Abstract

We demonstrate a quadrature phase-shifted optical demodulation scheme for low-coherence fiber-optic Fabry-Perot interferometric sensors. The main part of the demodulator is a fiber-optic Mach-Zehnder interferometer (MZI) constructed with a 1 × 2 fiber coupler, a 3 × 3 fiber coupler, and fiber delay lines. This configuration allows us to generate quadrature phase-shifted interference signals simultaneously, thus eliminating the problem of ambiguous phase discrimination. The path length difference of the MZI is adjustable to adapt to sensors with arbitrary gaps. A great phase stability of the MZI has been obtained by using identical optical components in its two optical paths. The demodulator has been applied to a fiber-optic vibrometer. Measurement of vibrations with amplitudes from 0.67 nm to 12.3 µm has been demonstrated.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Interferometric vibration sensor using phase-generated carrier method

Yang Li, Zhibo Liu, Yan Liu, Lin Ma, Zhongwei Tan, and Shuisheng Jian
Appl. Opt. 52(25) 6359-6363 (2013)

Distributed dynamic large strain optical fiber sensor based on the detection of spontaneous Brillouin scattering

Ali Masoudi, Mohammad Belal, and Trevor P. Newson
Opt. Lett. 38(17) 3312-3315 (2013)

Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias

Jun Ma, Yongqin Yu, and Wei Jin
Opt. Express 23(22) 29268-29278 (2015)

References

  • View by:
  • |
  • |
  • |

  1. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
    [Crossref]
  2. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [Crossref]
  3. B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
    [Crossref] [PubMed]
  4. R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from-200 to 900 degrees C,” Smart Mater. Struct. 1(3), 237–242 (1992).
    [Crossref]
  5. H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
    [Crossref]
  6. H. Liu, D. W. Miller, and J. W. Talnagi, “Performance evaluation of Fabry-Perot temperature sensors in nuclear power plant measurements,” Nucl. Technol. 143(2), 208–216 (2003).
    [Crossref]
  7. T. Valis, E. Tapanes, K. Liu, and R. M. Measures, “Passive-quadrature demodulated localized-Michelson fiber-optic strain sensor embedded in composite materials,” J. Lightwave Technol. 9(4), 535–544 (1991).
    [Crossref]
  8. M. Schmidt and N. Fürstenau, “Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation,” Opt. Lett. 24(9), 599–601 (1999).
    [Crossref] [PubMed]
  9. M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
    [Crossref]
  10. B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
    [Crossref]
  11. Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
    [Crossref]
  12. S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
    [Crossref]
  13. Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for Low-Finesse Fabry-Perot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
    [Crossref]
  14. M. Zhu, H. Wei, X. Wu, and Y. Li, “Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb,” Opt. Lasers Eng. 67, 128–134 (2015).
    [Crossref]
  15. M. Zhu, H. Wei, S. Zhao, X. Wu, and Y. Li, “Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer,” Appl. Opt. 54(14), 4594–4601 (2015).
    [Crossref] [PubMed]
  16. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
    [Crossref] [PubMed]
  17. S. K. Sheem, “Optical fiber interferometers with 3 × 3 directional couplers: Analysis,” J. Appl. Phys. 52(6), 3865–3872 (1981).
    [Crossref]
  18. K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
    [Crossref]
  19. Z. Zhao, M. S. Demokan, and M. Macalpine, “Improved demodulation scheme for fiber optic interferometers using an asymmetric 3x3 coupler,” J. Lightwave Technol. 15(11), 2059–2068 (1997).
    [Crossref]
  20. M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
    [Crossref] [PubMed]
  21. Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
    [Crossref]
  22. Y. Mao, S. Sherif, C. Flueraru, and S. Chang, “3x3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography,” Appl. Opt. 47(12), 2004–2010 (2008).
    [Crossref] [PubMed]
  23. Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
    [Crossref]

2018 (2)

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
[Crossref]

2015 (4)

S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
[Crossref]

Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for Low-Finesse Fabry-Perot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
[Crossref]

M. Zhu, H. Wei, X. Wu, and Y. Li, “Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb,” Opt. Lasers Eng. 67, 128–134 (2015).
[Crossref]

M. Zhu, H. Wei, S. Zhao, X. Wu, and Y. Li, “Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer,” Appl. Opt. 54(14), 4594–4601 (2015).
[Crossref] [PubMed]

2012 (1)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

2008 (2)

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

Y. Mao, S. Sherif, C. Flueraru, and S. Chang, “3x3 Mach-Zehnder interferometer with unbalanced differential detection for full-range swept-source optical coherence tomography,” Appl. Opt. 47(12), 2004–2010 (2008).
[Crossref] [PubMed]

2006 (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

2003 (4)

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

H. Liu, D. W. Miller, and J. W. Talnagi, “Performance evaluation of Fabry-Perot temperature sensors in nuclear power plant measurements,” Nucl. Technol. 143(2), 208–216 (2003).
[Crossref]

M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3 x 3 fiber-optic couplers,” Opt. Lett. 28(22), 2162–2164 (2003).
[Crossref] [PubMed]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
[Crossref]

2001 (1)

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

1999 (1)

1997 (1)

Z. Zhao, M. S. Demokan, and M. Macalpine, “Improved demodulation scheme for fiber optic interferometers using an asymmetric 3x3 coupler,” J. Lightwave Technol. 15(11), 2059–2068 (1997).
[Crossref]

1996 (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

1992 (1)

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from-200 to 900 degrees C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

1991 (2)

T. Valis, E. Tapanes, K. Liu, and R. M. Measures, “Passive-quadrature demodulated localized-Michelson fiber-optic strain sensor embedded in composite materials,” J. Lightwave Technol. 9(4), 535–544 (1991).
[Crossref]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[Crossref] [PubMed]

1982 (1)

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

1981 (1)

S. K. Sheem, “Optical fiber interferometers with 3 × 3 directional couplers: Analysis,” J. Appl. Phys. 52(6), 3865–3872 (1981).
[Crossref]

Araújo, F. M.

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Blokland, W.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
[Crossref]

Chang, S.

Chen, J.

S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
[Crossref]

Choi, H. Y.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Choma, M. A.

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from-200 to 900 degrees C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[Crossref] [PubMed]

Dahlem, M.

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Dandridge, A.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Demokan, M. S.

Z. Zhao, M. S. Demokan, and M. Macalpine, “Improved demodulation scheme for fiber optic interferometers using an asymmetric 3x3 coupler,” J. Lightwave Technol. 15(11), 2059–2068 (1997).
[Crossref]

Deng, J.

Duan, Y. H.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Eom, J. B.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Ferreira, L. A.

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Flueraru, C.

Fürstenau, N.

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Gunther, M. F.

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from-200 to 900 degrees C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[Crossref] [PubMed]

Huang, Z. Y.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Huo, W.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Izatt, J. A.

Jiang, Y.

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Kim, M. J.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Kim, Y. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Koo, K. P.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Lee, B. H.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Li, H.

S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
[Crossref]

Li, Y.

M. Zhu, H. Wei, X. Wu, and Y. Li, “Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb,” Opt. Lasers Eng. 67, 128–134 (2015).
[Crossref]

M. Zhu, H. Wei, S. Zhao, X. Wu, and Y. Li, “Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer,” Appl. Opt. 54(14), 4594–4601 (2015).
[Crossref] [PubMed]

Liu, H.

H. Liu, D. W. Miller, and J. W. Talnagi, “Performance evaluation of Fabry-Perot temperature sensors in nuclear power plant measurements,” Nucl. Technol. 143(2), 208–216 (2003).
[Crossref]

Liu, K.

T. Valis, E. Tapanes, K. Liu, and R. M. Measures, “Passive-quadrature demodulated localized-Michelson fiber-optic strain sensor embedded in composite materials,” J. Lightwave Technol. 9(4), 535–544 (1991).
[Crossref]

Liu, Y.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
[Crossref]

Long, C.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Long, C. D.

Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
[Crossref]

Macalpine, M.

Z. Zhao, M. S. Demokan, and M. Macalpine, “Improved demodulation scheme for fiber optic interferometers using an asymmetric 3x3 coupler,” J. Lightwave Technol. 15(11), 2059–2068 (1997).
[Crossref]

Mao, Y.

May, R. G.

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
[Crossref]

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Measures, R. M.

T. Valis, E. Tapanes, K. Liu, and R. M. Measures, “Passive-quadrature demodulated localized-Michelson fiber-optic strain sensor embedded in composite materials,” J. Lightwave Technol. 9(4), 535–544 (1991).
[Crossref]

Miller, D. W.

H. Liu, D. W. Miller, and J. W. Talnagi, “Performance evaluation of Fabry-Perot temperature sensors in nuclear power plant measurements,” Nucl. Technol. 143(2), 208–216 (2003).
[Crossref]

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from-200 to 900 degrees C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, “Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors,” Opt. Lett. 16(4), 273–275 (1991).
[Crossref] [PubMed]

Park, K. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Peng, W.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Pickrell, G.

Pickrell, G. R.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Qi, B.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Rakhman, A.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Rao, Y. J.

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Rho, B. S.

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Riemer, B.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Riemer, B. W.

Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
[Crossref]

Santos, J. L.

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Schmidt, M.

Sheem, S. K.

S. K. Sheem, “Optical fiber interferometers with 3 × 3 directional couplers: Analysis,” J. Appl. Phys. 52(6), 3865–3872 (1981).
[Crossref]

Sherif, S.

Stiles, D.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Strum, R.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Talnagi, J. W.

H. Liu, D. W. Miller, and J. W. Talnagi, “Performance evaluation of Fabry-Perot temperature sensors in nuclear power plant measurements,” Nucl. Technol. 143(2), 208–216 (2003).
[Crossref]

Tapanes, E.

T. Valis, E. Tapanes, K. Liu, and R. M. Measures, “Passive-quadrature demodulated localized-Michelson fiber-optic strain sensor embedded in composite materials,” J. Lightwave Technol. 9(4), 535–544 (1991).
[Crossref]

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Tveten, A. B.

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

Valis, T.

T. Valis, E. Tapanes, K. Liu, and R. M. Measures, “Passive-quadrature demodulated localized-Michelson fiber-optic strain sensor embedded in composite materials,” J. Lightwave Technol. 9(4), 535–544 (1991).
[Crossref]

Vengsarkar, A. M.

Wang, A.

Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for Low-Finesse Fabry-Perot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
[Crossref]

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
[Crossref]

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from-200 to 900 degrees C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

Wang, X.

S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
[Crossref]

Wei, H.

M. Zhu, H. Wei, X. Wu, and Y. Li, “Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb,” Opt. Lasers Eng. 67, 128–134 (2015).
[Crossref]

M. Zhu, H. Wei, S. Zhao, X. Wu, and Y. Li, “Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer,” Appl. Opt. 54(14), 4594–4601 (2015).
[Crossref] [PubMed]

Wendel, M.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Wendel, M. W.

Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
[Crossref]

Winder, D.

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Winder, D. E.

Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
[Crossref]

Wu, X.

M. Zhu, H. Wei, S. Zhao, X. Wu, and Y. Li, “Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer,” Appl. Opt. 54(14), 4594–4601 (2015).
[Crossref] [PubMed]

M. Zhu, H. Wei, X. Wu, and Y. Li, “Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb,” Opt. Lasers Eng. 67, 128–134 (2015).
[Crossref]

Xiao, H.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
[Crossref]

Xu, J. C.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Yang, C.

Yu, B.

S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
[Crossref]

Yu, Z.

Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for Low-Finesse Fabry-Perot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
[Crossref]

Zhang, B.

S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
[Crossref]

Zhang, P.

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Zhao, S.

Zhao, Z.

Z. Zhao, M. S. Demokan, and M. Macalpine, “Improved demodulation scheme for fiber optic interferometers using an asymmetric 3x3 coupler,” J. Lightwave Technol. 15(11), 2059–2068 (1997).
[Crossref]

Zhen, S.

S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
[Crossref]

Zhu, M.

M. Zhu, H. Wei, X. Wu, and Y. Li, “Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb,” Opt. Lasers Eng. 67, 128–134 (2015).
[Crossref]

M. Zhu, H. Wei, S. Zhao, X. Wu, and Y. Li, “Subnanometer absolute displacement measurement using a frequency comb referenced dual resonance tracking Fabry-Perot interferometer,” Appl. Opt. 54(14), 4594–4601 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

K. P. Koo, A. B. Tveten, and A. Dandridge, “Passive stabilization scheme for fiber interferometers using (3x3) fiber directional couplers,” Appl. Phys. Lett. 41(7), 616–618 (1982).
[Crossref]

IEEE Photonics Technol. Lett. (4)

M. Dahlem, J. L. Santos, L. A. Ferreira, and F. M. Araújo, “Passive interrogation of low-finesse Fabry–Perot Cavities using fiber Bragg gratings,” IEEE Photonics Technol. Lett. 13(9), 990–992 (2001).
[Crossref]

Y. Jiang, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry–Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20(2), 75–77 (2008).
[Crossref]

S. Zhen, J. Chen, H. Li, X. Wang, B. Zhang, and B. Yu, “Low-coherence fiber differential interferometer with adjustable measurement range,” IEEE Photonics Technol. Lett. 27(8), 895–898 (2015).
[Crossref]

Z. Yu and A. Wang, “Fast white light interferometry demodulation algorithm for Low-Finesse Fabry-Perot sensors,” IEEE Photonics Technol. Lett. 27(8), 817–820 (2015).
[Crossref]

IEEE Sens. J. (1)

Y. Liu, W. Blokland, C. D. Long, B. W. Riemer, M. W. Wendel, and D. E. Winder, “Strain measurement in the Spallation target using high-radiation-tolerant fiber sensors,” IEEE Sens. J. 18(9), 3645–3653 (2018).
[Crossref]

J. Appl. Phys. (1)

S. K. Sheem, “Optical fiber interferometers with 3 × 3 directional couplers: Analysis,” J. Appl. Phys. 52(6), 3865–3872 (1981).
[Crossref]

J. Lightwave Technol. (3)

Z. Zhao, M. S. Demokan, and M. Macalpine, “Improved demodulation scheme for fiber optic interferometers using an asymmetric 3x3 coupler,” J. Lightwave Technol. 15(11), 2059–2068 (1997).
[Crossref]

H. Xiao, J. Deng, G. Pickrell, R. G. May, and A. Wang, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications,” J. Lightwave Technol. 21(10), 2276–2283 (2003).
[Crossref]

T. Valis, E. Tapanes, K. Liu, and R. M. Measures, “Passive-quadrature demodulated localized-Michelson fiber-optic strain sensor embedded in composite materials,” J. Lightwave Technol. 9(4), 535–544 (1991).
[Crossref]

Meas. Sci. Technol. (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fibre based absolute extrinsic Fabry–Perot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[Crossref]

Nucl. Technol. (1)

H. Liu, D. W. Miller, and J. W. Talnagi, “Performance evaluation of Fabry-Perot temperature sensors in nuclear power plant measurements,” Nucl. Technol. 143(2), 208–216 (2003).
[Crossref]

Opt. Commun. (1)

Y. Liu, R. Strum, D. Stiles, C. Long, A. Rakhman, W. Blokland, D. Winder, B. Riemer, and M. Wendel, “Digital phase demodulation for low-coherence interferometry-based fiber-optic sensors,” Opt. Commun. 411, 27–32 (2018).
[Crossref]

Opt. Eng. (1)

B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, Z. Y. Huang, W. Huo, H. Xiao, R. G. May, and A. Wang, “Novel data processing techniques for dispersive white light interferometer,” Opt. Eng. 42(11), 3165–3171 (2003).
[Crossref]

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry–Perot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[Crossref]

Opt. Lasers Eng. (1)

M. Zhu, H. Wei, X. Wu, and Y. Li, “Fabry–Perot interferometer with picometer resolution referenced to an optical frequency comb,” Opt. Lasers Eng. 67, 128–134 (2015).
[Crossref]

Opt. Lett. (3)

Sensors (Basel) (1)

B. H. Lee, Y. H. Kim, K. S. Park, J. B. Eom, M. J. Kim, B. S. Rho, and H. Y. Choi, “Interferometric fiber optic sensors,” Sensors (Basel) 12(3), 2467–2486 (2012).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

R. O. Claus, M. F. Gunther, A. Wang, and K. A. Murphy, “Extrinsic Fabry-Perot sensor for strain and crack opening displacement measurements from-200 to 900 degrees C,” Smart Mater. Struct. 1(3), 237–242 (1992).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of fiber-optic phase-shifted demodulator for a low-coherence fiber-optic EFPI-based sensor. SLD: superluminescent laser diode, FC: fiber coupler, VDL: variable delay line, PS: phase shifter, PC: polarization controller, PD: photodetector.
Fig. 2
Fig. 2 Simulation results of phase shift Δφ (in unit of π) and modulation depth m of demodulator as functions of the coupling coefficient of a 3 × 3 fiber coupler.
Fig. 3
Fig. 3 (a) Raw signals from 3 photodetectors, (b) Lissajous plot of ID2 versus ID1 output, (c) Lissajous plot of ID3 versus ID2. The detector outputs are normalized in (b) and (c).
Fig. 4
Fig. 4 Measured parameters Δφ, κ, m from the fiber-optic demodulator over 11 days.
Fig. 5
Fig. 5 Measured vibration amplitude versus driving voltage of the piezoelectric actuator. Dots are measurement data and line is the linear fit. The measured slop of 183 nm/V matches well with the pre-calibrated value of 185.6 nm/V.
Fig. 6
Fig. 6 Measurement results of 3.5 kHz vibrations. (a) Output signals from PD1 (top) and PD2 (bottom). For better visualization, the PD2 output waveform is shifted vertically. (b) Demodulated vibration waveform. The vibration amplitude (peak-to-peak value) is 12.3 µm.
Fig. 7
Fig. 7 Measurement results of 1-Hz vibrations. Signal is processed at 10-Hz bandwidth. (a) Output signals from PD1 (top) and PD2 (bottom). (b) Demodulated vibration waveform with a peak-to-peak amplitude of 0.67 nm.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E r (t)= r 1 E(t)+ r 2 E(t T S ),
M=[ a b b b a b b b a ],
[ E D1 (t) E D2 (t) E D3 (t) ]=M[ 0 C 1 E r (t) j C 2 E r (t T d ) ]=[ b C 1 E r (t)jb C 2 E r (t T d ) a C 1 E r (t)jb C 2 E r (t T d ) b C 1 E r (t)ja C 2 E r (t T d ) ],
I D1 (t)= | E D1 (t) | 2 = | b | 2 I r (t)+ 1 2 | b | 2 [ j E r (t) E r * (t T d ) j E r * (t) E r (t T d ) ].
E r (t) E r * (t T d ) =( r 1 2 + r 2 2 )Γ( T d )+ r 1 r 2 Γ(ΔT)+ r 1 r 2 Γ( T d + T S ),
| ΔT |=| T d T S |< τ c .
I D1 (t)= | b | 2 I r (t)+ 1 2 | b | 2 r 1 r 2 [ jΓ(ΔT)jΓ(ΔT) ] = | b | 2 ( r 1 2 + r 2 2 )I(t)[ 1+kexp( 2Δ T 2 τ c 2 )sin( ωΔT ) ],
I D2 (t)= | E D2 (t) | 2 = 1 2 ( | a | 2 + | b | 2 )( r 1 2 + r 2 2 )I(t)[ 1+mkexp( 2Δ T 2 τ c 2 )sin( ωΔTΔφ ) ],
I D3 (t)= | E D3 (t) | 2 = 1 2 ( | a | 2 + | b | 2 )( r 1 2 + r 2 2 )I(t)[ 1+mkexp( 2Δ T 2 τ c 2 )sin( ωΔT+Δφ ) ],

Metrics