Abstract

An experimental study into the modal dynamics of a short cavity, fast frequency-swept laser is presented. This commercially available external cavity swept source is designed for use in optical coherence tomography (OCT) applications and displays a number of dynamic lasing regimes during the course of the wavelength sweep. Interferometric full electric field reconstruction is employed, allowing for measurement of the laser operation in a time-resolved, single-shot manner. Recovery of both the phase and intensity of the laser output across the entire sweep enables direct visualization of the laser instantaneous optical spectrum. The electric field reconstruction technique reveals the presence of multi-mode dynamics, including coherent mode-locked pulses. During the main part of the imaging sweep, the laser is found to operate in a second harmonic sliding frequency mode-locking regime. Examination of the modal evolution of this coherent regime reveals evidence of previously unobserved frequency switching dynamics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers

T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet
Opt. Lett. 40(10) 2277-2280 (2015)

Direct experimental measurement of single-mode and mode-hopping dynamics in frequency swept lasers

T.P. Butler, D. Goulding, B. Kelleher, B. O’Shaughnessy, S. Slepneva, S.P. Hegarty, and G. Huyet
Opt. Express 25(22) 27464-27474 (2017)

Measurement of carrier envelope offset frequency for a 10 GHz etalon-stabilized semiconductor optical frequency comb

M. Akbulut, J. Davila-Rodriguez, I. Ozdur, F. Quinlan, S. Ozharar, N. Hoghooghi, and P.J. Delfyett
Opt. Express 19(18) 16851-16865 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Rapid temperature tuning of a 1.4 mm diode laser with application to high-pressure H2O absorption spectroscopy,” Opt. Lett. 26(20), 1568–1570 (2001).
    [Crossref]
  2. L. Kranendonk, X. An, A. Caswell, R. Herold, S. Sanders, R. Huber, J. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
    [Crossref] [PubMed]
  3. B. Golubovic, B. Bouma, G. Tearney, and J. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22(22), 1704–1706 (1997).
    [Crossref]
  4. S. Yun, D. Richardson, and B. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 8438–8445 (1998).
    [Crossref]
  5. F. Lexer, C. Hitzenberger, A. Fercher, and M. Kulhavy, “Wavelength-tuning interferometry of intraocular distances,” Appl. Opt. 36(25), 6548–6553 (1997).
    [Crossref]
  6. I. Grulkowski, J. Liu, B. Potsaid, V. Jayaraman, C. Lu, J. Jiang, A. Cable, J. Duker, and J. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  7. K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, “Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro,” J. Endod. 38(9), 1269–1274 (2012).
    [Crossref]
  8. S.R. Chinn, E.A. Swanson, and J.G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [Crossref]
  9. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [Crossref] [PubMed]
  10. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [Crossref] [PubMed]
  11. M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [Crossref] [PubMed]
  12. C. Eigenwillig, W. Wieser, B. Biedermann, and R. Huber, “Subharmonic Fourier domain mode locking,” Opt. Lett. 34(6), 725–727 (2009).
    [Crossref] [PubMed]
  13. R. Huber, M. Wojtkowski, J. Fujimoto, J. Jiang, and A. Cable, “Three dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
    [Crossref] [PubMed]
  14. S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
    [Crossref] [PubMed]
  15. R. Huber, M. Wojtkowski, and J. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [Crossref] [PubMed]
  16. S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
    [Crossref]
  17. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Pérot tunable lasers for OCT imaging applications,” Proc. SPIE,  7554, 75541F (2010).
    [Crossref]
  18. S. Slepneva, B. O’Shaughnessy, B. Kelleher, S. P. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Dynamics of a short cavity swept source OCT laser,” Opt. Express 22(15), 18177 (2014).
    [Crossref] [PubMed]
  19. B. Biedermann, W. Wieser, C. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
    [Crossref] [PubMed]
  20. B. R. Biedermann, W. Wieser, C.M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett. 35(22), 3733–3735 (2010).
    [Crossref] [PubMed]
  21. E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” IEEE 14th International Conference on Transparent Optical Networks (ICTON), 1–4 (2012).
  22. T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
    [Crossref] [PubMed]
  23. D. Goulding, T. Butler, B. Kelleher, S. Slepneva, S. P. Hegarty, and G. Huyet, “Visualisation of the phase and intensity dynamics of semiconductor lasers via electric field reconstruction,” in Nonlinear Dynamics: Materials, Theory and Experiments, M. Tlidi and M. G. Clerc, eds. (Springer, 2016) pp. 3–30.
  24. T.P. Butler, D. Goulding, B. Kelleher, B. O’Shaughnessy, S. Slepneva, S. P. Hegarty, and G. Huyet, “Direct experimental measurement of single mode and mode-hopping dynamics in frequency swept lasers,” Opt. Express 25(22), 27464–27474 (2017).
    [Crossref] [PubMed]
  25. D. Flanders, M. Kuznetsov, and W. Atia, “Laser with tilted multi-spatial mode resonator tuning element,” US Patent App., vol. 11/158417, 2008.
  26. B. Johnson and D. Flanders, “Laser swept source with controlled modelocking for OCT medical imaging,” US Patent App., vol. 12/092290, 2012.
  27. B. Johnson, W. Atia, M. Kuznetsov, B.D. Goldberg, P. Whitney, and D.C. Flanders, “Coherence properties of short cavity swept lasers,” Biomed. Opt. Express 8(2), 1045–1055 (2017).
    [Crossref] [PubMed]
  28. B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58(2), 175–179 (2010).
    [Crossref]
  29. F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
    [Crossref]
  30. S. H. Yun, “Mode locking of a wavelength-swept laser,” Opt. Lett. 30(19), 2660–2662 (2005).
    [Crossref]
  31. A. Bilenca, S. Yun, G. Tearney, and B. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: The role of refractive index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31(6), 760–762 (2006).
    [Crossref] [PubMed]
  32. C.A. Alonzo and S.H. Yun, “Harmonic mode locking in a sliding-frequency fiber laser,” Opt. Lett. 36(9), 1590–1592 (2011).
    [Crossref] [PubMed]
  33. B. Johnson, W. Atia, D. C. Flanders, M. Kuznetsov, B. D. Goldverg, N. Kemp, and P. Whitney, “SNR of swept SLEDs and swept lasers for OCT,” Opt. Express 24(10), 11174–11186 (2016).
    [Crossref] [PubMed]
  34. I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J.G. Fujimoto, and A.E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 637–675 (2013).
    [Crossref]
  35. C.T. Shih and S. Chao, “Spectral shift by half free-spectral-range for microring resonator employing the phase jump phenomenon in coupled-waveguide and application on all-microring wavelength interleaver,” Opt. Express 17(10), 7756–7770 (2009).
    [Crossref] [PubMed]

2017 (2)

2016 (1)

2015 (2)

2014 (1)

2013 (2)

I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J.G. Fujimoto, and A.E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 637–675 (2013).
[Crossref]

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

2012 (2)

2011 (1)

2010 (3)

B. R. Biedermann, W. Wieser, C.M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett. 35(22), 3733–3735 (2010).
[Crossref] [PubMed]

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58(2), 175–179 (2010).
[Crossref]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Pérot tunable lasers for OCT imaging applications,” Proc. SPIE,  7554, 75541F (2010).
[Crossref]

2009 (3)

2007 (1)

2006 (2)

2005 (2)

2003 (4)

2001 (1)

1998 (1)

S. Yun, D. Richardson, and B. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 8438–8445 (1998).
[Crossref]

1997 (3)

Alonzo, C.A.

An, X.

Atia, W.

B. Johnson, W. Atia, M. Kuznetsov, B.D. Goldberg, P. Whitney, and D.C. Flanders, “Coherence properties of short cavity swept lasers,” Biomed. Opt. Express 8(2), 1045–1055 (2017).
[Crossref] [PubMed]

B. Johnson, W. Atia, D. C. Flanders, M. Kuznetsov, B. D. Goldverg, N. Kemp, and P. Whitney, “SNR of swept SLEDs and swept lasers for OCT,” Opt. Express 24(10), 11174–11186 (2016).
[Crossref] [PubMed]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Pérot tunable lasers for OCT imaging applications,” Proc. SPIE,  7554, 75541F (2010).
[Crossref]

D. Flanders, M. Kuznetsov, and W. Atia, “Laser with tilted multi-spatial mode resonator tuning element,” US Patent App., vol. 11/158417, 2008.

Avrutin, E.

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” IEEE 14th International Conference on Transparent Optical Networks (ICTON), 1–4 (2012).

Bachmann, A. H.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Barland, S.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

Baselga Pascual, B.

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58(2), 175–179 (2010).
[Crossref]

Biedermann, B.

Biedermann, B. R.

Bilenca, A.

Boudoux, C.

Bouma, B.

Bouma, B. E.

Bouma, B.E.

Brambilla, M.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

Butler, T.

T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
[Crossref] [PubMed]

D. Goulding, T. Butler, B. Kelleher, S. Slepneva, S. P. Hegarty, and G. Huyet, “Visualisation of the phase and intensity dynamics of semiconductor lasers via electric field reconstruction,” in Nonlinear Dynamics: Materials, Theory and Experiments, M. Tlidi and M. G. Clerc, eds. (Springer, 2016) pp. 3–30.

Butler, T.P.

Cable, A.

Cable, A.E.

Caswell, A.

Cense, B.

Chao, S.

Chinn, S.R.

Choma, M.

Columbo, L.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

de Boer, J.F.

Duelk, M.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Duker, J.

Eigenwillig, C.

Eigenwillig, C.M.

Epitaux, M.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Fercher, A.

Flanders, D.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Pérot tunable lasers for OCT imaging applications,” Proc. SPIE,  7554, 75541F (2010).
[Crossref]

D. Flanders, M. Kuznetsov, and W. Atia, “Laser with tilted multi-spatial mode resonator tuning element,” US Patent App., vol. 11/158417, 2008.

B. Johnson and D. Flanders, “Laser swept source with controlled modelocking for OCT medical imaging,” US Patent App., vol. 12/092290, 2012.

Flanders, D. C.

Flanders, D.C.

Fujimoto, J.

Fujimoto, J.G.

Gloor, S.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Goldberg, B.D.

Goldverg, B. D.

Golubovic, B.

Goulding, D.

T.P. Butler, D. Goulding, B. Kelleher, B. O’Shaughnessy, S. Slepneva, S. P. Hegarty, and G. Huyet, “Direct experimental measurement of single mode and mode-hopping dynamics in frequency swept lasers,” Opt. Express 25(22), 27464–27474 (2017).
[Crossref] [PubMed]

T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
[Crossref] [PubMed]

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58(2), 175–179 (2010).
[Crossref]

D. Goulding, T. Butler, B. Kelleher, S. Slepneva, S. P. Hegarty, and G. Huyet, “Visualisation of the phase and intensity dynamics of semiconductor lasers via electric field reconstruction,” in Nonlinear Dynamics: Materials, Theory and Experiments, M. Tlidi and M. G. Clerc, eds. (Springer, 2016) pp. 3–30.

Grulkowski, I.

Gustave, F.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

Hanson, R. K.

Hegarty, S. P.

Hegarty, S.P.

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58(2), 175–179 (2010).
[Crossref]

Herold, R.

Hitzenberger, C.

Hsu, K.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Huber, R.

Huyet, G.

Imai, K.

K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, “Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro,” J. Endod. 38(9), 1269–1274 (2012).
[Crossref]

Izatt, J.

Jayaraman, V.

Jeffries, J. B.

Jiang, J.

Johnson, B.

B. Johnson, W. Atia, M. Kuznetsov, B.D. Goldberg, P. Whitney, and D.C. Flanders, “Coherence properties of short cavity swept lasers,” Biomed. Opt. Express 8(2), 1045–1055 (2017).
[Crossref] [PubMed]

B. Johnson, W. Atia, D. C. Flanders, M. Kuznetsov, B. D. Goldverg, N. Kemp, and P. Whitney, “SNR of swept SLEDs and swept lasers for OCT,” Opt. Express 24(10), 11174–11186 (2016).
[Crossref] [PubMed]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Pérot tunable lasers for OCT imaging applications,” Proc. SPIE,  7554, 75541F (2010).
[Crossref]

B. Johnson and D. Flanders, “Laser swept source with controlled modelocking for OCT medical imaging,” US Patent App., vol. 12/092290, 2012.

Karnowski, K.

Kelleher, B.

T.P. Butler, D. Goulding, B. Kelleher, B. O’Shaughnessy, S. Slepneva, S. P. Hegarty, and G. Huyet, “Direct experimental measurement of single mode and mode-hopping dynamics in frequency swept lasers,” Opt. Express 25(22), 27464–27474 (2017).
[Crossref] [PubMed]

T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
[Crossref] [PubMed]

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

S. Slepneva, B. O’Shaughnessy, B. Kelleher, S. P. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Dynamics of a short cavity swept source OCT laser,” Opt. Express 22(15), 18177 (2014).
[Crossref] [PubMed]

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58(2), 175–179 (2010).
[Crossref]

D. Goulding, T. Butler, B. Kelleher, S. Slepneva, S. P. Hegarty, and G. Huyet, “Visualisation of the phase and intensity dynamics of semiconductor lasers via electric field reconstruction,” in Nonlinear Dynamics: Materials, Theory and Experiments, M. Tlidi and M. G. Clerc, eds. (Springer, 2016) pp. 3–30.

Kemp, N.

Kim, B.

S. Yun, D. Richardson, and B. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 8438–8445 (1998).
[Crossref]

Klein, T.

Kranendonk, L.

Kulhavy, M.

Kuznetsov, M.

B. Johnson, W. Atia, M. Kuznetsov, B.D. Goldberg, P. Whitney, and D.C. Flanders, “Coherence properties of short cavity swept lasers,” Biomed. Opt. Express 8(2), 1045–1055 (2017).
[Crossref] [PubMed]

B. Johnson, W. Atia, D. C. Flanders, M. Kuznetsov, B. D. Goldverg, N. Kemp, and P. Whitney, “SNR of swept SLEDs and swept lasers for OCT,” Opt. Express 24(10), 11174–11186 (2016).
[Crossref] [PubMed]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Pérot tunable lasers for OCT imaging applications,” Proc. SPIE,  7554, 75541F (2010).
[Crossref]

D. Flanders, M. Kuznetsov, and W. Atia, “Laser with tilted multi-spatial mode resonator tuning element,” US Patent App., vol. 11/158417, 2008.

Leitgeb, R.

Lexer, F.

Liu, J.

Liu, J.J.

Lu, C.

Lyu, H.-C.

Mattison, D. W.

Matuschek, N.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

O’Shaughnessy, B.

Okura, Y.

Park, B.H.

Pierce, M.C.

Potsaid, B.

Prati, F.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

Richardson, D.

S. Yun, D. Richardson, and B. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 8438–8445 (1998).
[Crossref]

Sadr, A.

K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, “Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro,” J. Endod. 38(9), 1269–1274 (2012).
[Crossref]

Sanders, S.

Sanders, S. T.

Sarunic, M.

Shih, C.T.

Shimada, Y.

K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, “Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro,” J. Endod. 38(9), 1269–1274 (2012).
[Crossref]

Slepneva, S.

Sumi, Y.

K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, “Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro,” J. Endod. 38(9), 1269–1274 (2012).
[Crossref]

Swanson, E.A.

Tagami, J.

K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, “Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro,” J. Endod. 38(9), 1269–1274 (2012).
[Crossref]

Tearney, G.

Tearney, G. J.

Tearney, G.J.

Tissoni, G.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

Tykalewicz, B.

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

Urata, Y.

Velez, C.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Vladimirov, A.

von Niederhausern, T.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Vorreau, P.

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

Whitney, P.

Wieser, W.

Wojtkowski, M.

Yang, C.

Yun, S.

Yun, S. H.

Yun, S.H.

Zhang, L.

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” IEEE 14th International Conference on Transparent Optical Networks (ICTON), 1–4 (2012).

Appl. Opt. (1)

Biomed. Opt. Express (2)

Eur. Phys. J. D (1)

B. Kelleher, D. Goulding, B. Baselga Pascual, S.P. Hegarty, and G. Huyet, “Phasor plots in optical injection experiments,” Eur. Phys. J. D 58(2), 175–179 (2010).
[Crossref]

J. Endod. (1)

K. Imai, Y. Shimada, A. Sadr, Y. Sumi, and J. Tagami, “Noninvasive cross-sectional visualization of enamel cracks by optical coherence tomography in vitro,” J. Endod. 38(9), 1269–1274 (2012).
[Crossref]

Opt. Express (10)

R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[Crossref] [PubMed]

M. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
[Crossref] [PubMed]

T.P. Butler, D. Goulding, B. Kelleher, B. O’Shaughnessy, S. Slepneva, S. P. Hegarty, and G. Huyet, “Direct experimental measurement of single mode and mode-hopping dynamics in frequency swept lasers,” Opt. Express 25(22), 27464–27474 (2017).
[Crossref] [PubMed]

B. Johnson, W. Atia, D. C. Flanders, M. Kuznetsov, B. D. Goldverg, N. Kemp, and P. Whitney, “SNR of swept SLEDs and swept lasers for OCT,” Opt. Express 24(10), 11174–11186 (2016).
[Crossref] [PubMed]

S. Slepneva, B. O’Shaughnessy, B. Kelleher, S. P. Hegarty, A. Vladimirov, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Dynamics of a short cavity swept source OCT laser,” Opt. Express 22(15), 18177 (2014).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, J. Fujimoto, J. Jiang, and A. Cable, “Three dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm,” Opt. Express 13(26), 10523–10538 (2005).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[Crossref] [PubMed]

L. Kranendonk, X. An, A. Caswell, R. Herold, S. Sanders, R. Huber, J. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[Crossref] [PubMed]

C.T. Shih and S. Chao, “Spectral shift by half free-spectral-range for microring resonator employing the phase jump phenomenon in coupled-waveguide and application on all-microring wavelength interleaver,” Opt. Express 17(10), 7756–7770 (2009).
[Crossref] [PubMed]

B. Biedermann, W. Wieser, C. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
[Crossref] [PubMed]

Opt. Lett. (13)

B. R. Biedermann, W. Wieser, C.M. Eigenwillig, T. Klein, and R. Huber, “Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers,” Opt. Lett. 35(22), 3733–3735 (2010).
[Crossref] [PubMed]

C.A. Alonzo and S.H. Yun, “Harmonic mode locking in a sliding-frequency fiber laser,” Opt. Lett. 36(9), 1590–1592 (2011).
[Crossref] [PubMed]

C. Eigenwillig, W. Wieser, B. Biedermann, and R. Huber, “Subharmonic Fourier domain mode locking,” Opt. Lett. 34(6), 725–727 (2009).
[Crossref] [PubMed]

A. Bilenca, S. Yun, G. Tearney, and B. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: The role of refractive index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31(6), 760–762 (2006).
[Crossref] [PubMed]

T. Butler, S. Slepneva, B. O’Shaughnessy, B. Kelleher, D. Goulding, S. P. Hegarty, H.-C. Lyu, K. Karnowski, M. Wojtkowski, and G. Huyet, “Single shot, time-resolved measurement of the coherence properties of OCT swept source lasers,” Opt. Lett. 40(10), 2277–2280 (2015).
[Crossref] [PubMed]

I. Grulkowski, J.J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J.G. Fujimoto, and A.E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 637–675 (2013).
[Crossref]

S. Yun, D. Richardson, and B. Kim, “Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser,” Opt. Lett. 23(11), 8438–8445 (1998).
[Crossref]

S. H. Yun, “Mode locking of a wavelength-swept laser,” Opt. Lett. 30(19), 2660–2662 (2005).
[Crossref]

S. H. Yun, C. Boudoux, G. J. Tearney, and B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28(20), 1981–1983 (2003).
[Crossref] [PubMed]

J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, and B.E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[Crossref] [PubMed]

S. T. Sanders, D. W. Mattison, J. B. Jeffries, and R. K. Hanson, “Rapid temperature tuning of a 1.4 mm diode laser with application to high-pressure H2O absorption spectroscopy,” Opt. Lett. 26(20), 1568–1570 (2001).
[Crossref]

S.R. Chinn, E.A. Swanson, and J.G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[Crossref]

B. Golubovic, B. Bouma, G. Tearney, and J. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22(22), 1704–1706 (1997).
[Crossref]

Phys. Rev. Lett. (1)

F. Gustave, L. Columbo, G. Tissoni, M. Brambilla, F. Prati, B. Kelleher, B. Tykalewicz, and S. Barland, “Dissipative phase solitons in semiconductor lasers,” Phys. Rev. Lett. 115(4), 043902 (2015).
[Crossref]

Proc. SPIE (2)

S. Gloor, A. H. Bachmann, M. Epitaux, T. von Niederhausern, P. Vorreau, N. Matuschek, K. Hsu, M. Duelk, and C. Velez, “High-speed miniaturized swept sources based on resonant MEMS mirrors and diffraction gratings,” Proc. SPIE 8571, 85712X (2013).
[Crossref]

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact ultrafast reflective Fabry-Pérot tunable lasers for OCT imaging applications,” Proc. SPIE,  7554, 75541F (2010).
[Crossref]

Other (4)

E. Avrutin and L. Zhang, “Dynamics of semiconductor lasers under fast intracavity frequency sweeping,” IEEE 14th International Conference on Transparent Optical Networks (ICTON), 1–4 (2012).

D. Goulding, T. Butler, B. Kelleher, S. Slepneva, S. P. Hegarty, and G. Huyet, “Visualisation of the phase and intensity dynamics of semiconductor lasers via electric field reconstruction,” in Nonlinear Dynamics: Materials, Theory and Experiments, M. Tlidi and M. G. Clerc, eds. (Springer, 2016) pp. 3–30.

D. Flanders, M. Kuznetsov, and W. Atia, “Laser with tilted multi-spatial mode resonator tuning element,” US Patent App., vol. 11/158417, 2008.

B. Johnson and D. Flanders, “Laser swept source with controlled modelocking for OCT medical imaging,” US Patent App., vol. 12/092290, 2012.

Supplementary Material (2)

NameDescription
» Visualization 1       Animation of the experimentally measured dynamics of the backward sweep of a short-cavity swept-source laser.
» Visualization 2       Animation of the experimentally measured dynamics of the forward sweep of a short-cavity swept-source laser.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Instantaneous frequency of the short cavity laser during a single sweep period. The backward sweep (blue) consists of a complex output intensity, while the forward sweep (red) contains a periodic pulsed output. (b) Time-resolved electronic spectrum of the sweep intensities reveal the various dynamic regions. Intensity in dB is indicated by the color-map.
Fig. 2
Fig. 2 (a) Experimentally measured intensity and (b) instantaneous frequency of a short section of the positive frequency sweep. (c) Intensity and (d) frequency of the mode-locking negative frequency sweep. Black lines indicate a linear fit to the frequency trajectory.
Fig. 3
Fig. 3 (a) and (b): Recovered backward sweep electric field. (c) Instantaneous optical spectrum at three different points indicated by the dashed lines in (b). See Visualization 1 for an animation of this measurement.
Fig. 4
Fig. 4 Two dimensional optical spectrogram of the backward sweep. Intensity is indicated by the linear color-map.
Fig. 5
Fig. 5 (a) and (b): Recovered forward sweep electric field. (c) Instantaneous optical spectrum at three different points indicated by the dashed lines in (b). See Visualization 2 for an animation of this measurement.
Fig. 6
Fig. 6 Two dimensional optical spectrogram of the mode-locked pulses formed during the forward sweep, containing approximately 67 mode-locked pulses. Intensity is indicated by the linear color-map.
Fig. 7
Fig. 7 (a) Section of the experimentally measured optical spectrum during the forward sweep mode-locking laser output. Each section of the spectrum has a CEO frequency offset by half of the FSR, f0. (b) Electronic spectrum of the same mode-locked intensity.
Fig. 8
Fig. 8 Half-FSR switching period plotted over the entire forward sweep. The period is directly proportional to the filter sweep speed, shown as the solid line fit.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f n = f CEO + n * f 0 ,

Metrics