Abstract

In this research work we demonstrated negative axicon optical fiber tip filled with Polydimethylsiloxane (PDMS) as a sensor platform for volatile organic gases detection at room temperature. The response of the sensor was measured with various Volatile Organic Compounds (VOCs) such as Chloroform, Hexane, Isopropanol, Acetone, Toluene and Methanol in the concentration ranging from 5 to 200 ppm. The corresponding sensitivity and limit of detection (LOD) of the developed sensor for the measured VOCs were observed between the order of around 23.7 to 3.2 pm/ppm and 0.84 to 6.10 ppm, respectively. The response and recovery time of sensor were found between the order of 30 to 57 seconds and 8 to 25 seconds respectively for the measured VOCs. Thermal stability of the developed sensor was also studied at 30-70 °C with intervals of 10°C. The principle of sensing is based on change in the length of the Fabry-Perot Interferometric (FPI) cavity in the presence of varied concentrations of VOCs, which results in changes in the shift in wavelength of an interference pattern attributed to the change in PDMS filling the cavity length (swelling). The experimentally observed trends in the relative swelling of PDMS with VOCs are found in agreement with the theoretically calculated values obtained from the Hansen solubility parameter (HSP). The developed gas sensor has the potential to fulfill the demands of industrial applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber optic Fabry–Perot interferometer sensor: an efficient and fast approach for ammonia gas sensing

Rajesh Kanawade, Ajay Kumar, Dnyandeo Pawar, Dattatray Late, Samir Mondal, and Ravindra K. Sinha
J. Opt. Soc. Am. B 36(3) 684-689 (2019)

PDMS-coated fiber volatile organic compounds sensors

Xiangping Ning, Jingyi Yang, Chun Liu Zhao, and Chi Chiu Chan
Appl. Opt. 55(13) 3543-3548 (2016)

Highly sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based on a PMMA film

Cai-Bin Yu, Yu Wu, Chen Li, Fan Wu, Jin-Hao Zhou, Yuan Gong, Yun-Jiang Rao, and Yuan-Fu Chen
Opt. Mater. Express 7(6) 2111-2116 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
    [Crossref]
  2. A. Mirzaei, S. G. Leonardi, and G. Neri, “Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review,” Ceram. Int. 42(14), 15119–15141 (2016).
    [Crossref]
  3. Y. Y. Broza and H. Haick, “Nanomaterial-based sensors for detection of disease by volatile organic compounds,” Nanomedicine (Lond.) 8(5), 785–806 (2013).
    [Crossref] [PubMed]
  4. T. I. T. Akamatsu, A. Tsuruta, and W. Shin, “Selective detection of target volatile organic compounds in contaminated humid air using a sensor array with principal component analysis,” Sensors (Basel) 17(7), 1662 (2017).
    [Crossref] [PubMed]
  5. B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
    [Crossref] [PubMed]
  6. D. J. Late, R. V. Kanawade, P. K. Kannan, and C. S. Rout, “Atomically thin ws2 nanosheets based gas sensor,” Sens. Lett. 14(12), 1249–1254 (2016).
    [Crossref]
  7. D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
    [Crossref]
  8. J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy y, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemi resistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
    [Crossref]
  9. D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
    [Crossref]
  10. P. Levinský, L. Kalvoda, J. Aubrecht, and J. Fojtíková, “Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy,” Proc. SPIE 9450, 1–6 (2015).
  11. C. Elosua, I. Matias, C. Bariain, and F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors (Basel) 6(11), 1440–1465 (2006).
    [Crossref]
  12. R. A. Potyrailo and G. M. Hieftje, “Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber,” Anal. Chim. Acta 370(1), 1–8 (1998).
    [Crossref]
  13. A. Pathak, S. K. Mishra, and B. D. Gupta, “Fiber-optic ammonia sensor using Ag/SnO(2) thin films: optimization of thickness of SnO(2) film using electric field distribution and reaction factor,” Appl. Opt. 54(29), 8712–8721 (2015).
    [Crossref] [PubMed]
  14. X. Ning, J. Yang, C. L. Zhao, and C. C. Chan, “PDMS-coated fiber volatile organic compounds sensors,” Appl. Opt. 55(13), 3543–3548 (2016).
    [Crossref] [PubMed]
  15. D. Pawar, B. V. B. Rao, and S. N. Kale, “Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer,” Analyst (Lond.) 143(8), 1890–1898 (2018).
    [Crossref] [PubMed]
  16. R. Kanawade, A. Kumar, D. Pawar, D. Late, S. Mondal, and R. Sinha, “Fiber optic Fabry-Perot Interferometer sensor: an efficient and fast approach for ammonia gas sensing,” J. Opt. Soc. Am. B 36(2), 684 (2019).
  17. Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
    [Crossref]
  18. N. M. Y. Zhang, K. Li, N. Zhang, Y. Zheng, T. Zhang, M. Qi, P. Shum, and L. Wei, “Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point,” Opt. Express 26(22), 29148–29158 (2018).
    [Crossref] [PubMed]
  19. C. B. Yu, Y. Wu, C. Li, F. Wu, J.-H. Zhou, Y. Gong, Y.-J. Rao, and Y. F. Chen, “Highly sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based on a PMMA film,” Opt. Mater. Express 7(6), 2111–2116 (2017).
    [Crossref]
  20. C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
    [Crossref]
  21. K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
    [Crossref]
  22. K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
    [Crossref]
  23. D. Pawar, R. Kitture, and S. N. Kale, “ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies,” Opt. Laser Technol. 89, 46–53 (2017).
    [Crossref]
  24. J. C. Echeverría, M. Faustini, and J. J. Garrido, “Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs,” Sens. Actuators B Chem. 222, 1166–1174 (2016).
    [Crossref]
  25. C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, “Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors,” J. Mater. Chem. C 3(39), 10091–10098 (2015).
    [Crossref]
  26. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
    [Crossref] [PubMed]
  27. W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
    [Crossref] [PubMed]
  28. G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys. 118(2), 177–182 (2005).
    [Crossref]
  29. I. A. Furzer, “Emission control of voc components in gasoline with oxygenates: a comparative study,” Asia-Pac. J. Chem. Eng. 4(3–4), 245–252 (1996).
  30. S. M. Abernathy and K. R. Brown, “Using the vapor pressure of pure volatile organic compounds to predict the enthalpy of vaporization and computing the entropy of vaporization,” OALibj. 2(9), 1–11 (2015).
    [Crossref]
  31. R. K. Sinnott and G. Towler, Chemical Engineering Design 5th Edition ed. (2009).
  32. R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA,” J. Alloys Compd. 695, 2091–2096 (2017).
    [Crossref]
  33. C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
    [Crossref]
  34. T. Honda, M. Miyazaki, H. Nakamura, and H. Maeda, “Controllable polymerization of N-carboxy anhydrides in a microreaction system,” Lab Chip 5(8), 812–818 (2005).
    [Crossref] [PubMed]
  35. J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
    [Crossref]

2019 (1)

2018 (4)

N. M. Y. Zhang, K. Li, N. Zhang, Y. Zheng, T. Zhang, M. Qi, P. Shum, and L. Wei, “Highly sensitive gas refractometers based on optical microfiber modal interferometers operating at dispersion turning point,” Opt. Express 26(22), 29148–29158 (2018).
[Crossref] [PubMed]

D. Pawar, B. V. B. Rao, and S. N. Kale, “Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer,” Analyst (Lond.) 143(8), 1890–1898 (2018).
[Crossref] [PubMed]

C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
[Crossref]

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

2017 (8)

D. Pawar, R. Kitture, and S. N. Kale, “ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies,” Opt. Laser Technol. 89, 46–53 (2017).
[Crossref]

T. I. T. Akamatsu, A. Tsuruta, and W. Shin, “Selective detection of target volatile organic compounds in contaminated humid air using a sensor array with principal component analysis,” Sensors (Basel) 17(7), 1662 (2017).
[Crossref] [PubMed]

D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
[Crossref]

R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA,” J. Alloys Compd. 695, 2091–2096 (2017).
[Crossref]

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

C. B. Yu, Y. Wu, C. Li, F. Wu, J.-H. Zhou, Y. Gong, Y.-J. Rao, and Y. F. Chen, “Highly sensitive and selective fiber-optic Fabry-Perot volatile organic compounds sensor based on a PMMA film,” Opt. Mater. Express 7(6), 2111–2116 (2017).
[Crossref]

2016 (5)

X. Ning, J. Yang, C. L. Zhao, and C. C. Chan, “PDMS-coated fiber volatile organic compounds sensors,” Appl. Opt. 55(13), 3543–3548 (2016).
[Crossref] [PubMed]

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

A. Mirzaei, S. G. Leonardi, and G. Neri, “Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review,” Ceram. Int. 42(14), 15119–15141 (2016).
[Crossref]

J. C. Echeverría, M. Faustini, and J. J. Garrido, “Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs,” Sens. Actuators B Chem. 222, 1166–1174 (2016).
[Crossref]

D. J. Late, R. V. Kanawade, P. K. Kannan, and C. S. Rout, “Atomically thin ws2 nanosheets based gas sensor,” Sens. Lett. 14(12), 1249–1254 (2016).
[Crossref]

2015 (4)

C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, “Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors,” J. Mater. Chem. C 3(39), 10091–10098 (2015).
[Crossref]

P. Levinský, L. Kalvoda, J. Aubrecht, and J. Fojtíková, “Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy,” Proc. SPIE 9450, 1–6 (2015).

S. M. Abernathy and K. R. Brown, “Using the vapor pressure of pure volatile organic compounds to predict the enthalpy of vaporization and computing the entropy of vaporization,” OALibj. 2(9), 1–11 (2015).
[Crossref]

A. Pathak, S. K. Mishra, and B. D. Gupta, “Fiber-optic ammonia sensor using Ag/SnO(2) thin films: optimization of thickness of SnO(2) film using electric field distribution and reaction factor,” Appl. Opt. 54(29), 8712–8721 (2015).
[Crossref] [PubMed]

2014 (1)

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

2013 (2)

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Y. Y. Broza and H. Haick, “Nanomaterial-based sensors for detection of disease by volatile organic compounds,” Nanomedicine (Lond.) 8(5), 785–806 (2013).
[Crossref] [PubMed]

2006 (3)

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

C. Elosua, I. Matias, C. Bariain, and F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors (Basel) 6(11), 1440–1465 (2006).
[Crossref]

C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
[Crossref]

2005 (2)

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys. 118(2), 177–182 (2005).
[Crossref]

T. Honda, M. Miyazaki, H. Nakamura, and H. Maeda, “Controllable polymerization of N-carboxy anhydrides in a microreaction system,” Lab Chip 5(8), 812–818 (2005).
[Crossref] [PubMed]

2004 (1)

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy y, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemi resistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

2003 (1)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

1998 (1)

R. A. Potyrailo and G. M. Hieftje, “Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber,” Anal. Chim. Acta 370(1), 1–8 (1998).
[Crossref]

1996 (1)

I. A. Furzer, “Emission control of voc components in gasoline with oxygenates: a comparative study,” Asia-Pac. J. Chem. Eng. 4(3–4), 245–252 (1996).

Abernathy, S. M.

S. M. Abernathy and K. R. Brown, “Using the vapor pressure of pure volatile organic compounds to predict the enthalpy of vaporization and computing the entropy of vaporization,” OALibj. 2(9), 1–11 (2015).
[Crossref]

Abraham, J. K.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy y, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemi resistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Adnet, A.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys. 118(2), 177–182 (2005).
[Crossref]

Akamatsu, T. I. T.

T. I. T. Akamatsu, A. Tsuruta, and W. Shin, “Selective detection of target volatile organic compounds in contaminated humid air using a sensor array with principal component analysis,” Sensors (Basel) 17(7), 1662 (2017).
[Crossref] [PubMed]

Arregui, F. J.

C. Elosua, I. Matias, C. Bariain, and F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors (Basel) 6(11), 1440–1465 (2006).
[Crossref]

C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
[Crossref]

Aubrecht, J.

P. Levinský, L. Kalvoda, J. Aubrecht, and J. Fojtíková, “Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy,” Proc. SPIE 9450, 1–6 (2015).

Bao, W.

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

Bao, X.

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

Bariain, C.

C. Elosua, I. Matias, C. Bariain, and F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors (Basel) 6(11), 1440–1465 (2006).
[Crossref]

Bariáin, C.

C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
[Crossref]

Batchelor, J. C.

C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, “Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors,” J. Mater. Chem. C 3(39), 10091–10098 (2015).
[Crossref]

Belsey, K. E.

C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, “Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors,” J. Mater. Chem. C 3(39), 10091–10098 (2015).
[Crossref]

Bougouma, M.

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Brown, K. R.

S. M. Abernathy and K. R. Brown, “Using the vapor pressure of pure volatile organic compounds to predict the enthalpy of vaporization and computing the entropy of vaporization,” OALibj. 2(9), 1–11 (2015).
[Crossref]

Broza, Y. Y.

Y. Y. Broza and H. Haick, “Nanomaterial-based sensors for detection of disease by volatile organic compounds,” Nanomedicine (Lond.) 8(5), 785–806 (2013).
[Crossref] [PubMed]

Bunjongpru, W.

C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
[Crossref]

Chan, C. C.

Chen, H. F.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Chen, L.

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

Chen, W. P.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Chen, Y. F.

Choubey, R. K.

R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA,” J. Alloys Compd. 695, 2091–2096 (2017).
[Crossref]

Cooper, J.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Doneux, T.

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Echeverría, J. C.

J. C. Echeverría, M. Faustini, and J. J. Garrido, “Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs,” Sens. Actuators B Chem. 222, 1166–1174 (2016).
[Crossref]

Elosua, C.

C. Elosua, I. Matias, C. Bariain, and F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors (Basel) 6(11), 1440–1465 (2006).
[Crossref]

Elosúa, C.

C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
[Crossref]

Faustini, M.

J. C. Echeverría, M. Faustini, and J. J. Garrido, “Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs,” Sens. Actuators B Chem. 222, 1166–1174 (2016).
[Crossref]

Fedder, G. K.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Fick, J.

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Fojtíková, J.

P. Levinský, L. Kalvoda, J. Aubrecht, and J. Fojtíková, “Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy,” Proc. SPIE 9450, 1–6 (2015).

Furzer, I. A.

I. A. Furzer, “Emission control of voc components in gasoline with oxygenates: a comparative study,” Asia-Pac. J. Chem. Eng. 4(3–4), 245–252 (1996).

Garrido, J. J.

J. C. Echeverría, M. Faustini, and J. J. Garrido, “Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs,” Sens. Actuators B Chem. 222, 1166–1174 (2016).
[Crossref]

Gong, Y.

Grover, C. P.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys. 118(2), 177–182 (2005).
[Crossref]

Gupta, B. D.

Gupta, P.

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

Haick, H.

Y. Y. Broza and H. Haick, “Nanomaterial-based sensors for detection of disease by volatile organic compounds,” Nanomedicine (Lond.) 8(5), 785–806 (2013).
[Crossref] [PubMed]

Hao, Z.

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Hieftje, G. M.

R. A. Potyrailo and G. M. Hieftje, “Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber,” Anal. Chim. Acta 370(1), 1–8 (1998).
[Crossref]

Holder, S. J.

C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, “Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors,” J. Mater. Chem. C 3(39), 10091–10098 (2015).
[Crossref]

Honda, T.

T. Honda, M. Miyazaki, H. Nakamura, and H. Maeda, “Controllable polymerization of N-carboxy anhydrides in a microreaction system,” Lab Chip 5(8), 812–818 (2005).
[Crossref] [PubMed]

Iovu, M. C.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

James, S. W.

D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
[Crossref]

Jeffries-El, M.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Kale, S. N.

D. Pawar, B. V. B. Rao, and S. N. Kale, “Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer,” Analyst (Lond.) 143(8), 1890–1898 (2018).
[Crossref] [PubMed]

R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA,” J. Alloys Compd. 695, 2091–2096 (2017).
[Crossref]

D. Pawar, R. Kitture, and S. N. Kale, “ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies,” Opt. Laser Technol. 89, 46–53 (2017).
[Crossref]

Kalvoda, L.

P. Levinský, L. Kalvoda, J. Aubrecht, and J. Fojtíková, “Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy,” Proc. SPIE 9450, 1–6 (2015).

Kanawade, R.

Kanawade, R. V.

D. J. Late, R. V. Kanawade, P. K. Kannan, and C. S. Rout, “Atomically thin ws2 nanosheets based gas sensor,” Sens. Lett. 14(12), 1249–1254 (2016).
[Crossref]

Kannan, P. K.

D. J. Late, R. V. Kanawade, P. K. Kannan, and C. S. Rout, “Atomically thin ws2 nanosheets based gas sensor,” Sens. Lett. 14(12), 1249–1254 (2016).
[Crossref]

Kaur, S.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Kitture, R.

D. Pawar, R. Kitture, and S. N. Kale, “ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies,” Opt. Laser Technol. 89, 46–53 (2017).
[Crossref]

R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA,” J. Alloys Compd. 695, 2091–2096 (2017).
[Crossref]

Korposh, S.

D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
[Crossref]

Kowalewski, T.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Kumar, A.

Kumbhakar, D.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Kusne, A. G.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Laguna, M.

C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
[Crossref]

Lambeth, D. N.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Late, D.

Late, D. J.

D. J. Late, R. V. Kanawade, P. K. Kannan, and C. S. Rout, “Atomically thin ws2 nanosheets based gas sensor,” Sens. Lett. 14(12), 1249–1254 (2016).
[Crossref]

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Lee, J. N.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Lee, S. W.

D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
[Crossref]

Leonardi, S. G.

A. Mirzaei, S. G. Leonardi, and G. Neri, “Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review,” Ceram. Int. 42(14), 15119–15141 (2016).
[Crossref]

Levinský, P.

P. Levinský, L. Kalvoda, J. Aubrecht, and J. Fojtíková, “Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy,” Proc. SPIE 9450, 1–6 (2015).

Li, B.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Li, C.

Li, J.

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Li, K.

Lu, P.

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

Luquin, A.

C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
[Crossref]

Maeda, H.

T. Honda, M. Miyazaki, H. Nakamura, and H. Maeda, “Controllable polymerization of N-carboxy anhydrides in a microreaction system,” Lab Chip 5(8), 812–818 (2005).
[Crossref] [PubMed]

Matias, I.

C. Elosua, I. Matias, C. Bariain, and F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors (Basel) 6(11), 1440–1465 (2006).
[Crossref]

Matías, I. R.

C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
[Crossref]

McCullough, R. D.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Minz, R. A.

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Mirzaei, A.

A. Mirzaei, S. G. Leonardi, and G. Neri, “Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review,” Ceram. Int. 42(14), 15119–15141 (2016).
[Crossref]

Mishra, S. K.

Miyazaki, M.

T. Honda, M. Miyazaki, H. Nakamura, and H. Maeda, “Controllable polymerization of N-carboxy anhydrides in a microreaction system,” Lab Chip 5(8), 812–818 (2005).
[Crossref] [PubMed]

Mondal, S.

Mondal, S. K.

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Muangrat, W.

C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
[Crossref]

Mullaney, K.

D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
[Crossref]

Nakamura, H.

T. Honda, M. Miyazaki, H. Nakamura, and H. Maeda, “Controllable polymerization of N-carboxy anhydrides in a microreaction system,” Lab Chip 5(8), 812–818 (2005).
[Crossref] [PubMed]

Neri, G.

A. Mirzaei, S. G. Leonardi, and G. Neri, “Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review,” Ceram. Int. 42(14), 15119–15141 (2016).
[Crossref]

Nie, L.

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Ning, X.

Pandey, A.

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

Park, C.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Pathak, A.

Paul, S.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Pawar, D.

R. Kanawade, A. Kumar, D. Pawar, D. Late, S. Mondal, and R. Sinha, “Fiber optic Fabry-Perot Interferometer sensor: an efficient and fast approach for ammonia gas sensing,” J. Opt. Soc. Am. B 36(2), 684 (2019).

D. Pawar, B. V. B. Rao, and S. N. Kale, “Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer,” Analyst (Lond.) 143(8), 1890–1898 (2018).
[Crossref] [PubMed]

R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA,” J. Alloys Compd. 695, 2091–2096 (2017).
[Crossref]

D. Pawar, R. Kitture, and S. N. Kale, “ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies,” Opt. Laser Technol. 89, 46–53 (2017).
[Crossref]

Philip, B.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy y, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemi resistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Phonyiem, M.

C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
[Crossref]

Potyrailo, R. A.

R. A. Potyrailo and G. M. Hieftje, “Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber,” Anal. Chim. Acta 370(1), 1–8 (1998).
[Crossref]

Qi, M.

Qiao, X.

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

Rao, B. V. B.

D. Pawar, B. V. B. Rao, and S. N. Kale, “Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer,” Analyst (Lond.) 143(8), 1890–1898 (2018).
[Crossref] [PubMed]

Rao, C. N.

R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA,” J. Alloys Compd. 695, 2091–2096 (2017).
[Crossref]

Rao, Y.-J.

Rattanabut, C.

C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
[Crossref]

Reddy y, C. C.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy y, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemi resistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Revelli, J. C.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Rong, Q.

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

Rout, C. S.

D. J. Late, R. V. Kanawade, P. K. Kannan, and C. S. Rout, “Atomically thin ws2 nanosheets based gas sensor,” Sens. Lett. 14(12), 1249–1254 (2016).
[Crossref]

Rumens, C. V.

C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, “Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors,” J. Mater. Chem. C 3(39), 10091–10098 (2015).
[Crossref]

Santhanam, S.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Sauvé, G.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Schultz, L.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Shao, Z.

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

Shin, W.

T. I. T. Akamatsu, A. Tsuruta, and W. Shin, “Selective detection of target volatile organic compounds in contaminated humid air using a sensor array with principal component analysis,” Sensors (Basel) 17(7), 1662 (2017).
[Crossref] [PubMed]

Shum, P.

Sinha, R.

Sinha, R. K.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Snyder, J. L.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Song, Y. J.

C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
[Crossref]

Sun, F. G.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys. 118(2), 177–182 (2005).
[Crossref]

Tatam, R. P.

D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
[Crossref]

Tiwari, D.

D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
[Crossref]

Tiwari, U.

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Tiwari, U. K.

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

Tsuruta, A.

T. I. T. Akamatsu, A. Tsuruta, and W. Shin, “Selective detection of target volatile organic compounds in contaminated humid air using a sensor array with principal component analysis,” Sensors (Basel) 17(7), 1662 (2017).
[Crossref] [PubMed]

Vairagi, K.

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

Varadan, V. K.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy y, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemi resistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Wang, D. N.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Wang, G.

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Wang, H.

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Wang, J.

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Wang, R.

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

Wang, Y.

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Wei, L.

Weiss, L. E.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Whitesides, G. M.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Witchurch, A.

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy y, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemi resistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Wongwiriyapan, W.

C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
[Crossref]

Wu, F.

Wu, Y.

Xiao, G. Z.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys. 118(2), 177–182 (2005).
[Crossref]

Xu, B.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Xu, Y.

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

Yang, J.

Yang, T.

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

Yu, C. B.

Zhang, N.

Zhang, N. M. Y.

Zhang, R.

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Zhang, T.

Zhang, Z.

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys. 118(2), 177–182 (2005).
[Crossref]

Zhao, C. L.

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

X. Ning, J. Yang, C. L. Zhao, and C. C. Chan, “PDMS-coated fiber volatile organic compounds sensors,” Appl. Opt. 55(13), 3543–3548 (2016).
[Crossref] [PubMed]

Zheng, Y.

Zhou, J.-H.

Ziai, M. A.

C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, “Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors,” J. Mater. Chem. C 3(39), 10091–10098 (2015).
[Crossref]

Anal. Chem. (1)

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003).
[Crossref] [PubMed]

Anal. Chim. Acta (1)

R. A. Potyrailo and G. M. Hieftje, “Oxygen detection by fluorescence quenching of tetraphenylporphyrin immobilized in the original cladding of an optical fiber,” Anal. Chim. Acta 370(1), 1–8 (1998).
[Crossref]

Analyst (Lond.) (1)

D. Pawar, B. V. B. Rao, and S. N. Kale, “Fe3O4-decorated graphene assembled porous carbon nanocomposite for ammonia sensing: study using an optical fiber Fabry-Perot interferometer,” Analyst (Lond.) 143(8), 1890–1898 (2018).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

D. J. Late, T. Doneux, and M. Bougouma, “Single-layer MoSe2 based NH3 gas sensor,” Appl. Phys. Lett. 105(23), 233103 (2014).
[Crossref]

Asia-Pac. J. Chem. Eng. (1)

I. A. Furzer, “Emission control of voc components in gasoline with oxygenates: a comparative study,” Asia-Pac. J. Chem. Eng. 4(3–4), 245–252 (1996).

Ceram. Int. (1)

A. Mirzaei, S. G. Leonardi, and G. Neri, “Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review,” Ceram. Int. 42(14), 15119–15141 (2016).
[Crossref]

Chin. Sci. Bull. (1)

H. Wang, L. Nie, J. Li, Y. Wang, G. Wang, J. Wang, and Z. Hao, “Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries,” Chin. Sci. Bull. 58(7), 724–730 (2013).
[Crossref]

Fibers (Basel) (1)

Y. Xu, P. Lu, L. Chen, and X. Bao, “Recent developments in micro-structured fiber optic sensors,” Fibers (Basel) 5(1), 3 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Vairagi, A. Pandey, P. Gupta, R. A. Minz, U. K. Tiwari, J. Fick, and S. K. Mondal, “Common-path optical coherence tomography using the bessel beam from negative axicon optical fiber tip,” IEEE J. Sel. Top. Quantum Electron. 25(1), 1–6 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (1)

K. Vairagi, R. A. Minz, S. Kaur, D. Kumbhakar, S. Paul, U. Tiwari, R. K. Sinha, J. Fick, and S. K. Mondal, “Deep seated negative axicon in selective optical fiber tip and collimated bessel beam,” IEEE Photonics Technol. Lett. 29(10), 786–789 (2017).
[Crossref]

J. Alloys Compd. (1)

R. Kitture, D. Pawar, C. N. Rao, R. K. Choubey, and S. N. Kale, “Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA,” J. Alloys Compd. 695, 2091–2096 (2017).
[Crossref]

J. Mater. Chem. C (1)

C. V. Rumens, M. A. Ziai, K. E. Belsey, J. C. Batchelor, and S. J. Holder, “Swelling of PDMS networks in solvent vapours; applications for passive RFID wireless sensors,” J. Mater. Chem. C 3(39), 10091–10098 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

C. Rattanabut, W. Wongwiriyapan, W. Muangrat, W. Bunjongpru, M. Phonyiem, and Y. J. Song, “Graphene and poly(methyl methacrylate) composite laminates on flexible substrates for volatile organic compound detection,” Jpn. J. Appl. Phys. 57(4S), 04FP10 (2018).
[Crossref]

Lab Chip (1)

T. Honda, M. Miyazaki, H. Nakamura, and H. Maeda, “Controllable polymerization of N-carboxy anhydrides in a microreaction system,” Lab Chip 5(8), 812–818 (2005).
[Crossref] [PubMed]

Nano Lett. (1)

B. Li, G. Sauvé, M. C. Iovu, M. Jeffries-El, R. Zhang, J. Cooper, S. Santhanam, L. Schultz, J. C. Revelli, A. G. Kusne, T. Kowalewski, J. L. Snyder, L. E. Weiss, G. K. Fedder, R. D. McCullough, and D. N. Lambeth, “Volatile organic compound detection using nanostructured copolymers,” Nano Lett. 6(8), 1598–1602 (2006).
[Crossref] [PubMed]

Nanomedicine (Lond.) (1)

Y. Y. Broza and H. Haick, “Nanomaterial-based sensors for detection of disease by volatile organic compounds,” Nanomedicine (Lond.) 8(5), 785–806 (2013).
[Crossref] [PubMed]

OALibj. (1)

S. M. Abernathy and K. R. Brown, “Using the vapor pressure of pure volatile organic compounds to predict the enthalpy of vaporization and computing the entropy of vaporization,” OALibj. 2(9), 1–11 (2015).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

D. Pawar, R. Kitture, and S. N. Kale, “ZnO coated Fabry-Perot interferometric optical fiber for detection of gasoline blend vapors: Refractive index and fringe visibility manipulation studies,” Opt. Laser Technol. 89, 46–53 (2017).
[Crossref]

Opt. Lasers Eng. (1)

J. Li, X. Qiao, R. Wang, Q. Rong, W. Bao, Z. Shao, and T. Yang, “Temperature-independent refractometer based on fiber-optic Fabry–Perot interferometer,” Opt. Lasers Eng. 79, 16–21 (2016).
[Crossref]

Opt. Mater. Express (1)

Proc. SPIE (1)

P. Levinský, L. Kalvoda, J. Aubrecht, and J. Fojtíková, “Diffusion of ammonia gas in PDMS characterized by ATR spectroscopy,” Proc. SPIE 9450, 1–6 (2015).

Sci. Rep. (1)

W. P. Chen, D. N. Wang, B. Xu, C. L. Zhao, and H. F. Chen, “Multimode fiber tip Fabry-Perot cavity for highly sensitive pressure measurement,” Sci. Rep. 7(1), 368 (2017).
[Crossref] [PubMed]

Sens. Actuators A Phys. (1)

G. Z. Xiao, A. Adnet, Z. Zhang, F. G. Sun, and C. P. Grover, “Monitoring changes in the refractive index of gases by means of a fiber optic Fabry-Perot interferometer sensor,” Sens. Actuators A Phys. 118(2), 177–182 (2005).
[Crossref]

Sens. Actuators B Chem. (3)

J. C. Echeverría, M. Faustini, and J. J. Garrido, “Effects of the porous texture and surface chemistry of silica xerogels on the sensitivity of fiber-optic sensors toward VOCs,” Sens. Actuators B Chem. 222, 1166–1174 (2016).
[Crossref]

C. Elosúa, C. Bariáin, I. R. Matías, F. J. Arregui, A. Luquin, and M. Laguna, “Volatile alcoholic compounds fibre optic nanosensor,” Sens. Actuators B Chem. 115(1), 444–449 (2006).
[Crossref]

D. Tiwari, K. Mullaney, S. Korposh, S. W. James, S. W. Lee, and R. P. Tatam, “An ammonia sensor based on Lossy Mode Resonances on a tapered optical fibre coated with porphyrin-incorporated titanium dioxide,” Sens. Actuators B Chem. 242, 645–652 (2017).
[Crossref]

Sens. Lett. (1)

D. J. Late, R. V. Kanawade, P. K. Kannan, and C. S. Rout, “Atomically thin ws2 nanosheets based gas sensor,” Sens. Lett. 14(12), 1249–1254 (2016).
[Crossref]

Sensors (Basel) (2)

T. I. T. Akamatsu, A. Tsuruta, and W. Shin, “Selective detection of target volatile organic compounds in contaminated humid air using a sensor array with principal component analysis,” Sensors (Basel) 17(7), 1662 (2017).
[Crossref] [PubMed]

C. Elosua, I. Matias, C. Bariain, and F. J. Arregui, “Volatile organic compound optical fiber sensors: a review,” Sensors (Basel) 6(11), 1440–1465 (2006).
[Crossref]

Smart Mater. Struct. (1)

J. K. Abraham, B. Philip, A. Witchurch, V. K. Varadan, and C. C. Reddy y, “A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemi resistor,” Smart Mater. Struct. 13(5), 1045–1049 (2004).
[Crossref]

Other (1)

R. K. Sinnott and G. Towler, Chemical Engineering Design 5th Edition ed. (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Negative axicon tip based FPI cavity sensor platform fabrication schematics: a) etching process; b) fabricated axicon empty cavity; c) filing of PDMS inside the air cavity and d) fabricated sensor platform.
Fig. 2
Fig. 2 A- FPI gas sensing set-up; B - Negative axicon tip fill with PDMS (sensor platform).
Fig. 3
Fig. 3 Light propagation and interaction with PDMS material through.
Fig. 4
Fig. 4 Basel beam propagation through Axicon tip: A) without and B) with PDMS for 233 µm cavity length.
Fig. 5
Fig. 5 FPI sensor response for Methanol gas with concentrations ranging from 0 to 200 ppm in time 60 seconds.
Fig. 6
Fig. 6 Relative change in A). Wavelength shift, B). Change in cavity length Vs gases concentrations (Methanol, Isopropanol, Hexane, Chloroform and Acetone and Toluene) measured at 60 seconds time periods respectively.
Fig. 7
Fig. 7 Time response curve of the sensor probe filled with PDMS for 50 ppm concentration of gases.
Fig. 8
Fig. 8 Sensitivity response of different VOCs with PDMS filled coated FPI sensor in terms of: A) wavelength shift and B) ER Change at 60 seconds.
Fig. 9
Fig. 9 Schematic of VOCs interaction with the PDMS and its relative swelling.
Fig. 10
Fig. 10 Relation between the A) wavelength shift and B) ER Change with the corresponding temperatures respectively.

Tables (3)

Tables Icon

Table 1 Wavelength shift and ER change for various gases for concentrations ranging from 0 ppm to 200 ppm measured at 60 seconds

Tables Icon

Table 2 Measured recovery time, response time and the calculated limit of detection, sensitivity from the wavelength shift and the ER change for various gas concentrations for 60 seconds.

Tables Icon

Table 3 HSP and RED between PDMS and VOCs

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I( λ )= I 1 ( λ )+ I 2 ( λ )+2 I 1 ( λ ) I 2 ( λ ) cos( 4πL n m λ + 0 )
R 1 = n eff n m n eff + n m , R 2 = n m n ext n m + n ext
R 12 = | R 1 + R 2 . e iβ 1+ R 2 . R 2 . e iβ | 2 ,β=( 4.π λ ). n m .L
Δλ= ΔL L *λ
ΔL=a+( b δ d * δ d )+( b δ p * δ p )+( b δ h * δ h )+( b P vp * P vp )
FSR= λ 2 2nL
E.R=10lg I max I min =10lg I 1 ( λ )+ I 2 ( λ )+2 I 1 ( λ )+ I 2 ( λ ) I 1 ( λ )+ I 2 ( λ )2 I 1 ( λ )+ I 2 ( λ )
LOD= δλ S
RED= R a R 0
( R a ) 2 =4 ( δ d,PDMS δ d,VOCs ) 2 + ( δ p,PDMS δ p,VOCs ) 2 + ( δ h,PDMS δ h,VOCs ) 2
[ ΔER Δλ ]=[ A 11 A 12 A 21 A 22 ]*[ ΔC ΔT ]
[ ΔC ΔT ]= M 1 *[ ΔER Δλ ]
[ ΔC ΔT ]=[ 44.9561 0.87719 129.9342 0.1357 ]*[ ΔER Δλ ]

Metrics