMed]
  39. P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
    [Crossref] [PubMed]
  40. N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
    [Crossref] [PubMed]
  41. X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
    [Crossref] [PubMed]

2018 (2)

Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2D materials for flexible supercapacitors,” J. Energy Chem. 27(1), 57–72 (2018).
[Crossref]

B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
[Crossref]

2017 (7)

V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. 66, 460–468 (2017).
[Crossref]

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, and M. V. Partyka, “Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures,” Nanoscale Res. Lett. 12(1), 272 (2017).
[Crossref] [PubMed]

Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
[Crossref]

K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Sci. Rep. 7(1), 40163 (2017).
[Crossref] [PubMed]

G. Sahoo, N. Sarkar, D. Sahu, and S. K. Swain, “Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications,” RSC Advances 7(4), 2137–2150 (2017).
[Crossref]

2016 (4)

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

B. Can-Uc, R. Rangel-Rojo, A. Peña-Ramírez, C. B. de Araújo, H. T. M. C. M. Baltar, A. Crespo-Sosa, M. L. Garcia-Betancourt, and A. Oliver, “Nonlinear optical response of platinum nanoparticles and platinum ions embedded in sapphire,” Opt. Express 24(9), 9955–9965 (2016).
[Crossref] [PubMed]

2015 (3)

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, “Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA,” Sensor. Actuat. B-Chem. 215, 159–165 (2015).

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

2014 (3)

C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
[Crossref]

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

S. A. Ng, K. A. Razak, A. A. Aziz, and K. Y. Cheong, “The effect of size and shape of gold nanoparticles on thin film properties,” J. Exp. Nanosci. 9(1), 64–77 (2014).
[Crossref]

2013 (2)

T. S. Sreeprasad and V. Berry, “How do the electrical properties of graphene change with its functionalization?” Small 9(3), 341–350 (2013).
[Crossref] [PubMed]

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

2012 (5)

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
[Crossref]

S. Bai and X. P. Shen, “Graphene-inorganic nanocoposites,” RSC Advances 2(1), 64–98 (2012).
[Crossref]

Y. Huang, J. Liang, and Y. Chen, “An overview of the applications of graphene-based materials in supercapacitors,” Small 8(12), 1805–1834 (2012).
[Crossref] [PubMed]

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

2011 (7)

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

R. Torres-Torres, “Extracting characteristic impedance in low-loss substrate,” Electron. Lett. 47(3), 191–193 (2011).
[Crossref]

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

A. Bonanni, M. Pumera, and Y. Miyahara, “Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study,” Phys. Chem. Chem. Phys. 13(11), 4980–4986 (2011).
[Crossref] [PubMed]

N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40(3), 1647–1671 (2011).
[Crossref] [PubMed]

S. M. Tabakman, Z. Chen, H. S. Casalongue, H. Wang, and H. Dai, “A new approach to solution-phase gold seeding for SERS substrates,” Small 7(4), 499–505 (2011).
[Crossref] [PubMed]

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

2010 (2)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2008 (1)

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

2005 (1)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

1990 (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

1939 (1)

A. L. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Aksimentyeva, O. I.

I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, and M. V. Partyka, “Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures,” Nanoscale Res. Lett. 12(1), 272 (2017).
[Crossref] [PubMed]

Alonso-González, P.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Aloukos, P.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Anila, E. I.

V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. 66, 460–468 (2017).
[Crossref]

Arronche, L.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

Avilés, F.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

Aziz, A. A.

S. A. Ng, K. A. Razak, A. A. Aziz, and K. Y. Cheong, “The effect of size and shape of gold nanoparticles on thin film properties,” J. Exp. Nanosci. 9(1), 64–77 (2014).
[Crossref]

Bai, S.

S. Bai and X. P. Shen, “Graphene-inorganic nanocoposites,” RSC Advances 2(1), 64–98 (2012).
[Crossref]

Bakandritsos, A.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Baltar, H. T. M. C. M.

Bao, Q.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Bastús, N. G.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Berry, V.

T. S. Sreeprasad and V. Berry, “How do the electrical properties of graphene change with its functionalization?” Small 9(3), 341–350 (2013).
[Crossref] [PubMed]

Boey, F.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Boltasseva, A.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Bonanni, A.

A. Bonanni, M. Pumera, and Y. Miyahara, “Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study,” Phys. Chem. Chem. Phys. 13(11), 4980–4986 (2011).
[Crossref] [PubMed]

Brennan, C. W.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Campos, C.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Canché-Escamilla, G.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

Can-Uc, B.

Cao, J.

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Casalongue, H. S.

S. M. Tabakman, Z. Chen, H. S. Casalongue, H. Wang, and H. Dai, “A new approach to solution-phase gold seeding for SERS substrates,” Small 7(4), 499–505 (2011).
[Crossref] [PubMed]

Casanova, F.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Centeno, A.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Cervantes-Sodi, F.

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
[Crossref]

Chao, Y.

Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2D materials for flexible supercapacitors,” J. Energy Chem. 27(1), 57–72 (2018).
[Crossref]

Chen, F.

Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
[Crossref]

Chen, H.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Chen, J.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Chen, Y.

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

Y. Huang, J. Liang, and Y. Chen, “An overview of the applications of graphene-based materials in supercapacitors,” Small 8(12), 1805–1834 (2012).
[Crossref] [PubMed]

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Chen, Y. P.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Chen, Z.

S. M. Tabakman, Z. Chen, H. S. Casalongue, H. Wang, and H. Dai, “A new approach to solution-phase gold seeding for SERS substrates,” Small 7(4), 499–505 (2011).
[Crossref] [PubMed]

Cheng, H.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Cheng, H. M.

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
[Crossref]

Cheong, K. Y.

S. A. Ng, K. A. Razak, A. A. Aziz, and K. Y. Cheong, “The effect of size and shape of gold nanoparticles on thin film properties,” J. Exp. Nanosci. 9(1), 64–77 (2014).
[Crossref]

Chhowalla, M.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Cho, K.

K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Sci. Rep. 7(1), 40163 (2017).
[Crossref] [PubMed]

Chon, J. W.

S. R. Syed, G.-H. Lim, B. Lim, and J. W. Chon, “Measurement of the third order non-linearity of gold-graphene hybrid nanocomposite for near-infrared wavelengths,” Proc. SPIE 9894, Nonlinear Optics and its Applications IV, 98941G (27 April 2016).

Chung, T. F.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Comenge, J.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Couris, S.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Crespo-Sosa, A.

Dai, H.

S. M. Tabakman, Z. Chen, H. S. Casalongue, H. Wang, and H. Dai, “A new approach to solution-phase gold seeding for SERS substrates,” Small 7(4), 499–505 (2011).
[Crossref] [PubMed]

de Araújo, C. B.

de la Zerda, A.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Ding, J.

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

Duarte-Aranda, S.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

Dykman, L.

N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40(3), 1647–1671 (2011).
[Crossref] [PubMed]

Eda, G.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Emani, N. K.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Fakharan, Z.

B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Figueroa-Torres, M. Z.

C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
[Crossref]

Forster, R. J.

E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, “Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA,” Sensor. Actuat. B-Chem. 215, 159–165 (2015).

Fromm, D. P.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Gambhir, S. S.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Gao, A.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Gao, Y.

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

Garcia-Betancourt, M. L.

Ge, Y.

Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2D materials for flexible supercapacitors,” J. Energy Chem. 27(1), 57–72 (2018).
[Crossref]

Golmar, F.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Gonzalez-Chi, P. I.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

Gu, J.

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

Guo, Z.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Habte, F.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Han, Y.

Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2D materials for flexible supercapacitors,” J. Energy Chem. 27(1), 57–72 (2018).
[Crossref]

Hao, J.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, C.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

He, Q.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Heidari, B.

B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
[Crossref]

Hernández-Pérez, M. A.

C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
[Crossref]

Hillenbrand, R.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Holland, E. C.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Horbenko, Y. Y.

I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, and M. V. Partyka, “Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures,” Nanoscale Res. Lett. 12(1), 272 (2017).
[Crossref] [PubMed]

Hou, W.

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Huang, R.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Huang, X.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Y. Huang, J. Liang, and Y. Chen, “An overview of the applications of graphene-based materials in supercapacitors,” Small 8(12), 1805–1834 (2012).
[Crossref] [PubMed]

Hueso, L. E.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Jayaraj, M. K.

V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. 66, 460–468 (2017).
[Crossref]

Jiménez-Marín, E.

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

Jokerst, J. V.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Joyce, K.

E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, “Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA,” Sensor. Actuat. B-Chem. 215, 159–165 (2015).

Kaniyoor, A.

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Kempen, P. J.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Keyes, T. E.

E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, “Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA,” Sensor. Actuat. B-Chem. 215, 159–165 (2015).

Khlebtsov, N.

N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40(3), 1647–1671 (2011).
[Crossref] [PubMed]

Kildishev, A. V.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Kim, S.

K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Sci. Rep. 7(1), 40163 (2017).
[Crossref] [PubMed]

Kino, G. S.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Kircher, M. F.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Kolokithas-Ntoukas, A.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Koppens, F.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Kou, X.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Ku-Herrera, J.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

La Saponara, V.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

Li, F.

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
[Crossref]

Li, Y.

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

Liang, J.

Y. Huang, J. Liang, and Y. Chen, “An overview of the applications of graphene-based materials in supercapacitors,” Small 8(12), 1805–1834 (2012).
[Crossref] [PubMed]

Liaros, N.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Lim, B.

S. R. Syed, G.-H. Lim, B. Lim, and J. W. Chon, “Measurement of the third order non-linearity of gold-graphene hybrid nanocomposite for near-infrared wavelengths,” Proc. SPIE 9894, Nonlinear Optics and its Applications IV, 98941G (27 April 2016).

Lim, G.-H.

S. R. Syed, G.-H. Lim, B. Lim, and J. W. Chon, “Measurement of the third order non-linearity of gold-graphene hybrid nanocomposite for near-infrared wavelengths,” Proc. SPIE 9894, Nonlinear Optics and its Applications IV, 98941G (27 April 2016).

Liu, J.

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Liu, Z.

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Loh, K. P.

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Luo, Z.

Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
[Crossref]

Majdabadi, A.

B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
[Crossref]

Martínez-González, C. L.

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

Martínez-Gutiérrez, H.

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

May-Pat, A.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

McCooey, A.

E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, “Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA,” Sensor. Actuat. B-Chem. 215, 159–165 (2015).

Mellinghoff, I. K.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Mercado-Zúñiga, C.

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
[Crossref]

Mittra, E.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Miyahara, Y.

A. Bonanni, M. Pumera, and Y. Miyahara, “Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study,” Phys. Chem. Chem. Phys. 13(11), 4980–4986 (2011).
[Crossref] [PubMed]

Moerner, W. E.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Molli, M.

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Monastyrskii, L. S.

I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, and M. V. Partyka, “Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures,” Nanoscale Res. Lett. 12(1), 272 (2017).
[Crossref] [PubMed]

Muthukumar, V. S.

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Naji, L.

B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
[Crossref]

Navickaite, G.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Ng, S. A.

S. A. Ng, K. A. Razak, A. A. Aziz, and K. Y. Cheong, “The effect of size and shape of gold nanoparticles on thin film properties,” J. Exp. Nanosci. 9(1), 64–77 (2014).
[Crossref]

Ni, W.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Ni, X.

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Nikitin, A. Y.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Olenych, I. B.

I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, and M. V. Partyka, “Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures,” Nanoscale Res. Lett. 12(1), 272 (2017).
[Crossref] [PubMed]

Oliver, A.

Partyka, M. V.

I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, and M. V. Partyka, “Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures,” Nanoscale Res. Lett. 12(1), 272 (2017).
[Crossref] [PubMed]

Patterson, A. L.

A. L. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Peña-Ramírez, A.

Pesquera, A.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Pitter, K.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Podila, R.

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Pradhan, P.

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Pumera, M.

A. Bonanni, M. Pumera, and Y. Miyahara, “Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study,” Phys. Chem. Chem. Phys. 13(11), 4980–4986 (2011).
[Crossref] [PubMed]

Puntes, V.

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

Qi, X.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Ramaprabhu, S.

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Rangel-Rojo, R.

Rao, A. M.

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Razak, K. A.

S. A. Ng, K. A. Razak, A. A. Aziz, and K. Y. Cheong, “The effect of size and shape of gold nanoparticles on thin film properties,” J. Exp. Nanosci. 9(1), 64–77 (2014).
[Crossref]

Ren, W.

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
[Crossref]

Reshmi, R.

V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. 66, 460–468 (2017).
[Crossref]

Rodríguez-Uicab, O.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

Sahoo, G.

G. Sahoo, N. Sarkar, D. Sahu, and S. K. Swain, “Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications,” RSC Advances 7(4), 2137–2150 (2017).
[Crossref]

Sahu, D.

G. Sahoo, N. Sarkar, D. Sahu, and S. K. Swain, “Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications,” RSC Advances 7(4), 2137–2150 (2017).
[Crossref]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Salmani, S.

B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
[Crossref]

Santos-Fernández, A. M.

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

Sarkar, N.

G. Sahoo, N. Sarkar, D. Sahu, and S. K. Swain, “Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications,” RSC Advances 7(4), 2137–2150 (2017).
[Crossref]

Sasani Ghamsari, M.

B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
[Crossref]

Schuck, P. J.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Shen, X. P.

S. Bai and X. P. Shen, “Graphene-inorganic nanocoposites,” RSC Advances 2(1), 64–98 (2012).
[Crossref]

Shi, J.

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

Shu, D.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Sinclair, R.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Siva Sankara Sai, S.

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Song, X.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Spain, E.

E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, “Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA,” Sensor. Actuat. B-Chem. 215, 159–165 (2015).

Sreeja, V. G.

V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. 66, 460–468 (2017).
[Crossref]

Sreeprasad, T. S.

T. S. Sreeprasad and V. Berry, “How do the electrical properties of graphene change with its functionalization?” Small 9(3), 341–350 (2013).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Sundaramurthy, A.

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

Swain, S. K.

G. Sahoo, N. Sarkar, D. Sahu, and S. K. Swain, “Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications,” RSC Advances 7(4), 2137–2150 (2017).
[Crossref]

Syed, S. R.

S. R. Syed, G.-H. Lim, B. Lim, and J. W. Chon, “Measurement of the third order non-linearity of gold-graphene hybrid nanocomposite for near-infrared wavelengths,” Proc. SPIE 9894, Nonlinear Optics and its Applications IV, 98941G (27 April 2016).

Szabo, T.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Tabakman, S. M.

S. M. Tabakman, Z. Chen, H. S. Casalongue, H. Wang, and H. Dai, “A new approach to solution-phase gold seeding for SERS substrates,” Small 7(4), 499–505 (2011).
[Crossref] [PubMed]

Tian, J.

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Torres-Martínez, L. M.

C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
[Crossref]

Torres-Martínez, R.

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

Torres-Torres, C.

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

Torres-Torres, R.

R. Torres-Torres, “Extracting characteristic impedance in low-loss substrate,” Electron. Lett. 47(3), 191–193 (2011).
[Crossref]

Trejo-Valdez, M.

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

Uribe-Calderon, J.

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Vargas-García, J. R.

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
[Crossref]

Vélez, S.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Vinitha, G.

V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. 66, 460–468 (2017).
[Crossref]

Wallace, G. G.

Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2D materials for flexible supercapacitors,” J. Energy Chem. 27(1), 57–72 (2018).
[Crossref]

Wang, C.

Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2D materials for flexible supercapacitors,” J. Energy Chem. 27(1), 57–72 (2018).
[Crossref]

Wang, H.

S. M. Tabakman, Z. Chen, H. S. Casalongue, H. Wang, and H. Dai, “A new approach to solution-phase gold seeding for SERS substrates,” Small 7(4), 499–505 (2011).
[Crossref] [PubMed]

Wang, J.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Wang, Y.

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

Wei, T.-H.

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

Wu, S.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Wu, Y.

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Wu, Z. S.

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
[Crossref]

Xiao, H.

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Xu, C.

Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
[Crossref]

Yan, Q.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Yan, W.

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Yang, G.

Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
[Crossref]

Yang, K.

K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Sci. Rep. 7(1), 40163 (2017).
[Crossref] [PubMed]

Yang, X.

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Yang, Z.

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Yi, F.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Yin, L. C.

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
[Crossref]

Yin, Z.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Yoon, D. S.

K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Sci. Rep. 7(1), 40163 (2017).
[Crossref] [PubMed]

Zavaleta, C. L.

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Zboril, R.

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Zhang, H.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Zhang, Q.

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Zhang, X.

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Zhao, W.

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

Zhao, X.

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Zhong, J.

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Zhou, G.

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
[Crossref]

Zhu, Y.

Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
[Crossref]

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Zhu, Z.

Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
[Crossref]

Zurutuza, A.

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

X. Zhao, Z. Liu, W. Yan, Y. Wu, X. Zhang, Y. Chen, and J. Tian, “Ultrafast carrier dynamics and saturable absorption of solution n processable few-layered graphene oxide,” Appl. Phys. Lett. 98(12), 121905 (2011).
[Crossref]

Chem. Eng. J. (1)

Y. Huang, H. Cheng, D. Shu, J. Zhong, X. Song, Z. Guo, A. Gao, J. Hao, C. He, and F. Yi, “MnO2-introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors,” Chem. Eng. J. 320, 634–643 (2017).
[Crossref]

Chem. Soc. Rev. (1)

N. Khlebtsov and L. Dykman, “Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies,” Chem. Soc. Rev. 40(3), 1647–1671 (2011).
[Crossref] [PubMed]

Electron. Lett. (1)

R. Torres-Torres, “Extracting characteristic impedance in low-loss substrate,” Electron. Lett. 47(3), 191–193 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26(4), 760–769 (1990).
[Crossref]

J. Alloys Compd. (1)

C. Mercado-Zúñiga, J. R. Vargas-García, M. A. Hernández-Pérez, M. Z. Figueroa-Torres, F. Cervantes-Sodi, and L. M. Torres-Martínez, “Synthesis of highly dispersed platinum particles on carbon nanotubes by an in situ vapor-phase method,” J. Alloys Compd. 615, S538–S541 (2014).
[Crossref]

J. Cryst. Growth (1)

Z. Zhu, F. Chen, C. Xu, G. Yang, Y. Zhu, and Z. Luo, “Structure evolution of self-catalyzed grown Au, Ag and their alloy nanostructure,” J. Cryst. Growth 479, 9–15 (2017).
[Crossref]

J. Energy Chem. (1)

Y. Han, Y. Ge, Y. Chao, C. Wang, and G. G. Wallace, “Recent progress in 2D materials for flexible supercapacitors,” J. Energy Chem. 27(1), 57–72 (2018).
[Crossref]

J. Exp. Nanosci. (1)

S. A. Ng, K. A. Razak, A. A. Aziz, and K. Y. Cheong, “The effect of size and shape of gold nanoparticles on thin film properties,” J. Exp. Nanosci. 9(1), 64–77 (2014).
[Crossref]

J. Intell. Mater. Syst. Struct. (1)

F. Avilés, A. May-Pat, G. Canché-Escamilla, O. Rodríguez-Uicab, J. Ku-Herrera, S. Duarte-Aranda, J. Uribe-Calderon, P. I. Gonzalez-Chi, L. Arronche, and V. La Saponara, “Influence of carbon nanotube on the piezoresistive behavior of multiwall carbon nanotube/polymer composites,” J. Intell. Mater. Syst. Struct. 27(1), 92–103 (2016).
[Crossref]

J. Nanoelectron. Optoe. (1)

C. Torres-Torres, C. Mercado-Zúñiga, A. M. Santos-Fernández, C. L. Martínez-González, M. Trejo-Valdez, H. Martínez-Gutiérrez, J. R. Vargas-García, and R. Torres-Martínez, “Contrast in the electrical and optoelectrical properties exhibited by randomly distributed networks and vertically aligned mutil-wall carbon nanotubes,” J. Nanoelectron. Optoe. 12(1), 28–32 (2017).
[Crossref]

J. Phys. Chem. C (1)

N. Liaros, P. Aloukos, A. Kolokithas-Ntoukas, A. Bakandritsos, T. Szabo, R. Zboril, and S. Couris, “Nonlinear Optical Properties and Broadband Optical Power Limiting Action of Graphene Oxide Colloids,” J. Phys. Chem. C 117(13), 6842–6850 (2013).
[Crossref]

Langmuir (2)

N. G. Bastús, J. Comenge, and V. Puntes, “Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening,” Langmuir 27(17), 11098–11105 (2011).
[Crossref] [PubMed]

H. Chen, X. Kou, Z. Yang, W. Ni, and J. Wang, “Shape- and size-dependent refractive index sensitivity of gold nanoparticles,” Langmuir 24(10), 5233–5237 (2008).
[Crossref] [PubMed]

Nano Energy (1)

Z. S. Wu, G. Zhou, L. C. Yin, W. Ren, F. Li, and H. M. Cheng, “Graphene/metal oxide composite electrode materials for energy storage,” Nano Energy 1(1), 107–131 (2012).
[Crossref]

Nano Lett. (1)

N. K. Emani, T. F. Chung, X. Ni, A. V. Kildishev, Y. P. Chen, and A. Boltasseva, “Electrically tunable damping of plasmonic resonances with graphene,” Nano Lett. 12(10), 5202–5206 (2012).
[Crossref] [PubMed]

Nanoscale Res. Lett. (1)

I. B. Olenych, O. I. Aksimentyeva, L. S. Monastyrskii, Y. Y. Horbenko, and M. V. Partyka, “Electrical and photoelectrical properties of reduced graphene oxide—porous silicon nanostructures,” Nanoscale Res. Lett. 12(1), 272 (2017).
[Crossref] [PubMed]

Nat. Chem. (1)

K. P. Loh, Q. Bao, G. Eda, and M. Chhowalla, “Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem. 2(12), 1015–1024 (2010).
[Crossref] [PubMed]

Nat. Med. (1)

M. F. Kircher, A. de la Zerda, J. V. Jokerst, C. L. Zavaleta, P. J. Kempen, E. Mittra, K. Pitter, R. Huang, C. Campos, F. Habte, R. Sinclair, C. W. Brennan, I. K. Mellinghoff, E. C. Holland, and S. S. Gambhir, “A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic-Raman nanoparticle,” Nat. Med. 18(5), 829–834 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

E. Jiménez-Marín, C. Torres-Torres, C. Mercado-Zúñiga, J. R. Vargas-García, M. Trejo-Valdez, F. Cervantes-Sodi, and R. Torres-Martínez, “Interferometrically-controlled electrical currents in carbon nanotubes coated by platinum nanoparticles,” Opt. Laser Technol. 85, 35–40 (2016).
[Crossref]

Opt. Mater. (2)

V. G. Sreeja, G. Vinitha, R. Reshmi, E. I. Anila, and M. K. Jayaraj, “Effect of reduction time on third order optical nonlinearity of reduced graphene oxide,” Opt. Mater. 66, 460–468 (2017).
[Crossref]

P. Pradhan, R. Podila, M. Molli, A. Kaniyoor, V. S. Muthukumar, S. Siva Sankara Sai, S. Ramaprabhu, and A. M. Rao, “Optical limiting and nonlinear optical properties of gold-decorated graphene nanocomposites,” Opt. Mater. 39, 182–187 (2015).
[Crossref]

Optik (Stuttg.) (1)

B. Heidari, A. Majdabadi, L. Naji, M. Sasani Ghamsari, Z. Fakharan, and S. Salmani, “Thin reduced graphene oxide film with enhanced optical nonlinearity,” Optik (Stuttg.) 156, 104–111 (2018).
[Crossref]

Phys. Chem. Chem. Phys. (1)

A. Bonanni, M. Pumera, and Y. Miyahara, “Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study,” Phys. Chem. Chem. Phys. 13(11), 4980–4986 (2011).
[Crossref] [PubMed]

Phys. Rev. (1)

A. L. Patterson, “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56(10), 978–982 (1939).
[Crossref]

Phys. Rev. Lett. (1)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005).
[Crossref] [PubMed]

RSC Advances (2)

G. Sahoo, N. Sarkar, D. Sahu, and S. K. Swain, “Nano gold decorated reduced graphene oxide wrapped polymethylmethacrylate for supercapacitor applications,” RSC Advances 7(4), 2137–2150 (2017).
[Crossref]

S. Bai and X. P. Shen, “Graphene-inorganic nanocoposites,” RSC Advances 2(1), 64–98 (2012).
[Crossref]

Sci. Rep. (1)

K. Yang, K. Cho, D. S. Yoon, and S. Kim, “Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films,” Sci. Rep. 7(1), 40163 (2017).
[Crossref] [PubMed]

Science (1)

P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova, L. E. Hueso, and R. Hillenbrand, “Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns,” Science 344(6190), 1369–1373 (2014).
[Crossref] [PubMed]

Sensor. Actuat. B-Chem. (1)

E. Spain, A. McCooey, K. Joyce, T. E. Keyes, and R. J. Forster, “Gold nanowires and nanotubes for high sensitivity detection of pathogen DNA,” Sensor. Actuat. B-Chem. 215, 159–165 (2015).

Small (5)

Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, “Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection,” Small 11(1), 77–83 (2015).
[Crossref] [PubMed]

S. M. Tabakman, Z. Chen, H. S. Casalongue, H. Wang, and H. Dai, “A new approach to solution-phase gold seeding for SERS substrates,” Small 7(4), 499–505 (2011).
[Crossref] [PubMed]

Y. Huang, J. Liang, and Y. Chen, “An overview of the applications of graphene-based materials in supercapacitors,” Small 8(12), 1805–1834 (2012).
[Crossref] [PubMed]

T. S. Sreeprasad and V. Berry, “How do the electrical properties of graphene change with its functionalization?” Small 9(3), 341–350 (2013).
[Crossref] [PubMed]

X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, and H. Zhang, “Graphene-based materials: synthesis, characterization, properties, and applications,” Small 7(14), 1876–1902 (2011).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

J. Cao, Y. Zhu, X. Yang, Y. Chen, Y. Li, H. Xiao, W. Hou, and J. Liu, “The promising photoanode of graphene/zinc titanium mixed metal oxides for the CdS quantum dot-sensitized solar cell,” Sol. Energy Mater. Sol. Cells 157, 814–819 (2016).
[Crossref]

Other (2)

S. R. Syed, G.-H. Lim, B. Lim, and J. W. Chon, “Measurement of the third order non-linearity of gold-graphene hybrid nanocomposite for near-infrared wavelengths,” Proc. SPIE 9894, Nonlinear Optics and its Applications IV, 98941G (27 April 2016).

R. W. Boyd, Nonlinear Optics (Academic, 1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Scheme of an optical fringe pattern induced by a TWM irradiation in propagation through the sample where the electrical capacitance is monitored.
Fig. 2
Fig. 2 XRD pattern of Au/rGO.
Fig. 3
Fig. 3 (a). SEM image of Au/rGO. (b) cross section of the Au/rGO film.
Fig. 4
Fig. 4 (a). Representative TEM image of Au particles on rGO and (b) Au nanoparticle on rGO and the interplanar spacing (inset).
Fig. 5
Fig. 5 Comparative UV-VIS spectra of the rGO and Au/rGO samples suspended in ethanol.
Fig. 6
Fig. 6 Nanosecond nonlinear optical transmittance exhibited by Au/rGO in film form. The excitation corresponds to a 532 nm wavelength.
Fig. 7
Fig. 7 Electrochemical impedance spectra of rGO and Au/rGO film samples.
Fig. 8
Fig. 8 Comparative electrical capacitance as a function on the electrical frequency.
Fig. 9
Fig. 9 Scheme of a low-pass electrical filter with the Au/rGO sample as a capacitor.
Fig. 10
Fig. 10 Experimental shift of the cutoff frequency associated with an electrical filter function performed by an Au/rGO sample in film form.
Fig. 11
Fig. 11 Gain vs electrical frequency for electronic signals modulated by an Au/rGO sample in film form irradiated by a TWM configuration considering orthogonally polarized optical beams and parallel polarized optical beams.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I L = I o exp( α o L ) 1+β I o L eff
L eff = ( 1exp( α o L ) ) α o
X C = 1 2πfC

Metrics