Abstract

Radially and azimuthally polarized beams can create needle-like electric and magnetic fields under tight focusing conditions, respectively, and thus have been highly recommended for optical manipulation. There have been reports on the superiority of these beams over the conventional Gaussian beam for providing a larger optical force in single beam optical trap. However, serious discrepancies in their experimental results prevent one from concluding this superiority. Here, we theoretically and experimentally study the impact of different parameters — such as spherical aberration, the numerical aperture of the focusing lens, and the particles’ size — on optical trapping stiffness of radially, azimuthally, and linearly polarized beams. The result of calculations based on generalized Lorenz–Mie theory, which is in good agreement with the experiment, reveals that the studied parameters determine which polarization state has the superiority for optical trapping. Our findings play a crucial role in the development of optical tweezers setups and, in particular, in biophysical applications when laser-induced heating in the optical tweezers applications is the main concern.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical trapping of gold nanoparticles by cylindrical vector beam

Lu Huang, Honglian Guo, Jiafang Li, Lin Ling, Baohua Feng, and Zhi-Yuan Li
Opt. Lett. 37(10) 1694-1696 (2012)

Optical trapping of nanotubes with cylindrical vector beams

M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, and O. M. Maragò
Opt. Lett. 37(16) 3381-3383 (2012)

Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams

Yuichi Kozawa and Shunichi Sato
Opt. Express 18(10) 10828-10833 (2010)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [Crossref] [PubMed]
  2. F. Hajizadeh and S. S. Reihani, “Optimized optical trapping of gold nanoparticles,” Opt. Express 18, 551–559 (2010).
    [Crossref] [PubMed]
  3. M. Li, T. Lohmüller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
    [Crossref]
  4. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008).
    [Crossref] [PubMed]
  5. S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot1,” Opt. Commun. 179, 1–7 (2000).
    [Crossref]
  6. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
    [Crossref] [PubMed]
  7. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501 (2008).
    [Crossref]
  8. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012).
    [Crossref] [PubMed]
  9. N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Reports 8, 17387 (2018).
    [Crossref]
  10. F. Tang, Y. Wang, L. Qiu, W. Zhao, and Y. Sun, “Super-resolution radially polarized-light pupil-filtering confocal sensing technology,” Appl. Opt. 53, 7407–7414 (2014).
    [Crossref] [PubMed]
  11. X. Li, Y. Cao, and M. Gu, “Superresolution-focal-volume induced 3.0 tbytes/disk capacity by focusing a radially polarized beam,” Opt. Lett. 36, 2510–2512 (2011).
    [Crossref] [PubMed]
  12. O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.  14, 085601 (2012).
    [Crossref]
  13. Q. Zhan, “Trapping metallic rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [Crossref] [PubMed]
  14. I. Iglesias and J. J. Sáenz, “Light spin forces in optical traps: comment on “trapping metallic rayleigh particles with radial polarization”,” Opt. Express 20, 2832–2834 (2012).
    [Crossref] [PubMed]
  15. M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48, 6143–6151 (2009).
    [Crossref] [PubMed]
  16. Y. Kozawa and S. Sato, “Optical trapping of micrometer-sized dielectric particles by cylindrical vector beams,” Opt. Express 18, 10828–10833 (2010).
    [Crossref] [PubMed]
  17. S. Skelton, M. Sergides, R. Saija, M. Iatì, O. Maragó, and P. Jones, “Trapping volume control in optical tweezers using cylindrical vector beams,” Opt. Lett. 38, 28–30 (2013).
    [Crossref] [PubMed]
  18. M. Gaffar and B. R. Boruah, “Poynting vector profile of a tightly focused radially polarized beam in the presence of primary aberrations,” J. Opt. Soc. Am. A 32, 660–668 (2015).
    [Crossref]
  19. S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007).
    [Crossref] [PubMed]
  20. L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
    [Crossref] [PubMed]
  21. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
    [Crossref] [PubMed]
  22. H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
    [Crossref]
  23. E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
    [Crossref]
  24. C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
    [Crossref]
  25. P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: Faster version of matlab package for precise calibration of optical tweezers,” Comput. Phys. Commun.  174, 518 – 520 (2006).
    [Crossref]
  26. M. G. Donato, S. Vasi, R. Sayed, P. H. Jones, F. Bonaccorso, A. C. Ferrari, P. G. Gucciardi, and O. M. Maragò, “Optical trapping of nanotubes with cylindrical vector beams,” Opt. Lett. 37, 3381–3383 (2012).
    [Crossref]
  27. P. H. Jones, O. M. Maragò, and G. Volpe, Optical Tweezers: Principles and Applications(Cambridge University Press, 2015).
    [Crossref]
  28. A. Siegman, Lasers(Oxford University, Oxford, 1986).
  29. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, ii. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
    [Crossref]
  30. F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer Science & Business Media, 2007).
  31. C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1983).
  32. F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the t-matrix formalism,” Opt. Express 15, 11984–11998 (2007).
    [Crossref] [PubMed]
  33. J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, 2012).
  34. E. Madadi, A. Samadi, M. Cheraghian, and S. N. S. Reihani, “Polarization-induced stiffness asymmetry of optical tweezers,” Opt. Lett. 37, 3519–3521 (2012).
    [Crossref] [PubMed]

2018 (1)

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Reports 8, 17387 (2018).
[Crossref]

2016 (1)

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

2015 (2)

M. Li, T. Lohmüller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

M. Gaffar and B. R. Boruah, “Poynting vector profile of a tightly focused radially polarized beam in the presence of primary aberrations,” J. Opt. Soc. Am. A 32, 660–668 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (6)

2011 (1)

2010 (2)

2009 (2)

M. Michihata, T. Hayashi, and Y. Takaya, “Measurement of axial and transverse trapping stiffness of optical tweezers in air using a radially polarized beam,” Appl. Opt. 48, 6143–6151 (2009).
[Crossref] [PubMed]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
[Crossref]

2008 (3)

C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[Crossref]

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501 (2008).
[Crossref]

M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008).
[Crossref] [PubMed]

2007 (2)

2006 (2)

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: Faster version of matlab package for precise calibration of optical tweezers,” Comput. Phys. Commun.  174, 518 – 520 (2006).
[Crossref]

2004 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

2000 (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot1,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

1986 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, ii. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Allegre, O. J.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.  14, 085601 (2012).
[Crossref]

Ashkin, A.

Berg-Sørensen, K.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: Faster version of matlab package for precise calibration of optical tweezers,” Comput. Phys. Commun.  174, 518 – 520 (2006).
[Crossref]

Bhebhe, N.

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Reports 8, 17387 (2018).
[Crossref]

Bjorkholm, J. E.

Bohren, C. F.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1983).

Bonaccorso, F.

Borghese, F.

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the t-matrix formalism,” Opt. Express 15, 11984–11998 (2007).
[Crossref] [PubMed]

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer Science & Business Media, 2007).

Boruah, B. R.

Bouchard, F.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

Boyd, R. W.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

Cao, Y.

Cardano, F.

Chen, W.-L.

C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[Crossref]

Cheraghian, M.

Chong, C. T.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501 (2008).
[Crossref]

Chou, C.-K.

C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[Crossref]

Chu, S.

de Lisio, C.

Dearden, G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.  14, 085601 (2012).
[Crossref]

Denti, P.

F. Borghese, P. Denti, R. Saija, and M. A. Iatì, “Optical trapping of nonspherical particles in the t-matrix formalism,” Opt. Express 15, 11984–11998 (2007).
[Crossref] [PubMed]

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer Science & Business Media, 2007).

Dholakia, K.

Dienerowitz, M.

Donato, M. G.

Dong, C.-Y.

C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[Crossref]

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot1,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Dziedzic, J. M.

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot1,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Edwardson, S. P.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.  14, 085601 (2012).
[Crossref]

Feldmann, J.

M. Li, T. Lohmüller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

Feng, B.

Ferrari, A. C.

Fickler, R.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

Flyvbjerg, H.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: Faster version of matlab package for precise calibration of optical tweezers,” Comput. Phys. Commun.  174, 518 – 520 (2006).
[Crossref]

Forbes, A.

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Reports 8, 17387 (2018).
[Crossref]

Fwu, P. T.

C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[Crossref]

Gaffar, M.

Gagnon-Bischoff, J.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

Glöckl, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot1,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Gu, M.

Gucciardi, P. G.

Guo, H.

Hajizadeh, F.

Hansen, P. M.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: Faster version of matlab package for precise calibration of optical tweezers,” Comput. Phys. Commun.  174, 518 – 520 (2006).
[Crossref]

Hayashi, T.

Huang, L.

Huffman, D.

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1983).

Iatì, M.

Iatì, M. A.

Iglesias, I.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, 2012).

Jones, P.

Jones, P. H.

Karimi, E.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
[Crossref] [PubMed]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
[Crossref]

Kozawa, Y.

Krauss, T. F.

Larocque, H.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

Lee, H.-S.

C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[Crossref]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot1,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Li, J.

Li, M.

M. Li, T. Lohmüller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

Li, X.

Li, Z.-Y.

Lin, S.-J.

C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[Crossref]

Ling, L.

Lohmüller, T.

M. Li, T. Lohmüller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

Lukyanchuk, B.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501 (2008).
[Crossref]

Madadi, E.

Manzo, C.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Maragó, O.

Maragò, O. M.

Marrucci, L.

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
[Crossref] [PubMed]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
[Crossref]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Mazilu, M.

Michihata, M.

Nagali, E.

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
[Crossref]

Oddershede, L. B.

Paparo, D.

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Perrie, W.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.  14, 085601 (2012).
[Crossref]

Piccirillo, B.

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
[Crossref]

Qiu, L.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot1,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Reece, P. J.

Reihani, S. N. S.

Reihani, S. S.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, ii. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Rodriguez-Fajardo, V.

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Reports 8, 17387 (2018).
[Crossref]

Rosales-Guzmán, C.

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Reports 8, 17387 (2018).
[Crossref]

Sáenz, J. J.

Saija, R.

Samadi, A.

Santamato, E.

F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012).
[Crossref] [PubMed]

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
[Crossref]

Sato, S.

Sayed, R.

Sergides, M.

Sheppard, C.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501 (2008).
[Crossref]

Shi, L.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501 (2008).
[Crossref]

Siegman, A.

A. Siegman, Lasers(Oxford University, Oxford, 1986).

Skelton, S.

Slussarenko, S.

Sun, Y.

Takaya, Y.

Tang, F.

Tolic-Nørrelykke, I. M.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: Faster version of matlab package for precise calibration of optical tweezers,” Comput. Phys. Commun.  174, 518 – 520 (2006).
[Crossref]

Upham, J.

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

Vasi, S.

Volpe, G.

P. H. Jones, O. M. Maragò, and G. Volpe, Optical Tweezers: Principles and Applications(Cambridge University Press, 2015).
[Crossref]

Wang, H.

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501 (2008).
[Crossref]

Wang, Y.

Watkins, K. G.

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.  14, 085601 (2012).
[Crossref]

Williams, P. A. C.

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Reports 8, 17387 (2018).
[Crossref]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, ii. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Zhan, Q.

Zhao, W.

Appl. Opt. (3)

Appl. Phys. Lett. (1)

E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, and E. Santamato, “Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates,” Appl. Phys. Lett. 94, 231124 (2009).
[Crossref]

Comput. Phys. Commun (1)

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. Berg-Sørensen, “tweezercalib 2.0: Faster version of matlab package for precise calibration of optical tweezers,” Comput. Phys. Commun.  174, 518 – 520 (2006).
[Crossref]

J. Biomed. Opt. (1)

C.-K. Chou, W.-L. Chen, P. T. Fwu, S.-J. Lin, H.-S. Lee, and C.-Y. Dong, “Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation,” J. Biomed. Opt. 13, 014005 (2008).
[Crossref]

J. Opt (2)

O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden, and K. G. Watkins, “Laser microprocessing of steel with radially and azimuthally polarized femtosecond vortex pulses,” J. Opt.  14, 085601 (2012).
[Crossref]

H. Larocque, J. Gagnon-Bischoff, F. Bouchard, R. Fickler, J. Upham, R. W. Boyd, and E. Karimi, “Arbitrary optical wavefront shaping via spin-to-orbit coupling,” J. Opt.  18, 124002 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

M. Li, T. Lohmüller, and J. Feldmann, “Optical injection of gold nanoparticles into living cells,” Nano Lett. 15, 770–775 (2015).
[Crossref]

Nat. Photonics (1)

H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, and C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2, 501 (2008).
[Crossref]

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, “Focusing light to a tighter spot1,” Opt. Commun. 179, 1–7 (2000).
[Crossref]

Opt. Express (6)

Opt. Lett. (7)

Phys. Rev. Lett. (2)

R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003).
[Crossref] [PubMed]

L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).
[Crossref] [PubMed]

Proc. R. Soc. Lond. A (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems, ii. structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A 253, 358–379 (1959).
[Crossref]

Sci. Reports (1)

N. Bhebhe, P. A. C. Williams, C. Rosales-Guzmán, V. Rodriguez-Fajardo, and A. Forbes, “A vector holographic optical trap,” Sci. Reports 8, 17387 (2018).
[Crossref]

Other (5)

F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics(Springer Science & Business Media, 2007).

C. F. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, 1983).

J. D. Jackson, Classical Electrodynamics(John Wiley & Sons, 2012).

P. H. Jones, O. M. Maragò, and G. Volpe, Optical Tweezers: Principles and Applications(Cambridge University Press, 2015).
[Crossref]

A. Siegman, Lasers(Oxford University, Oxford, 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of optical tweezers setup. A near-infrared laser (λ = 1064 nm) is used for trapping. A q = 1/2-plate, whose optical retardation is set to π by means of a signal generator, is used to generate cylindrical vector beams. A quadrant photodiode (QPD) measures the position of a trapped bead by back-focal-plane detection, which is amplified before recording it with a computer. Figure legends: L: Lens, M: Mirror, HWP: half wave plate, DM: Dichroic mirror, Obj: objective lens, QPD: quadrant photodiode. The dotted inset shows a zooming in view of the focus.
Fig. 2
Fig. 2 Experimentally measured intensity distribution in the xy-plane after q = 1/2-plate for (a) Gaussian beam, and (b) tuned q-plate leads to CVB. Intensity distribution of the (c) RPB, and (d) APB after passing through a polarizer oriented in the horizontal direction. The curves represente the laser profile along the red dashed lines in the top panel. Bottom panel shows the intensity distribution of the ((e)-(g)) RPB, and ((h)-(j)) APB after passing through the various orientations of the polarizer. The yellow arrows indicate the polarizer orientation.
Fig. 3
Fig. 3 Theoretically simulated electric energy density distribution in the xz-plane at the focus of a (i) linearly, (ii) radially, and (iii) azimuthally polarized beam, in the absence of the spherical aberration, d = 0, (a) in the presence of the spherical aberration, d = 5 µm, (b), and d = 10 µm (c).
Fig. 4
Fig. 4 Experimental results (left panel) and theoretical simulations (right panel) of trap stiffness normalized to the laser power at the sample along the axial ((a) and (b)) and lateral ((c) and (d)) directions as a function of the particle diameter, based on the company specifications. The blue triangles (solid lines), red squares (dashed lines), and black circles (dash-dotted lines) indicate the trapping stiffness in experiment (theory) for the LPB, RPB, and APB, respectively. Error bars in the experimental panel show the standard deviations of the measured values (at least 9 measurements; 3 particles and 3 measurements for each).
Fig. 5
Fig. 5 Experimental results (left panel) and theoretical simulations (right panel) of axial ((a) and (b)) and lateral ((c) and (d)) asymmetry of the trap as a function of the particle diameter.
Fig. 6
Fig. 6 Experimental results and theoretical simulations of the trapping stiffness normalized to the laser power at the sample along the axial (top panel) and lateral (bottom panel) directions as a function of the objective numerical aperture for 0.5 µm ((a)-(d)) and 1.26 µm ((e)-(h)) particles.
Fig. 7
Fig. 7 The effect of spherical aberration. Experimental (left panel) and Theoretical (right panel) results of the trap stiffness normalized to the laser power at the sample for the LPB (i), RPB (ii), and APB (iii) as a function of the trapping depth (d). The error bars represents the standard deviation of at least 9 measurements.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

( e ^ L e ^ R ) ( e ^ R e + 2 i ( q φ + α 0 ) e ^ L e 2 i ( q φ + α 0 ) ) .
E r ( r ) = HG 10 ( r ) e ^ x + HG 01 ( r ) e ^ y ,
E ϕ ( r ) = HG 01 ( r ) e ^ x HG 10 ( r ) e ^ y ,
E ν ( r ) = ( i n 1 k 0 f e i n 1 k 0 f 2 π ) 0 2 π 0 α d ϕ d θ 1 sin θ 1 E sample ( ν ) e i n 2 k 0 r e i ψ ,
E sample ( ν ) = 2 E 0 γ n 1 sin θ 1 cos θ 1 e γ 2 sin 2 θ 1 τ ( ν ) e ^ ν
E i = p l m W l m ( p ) J l m ( p ) , E s = p l m A l m ( p ) H l m ( p ) ,
F = S r ^ < T > d A < T > = ϵ 0 2 [ n 2 2 E E * + c 2 B B * I 2 ( n 2 2 | E | 2 + c 2 | B | 2 ) ] .

Metrics