Abstract

We demonstrate that optical beams can be spatially and temporally shaped in situ by forming 3D reconfigurable interference patterns of ultrasound waves in the medium. In this technique, ultrasonic pressure waves induce a modulated refractive index pattern that shapes the optical beam as it propagates through the medium. Using custom-designed cylindrical ultrasonic arrays, we demonstrate that complex patterns of light can be sculpted in the medium, including dipole and quadrupole shapes. Additionally, through a combination of theory and experiment, we demonstrate that these optical patterns can be scanned in radial and azimuthal directions. Moreover, we show that light can be selectively confined to different extrema of the spatial ultrasound pressure profile by temporally synchronizing lightwave and ultrasound. Finally, we demonstrate that this technique can also be used to define spatial patterns of light in turbid media. The notion of in situ 3D sculpting of optical beam paths using ultrasound interference patterns can find intriguing applications in biological imaging and manipulation, holography, and microscopy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical multilayer detection array for fast ultrasonic field mapping

V. Wilkens and Ch. Koch
Opt. Lett. 24(15) 1026-1028 (1999)

Correlation transfer equation for multiply scattered light modulated by an ultrasonic pulse

Sava Sakadžić and Lihong V. Wang
J. Opt. Soc. Am. A 24(9) 2797-2806 (2007)

Video-rate all-optical ultrasound imaging

Erwin J. Alles, Sacha Noimark, Efthymios Maneas, Edward Z. Zhang, Ivan P. Parkin, Paul C. Beard, and Adrien E. Desjardins
Biomed. Opt. Express 9(8) 3481-3494 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. S. Monaghan, U. Gopinathan, B. M. Hennelly, D. P. Kelly, T. J. Naughton, and J. T. Sheridan, “Applications of spatial light modulators in optical signal processing systems,” in B. W. Bowe, G. Byrne, A. J. Flanagan, T. J. Glynn, J. Magee, G. M. O’Connor, R. F. O’Dowd, G. D. O’Sullivan, and J. T. Sheridan, eds. (2005), p. 358.
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [Crossref] [PubMed]
  4. K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29(16), 1942–1944 (2004).
    [Crossref] [PubMed]
  5. D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343(6256), 325–330 (1990).
    [Crossref] [PubMed]
  6. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [Crossref] [PubMed]
  7. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
    [Crossref] [PubMed]
  8. B. Javidi, E. Tajahuerce, and P. Andrés, eds., Multi-Dimensional Imaging (John Wiley & Sons, Ltd, 2014).
  9. C. Froehly, B. Colombeau, and M. Vampouille, “II Shaping and Analysis of Picosecond Light Pulses,” Prog. Opt. 20, 63–153 (1983).
    [Crossref]
  10. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
    [Crossref]
  11. D. R. Collins, J. B. Sampsell, L. J. Hornbeck, J. M. Florence, P. A. Penz, and M. T. Gately, “Deformable mirror device spatial light modulators and their applicability to optical neural networks,” Appl. Opt. 28(22), 4900–4907 (1989).
    [Crossref] [PubMed]
  12. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  13. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
    [Crossref]
  14. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  15. S. Turtaev, I. T. Leite, K. J. Mitchell, M. J. Padgett, D. B. Phillips, and T. Čižmár, “Comparison of nematic liquid-crystal and DMD based spatial light modulation in complex photonics,” Opt. Express 25(24), 29874–29884 (2017).
    [Crossref] [PubMed]
  16. S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” in Emerging Digital Micromirror Device Based Systems and ApplicationsVI (International Society for Optics and Photonics, 2014), 8979, p. 897905.
  17. J. Xu and R. Stroud, Acousto-Optic Devices : Principles, Design, and Applications (Wiley, 1992).
  18. W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).
  19. G. R. B. E. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners-Invited Paper,” Phys. Procedia 56, 29–39 (2014).
    [Crossref]
  20. D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, “Comparison of acousto-optic deflectors for dynamic-speckle distance-measurement application,” J. Opt. A, Pure Appl. Opt. 9(7), 704–708 (2007).
    [Crossref]
  21. A. Gilletti and J. Muthuswamy, “Brain micromotion around implants in the rodent somatosensory cortex,” J. Neural Eng. 3(3), 189–195 (2006).
    [Crossref] [PubMed]
  22. M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
    [Crossref] [PubMed]
  23. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” (n.d.).
  24. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  25. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref] [PubMed]
  26. J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016605 (2012).
    [Crossref] [PubMed]
  27. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
    [Crossref]
  28. R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials (Basel) 11(8), 1283 (2018).
    [Crossref] [PubMed]
  29. J. W. Reddy and M. Chamanzar, “Low-loss flexible Parylene photonic waveguides for optical implants,” Opt. Lett. 43(17), 4112–4115 (2018).
    [Crossref] [PubMed]
  30. S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
    [Crossref] [PubMed]
  31. S. Yamagiwa, M. Ishida, and T. Kawano, “Flexible parylene-film optical waveguide arrays,” Appl. Phys. Lett. 107(8), 83502 (2015).
    [Crossref]
  32. M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
    [Crossref] [PubMed]
  33. M. G. Scopelliti and M. Chamanzar, “Ultrasonic Guiding and Steering of Light in Scattering Tissue,” in Conference on Lasers and Electro-Optics (OSA, 2018), p. ATh1Q-2.
    [Crossref]
  34. M. Chamanzar, M. Huh, N. H. Do, M. R. Alam, and M. M. Maharbiz, “Virtual Acousto-optic Beam Paths for Steerable Deep-tissue Optical Stimulation and Imaging,” in CLEO:2015 (OSA, 2015), p. JW2A.90.
  35. I. Grulkowski, D. Jankowski, and P. Kwiek, “Acousto-optic interaction with the use of cylindrical ultrasonic waves in the laser cavity,” Appl. Opt. 48(7), C81–C85 (2009).
    [Crossref] [PubMed]
  36. S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics (2018).
  37. D. H. Chambers, Acoustically Driven Vibrations in Cylindrical Structures (2013).
  38. J. L. Butler, A. L. Butler, and J. A. Rice, “A tri-modal directional transducer,” J. Acoust. Soc. Am. 115(2), 658–665 (2004).
    [Crossref] [PubMed]
  39. E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006).
    [Crossref] [PubMed]
  40. M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).
  41. E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 33104 (2007).
    [Crossref]
  42. G. Lifante, Integrated Photonics: Fundamentals (John Wiley & Sons, Ltd., 2003).
  43. B. D. Guenther, Modern Optics (Oxford University, 2015).
  44. P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton University, 1986).
  45. L. Wang and S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34(13), 2362–2366 (1995).
    [Crossref] [PubMed]
  46. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
    [Crossref] [PubMed]
  47. P. Hoskins, K. Martin, and A. Thrush, Diagnostic Ultrasound : Physics and Equipment (Cambridge University, 2010).
  48. M. Duocastella and C. B. B. Arnold, “Transient response in ultra-high speed liquid lenses,” J. Phys. D Appl. Phys. 46(7), 75102–75109 (2013).
    [Crossref]
  49. “Guidance for Industry and FDA Staff Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers This Document Supersedes,” September 30, 1997, Preface Public Comment (n.d.).

2019 (1)

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

2018 (2)

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials (Basel) 11(8), 1283 (2018).
[Crossref] [PubMed]

J. W. Reddy and M. Chamanzar, “Low-loss flexible Parylene photonic waveguides for optical implants,” Opt. Lett. 43(17), 4112–4115 (2018).
[Crossref] [PubMed]

2017 (1)

2016 (1)

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

2015 (2)

S. Yamagiwa, M. Ishida, and T. Kawano, “Flexible parylene-film optical waveguide arrays,” Appl. Phys. Lett. 107(8), 83502 (2015).
[Crossref]

I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
[Crossref] [PubMed]

2014 (1)

G. R. B. E. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners-Invited Paper,” Phys. Procedia 56, 29–39 (2014).
[Crossref]

2013 (1)

M. Duocastella and C. B. B. Arnold, “Transient response in ultra-high speed liquid lenses,” J. Phys. D Appl. Phys. 46(7), 75102–75109 (2013).
[Crossref]

2012 (2)

J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016605 (2012).
[Crossref] [PubMed]

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

2011 (2)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

2010 (2)

M. Cui, E. J. McDowell, and C. Yang, “An in vivo study of turbidity suppression by optical phase conjugation (TSOPC) on rabbit ear,” Opt. Express 18(1), 25–30 (2010).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

2009 (1)

2008 (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

2007 (3)

D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, “Comparison of acousto-optic deflectors for dynamic-speckle distance-measurement application,” J. Opt. A, Pure Appl. Opt. 9(7), 704–708 (2007).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 33104 (2007).
[Crossref]

2006 (2)

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006).
[Crossref] [PubMed]

A. Gilletti and J. Muthuswamy, “Brain micromotion around implants in the rodent somatosensory cortex,” J. Neural Eng. 3(3), 189–195 (2006).
[Crossref] [PubMed]

2004 (2)

K. Bezuhanov, A. Dreischuh, G. G. Paulus, M. G. Schätzel, and H. Walther, “Vortices in femtosecond laser fields,” Opt. Lett. 29(16), 1942–1944 (2004).
[Crossref] [PubMed]

J. L. Butler, A. L. Butler, and J. A. Rice, “A tri-modal directional transducer,” J. Acoust. Soc. Am. 115(2), 658–665 (2004).
[Crossref] [PubMed]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1995 (1)

1992 (2)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

1990 (2)

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343(6256), 325–330 (1990).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1989 (1)

1983 (1)

C. Froehly, B. Colombeau, and M. Vampouille, “II Shaping and Analysis of Picosecond Light Pulses,” Prog. Opt. 20, 63–153 (1983).
[Crossref]

Akemann, W.

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Alam, M.-R.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Arnold, C. B.

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 33104 (2007).
[Crossref]

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006).
[Crossref] [PubMed]

Arnold, C. B. B.

M. Duocastella and C. B. B. Arnold, “Transient response in ultra-high speed liquid lenses,” J. Phys. D Appl. Phys. 46(7), 75102–75109 (2013).
[Crossref]

Aulbach, J.

J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016605 (2012).
[Crossref] [PubMed]

Bechtold, P.

G. R. B. E. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners-Invited Paper,” Phys. Procedia 56, 29–39 (2014).
[Crossref]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Bezuhanov, K.

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Bloch, J.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” (n.d.).

Born, M.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Bourdieu, L.

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Brady, D.

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343(6256), 325–330 (1990).
[Crossref] [PubMed]

Bretagne, A.

J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016605 (2012).
[Crossref] [PubMed]

Butler, A. L.

J. L. Butler, A. L. Butler, and J. A. Rice, “A tri-modal directional transducer,” J. Acoust. Soc. Am. 115(2), 658–665 (2004).
[Crossref] [PubMed]

Butler, J. L.

J. L. Butler, A. L. Butler, and J. A. Rice, “A tri-modal directional transducer,” J. Acoust. Soc. Am. 115(2), 658–665 (2004).
[Crossref] [PubMed]

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” (n.d.).

Chamanzar, M.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

J. W. Reddy and M. Chamanzar, “Low-loss flexible Parylene photonic waveguides for optical implants,” Opt. Lett. 43(17), 4112–4115 (2018).
[Crossref] [PubMed]

M. G. Scopelliti and M. Chamanzar, “Ultrasonic Guiding and Steering of Light in Scattering Tissue,” in Conference on Lasers and Electro-Optics (OSA, 2018), p. ATh1Q-2.
[Crossref]

Chambers, D. H.

D. H. Chambers, Acoustically Driven Vibrations in Cylindrical Structures (2013).

Choi, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Cižmár, T.

Collins, D. R.

Colombeau, B.

C. Froehly, B. Colombeau, and M. Vampouille, “II Shaping and Analysis of Picosecond Light Pulses,” Prog. Opt. 20, 63–153 (1983).
[Crossref]

Cui, M.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Dholakia, K.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Dieudonné, S.

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Do, N.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Dreischuh, A.

Duocastella, M.

M. Duocastella and C. B. B. Arnold, “Transient response in ultra-high speed liquid lenses,” J. Phys. D Appl. Phys. 46(7), 75102–75109 (2013).
[Crossref]

Fink, M.

J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016605 (2012).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” (n.d.).

Florence, J. M.

Froehly, C.

C. Froehly, B. Colombeau, and M. Vampouille, “II Shaping and Analysis of Picosecond Light Pulses,” Prog. Opt. 20, 63–153 (1983).
[Crossref]

Fu, R.

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials (Basel) 11(8), 1283 (2018).
[Crossref] [PubMed]

Gately, M. T.

Gather, M. C.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” (n.d.).

Gilletti, A.

A. Gilletti and J. Muthuswamy, “Brain micromotion around implants in the rodent somatosensory cortex,” J. Neural Eng. 3(3), 189–195 (2006).
[Crossref] [PubMed]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

Grulkowski, I.

Gu, X.-G.

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343(6256), 325–330 (1990).
[Crossref] [PubMed]

Guenther, B. D.

B. D. Guenther, Modern Optics (Oxford University, 2015).

Hahn, S. K.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Hirschberg, A.

S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics (2018).

Hopkins, A. B.

Hornbeck, L. J.

Huh, M.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Humar, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Iafrati, J.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Ingard, K. U.

P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton University, 1986).

Ishida, M.

S. Yamagiwa, M. Ishida, and T. Kawano, “Flexible parylene-film optical waveguide arrays,” Appl. Phys. Lett. 107(8), 83502 (2015).
[Crossref]

Jacques, S. L.

Jankowski, D.

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Kamshilin, A. A.

D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, “Comparison of acousto-optic deflectors for dynamic-speckle distance-measurement application,” J. Opt. A, Pure Appl. Opt. 9(7), 704–708 (2007).
[Crossref]

Kawano, T.

S. Yamagiwa, M. Ishida, and T. Kawano, “Flexible parylene-film optical waveguide arrays,” Appl. Phys. Lett. 107(8), 83502 (2015).
[Crossref]

Kim, K. S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Kim, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Kwiek, P.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Léger, J.-F.

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Leite, I. T.

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” (n.d.).

Lifante, G.

G. Lifante, Integrated Photonics: Fundamentals (John Wiley & Sons, Ltd., 2003).

Lin, S.

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343(6256), 325–330 (1990).
[Crossref] [PubMed]

Liu, H.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Maharbiz, M. M.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Mathieu, B.

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Mazilu, M.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

McDowell, E. J.

McLeod, E.

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 33104 (2007).
[Crossref]

E. McLeod, A. B. Hopkins, and C. B. Arnold, “Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens,” Opt. Lett. 31(21), 3155–3157 (2006).
[Crossref] [PubMed]

Mitchell, K. J.

Morse, P. M.

P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton University, 1986).

Mosk, A. P.

Muthuswamy, J.

A. Gilletti and J. Muthuswamy, “Brain micromotion around implants in the rodent somatosensory cortex,” J. Neural Eng. 3(3), 189–195 (2006).
[Crossref] [PubMed]

Nazempour, R.

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials (Basel) 11(8), 1283 (2018).
[Crossref] [PubMed]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Nippolainen, E.

D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, “Comparison of acousto-optic deflectors for dynamic-speckle distance-measurement application,” J. Opt. A, Pure Appl. Opt. 9(7), 704–708 (2007).
[Crossref]

Nizamoglu, S.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Padgett, M. J.

Patel, J. S.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Paulus, G. G.

Penz, P. A.

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Phillips, D. B.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” (n.d.).

Psaltis, D.

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343(6256), 325–330 (1990).
[Crossref] [PubMed]

Randolph, M.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Reddy, J. W.

Redmond, R. W.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Rice, J. A.

J. L. Butler, A. L. Butler, and J. A. Rice, “A tri-modal directional transducer,” J. Acoust. Soc. Am. 115(2), 658–665 (2004).
[Crossref] [PubMed]

Rienstra, S. W.

S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics (2018).

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Römer, G. R. B. E.

G. R. B. E. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners-Invited Paper,” Phys. Procedia 56, 29–39 (2014).
[Crossref]

Sampsell, J. B.

Scarcelli, G.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Schätzel, M. G.

Scopelliti, M. G.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

M. G. Scopelliti and M. Chamanzar, “Ultrasonic Guiding and Steering of Light in Scattering Tissue,” in Conference on Lasers and Electro-Optics (OSA, 2018), p. ATh1Q-2.
[Crossref]

Semenov, D. V.

D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, “Comparison of acousto-optic deflectors for dynamic-speckle distance-measurement application,” J. Opt. A, Pure Appl. Opt. 9(7), 704–708 (2007).
[Crossref]

Seo, D.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Sheng, X.

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials (Basel) 11(8), 1283 (2018).
[Crossref] [PubMed]

Sohal, V. S.

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Stroud, R.

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Tanter, M.

J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016605 (2012).
[Crossref] [PubMed]

Tourin, A.

J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016605 (2012).
[Crossref] [PubMed]

Turtaev, S.

Vampouille, M.

C. Froehly, B. Colombeau, and M. Vampouille, “II Shaping and Analysis of Picosecond Light Pulses,” Prog. Opt. 20, 63–153 (1983).
[Crossref]

Vellekoop, I. M.

Ventalon, C.

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Walther, H.

Wang, L.

Wang, L. V.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Wolf, E.

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Wullert, J. R.

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

Xu, J.

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Xu, X.

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

Yamagiwa, S.

S. Yamagiwa, M. Ishida, and T. Kawano, “Flexible parylene-film optical waveguide arrays,” Appl. Phys. Lett. 107(8), 83502 (2015).
[Crossref]

Yang, C.

Yun, S. H.

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Zhang, Q.

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials (Basel) 11(8), 1283 (2018).
[Crossref] [PubMed]

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

S. Yamagiwa, M. Ishida, and T. Kawano, “Flexible parylene-film optical waveguide arrays,” Appl. Phys. Lett. 107(8), 83502 (2015).
[Crossref]

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: Scanless Two-Photon Imaging and Photostimulation Using Spatial Light Modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator,” IEEE J. Quantum Electron. 28(4), 908–920 (1992).
[Crossref]

J. Acoust. Soc. Am. (1)

J. L. Butler, A. L. Butler, and J. A. Rice, “A tri-modal directional transducer,” J. Acoust. Soc. Am. 115(2), 658–665 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

E. McLeod and C. B. Arnold, “Mechanics and refractive power optimization of tunable acoustic gradient lenses,” J. Appl. Phys. 102(3), 33104 (2007).
[Crossref]

J. Neural Eng. (1)

A. Gilletti and J. Muthuswamy, “Brain micromotion around implants in the rodent somatosensory cortex,” J. Neural Eng. 3(3), 189–195 (2006).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

D. V. Semenov, E. Nippolainen, and A. A. Kamshilin, “Comparison of acousto-optic deflectors for dynamic-speckle distance-measurement application,” J. Opt. A, Pure Appl. Opt. 9(7), 704–708 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Duocastella and C. B. B. Arnold, “Transient response in ultra-high speed liquid lenses,” J. Phys. D Appl. Phys. 46(7), 75102–75109 (2013).
[Crossref]

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Materials (Basel) (1)

R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine,” Materials (Basel) 11(8), 1283 (2018).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[Crossref] [PubMed]

Nat. Commun. (2)

S. Nizamoglu, M. C. Gather, M. Humar, M. Choi, S. Kim, K. S. Kim, S. K. Hahn, G. Scarcelli, M. Randolph, R. W. Redmond, and S. H. Yun, “Bioabsorbable polymer optical waveguides for deep-tissue photomedicine,” Nat. Commun. 7(1), 10374 (2016).
[Crossref] [PubMed]

M. Chamanzar, M. G. Scopelliti, J. Bloch, N. Do, M. Huh, D. Seo, J. Iafrati, V. S. Sohal, M.-R. Alam, and M. M. Maharbiz, “Ultrasonic sculpting of virtual optical waveguides in tissue,” Nat. Commun. 10(1), 92 (2019).
[Crossref] [PubMed]

Nat. Photonics (2)

X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5(3), 154–157 (2011).
[Crossref] [PubMed]

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[Crossref] [PubMed]

D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature 343(6256), 325–330 (1990).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (4)

Phys. Procedia (1)

G. R. B. E. Römer and P. Bechtold, “Electro-optic and acousto-optic laser beam scanners-Invited Paper,” Phys. Procedia 56, 29–39 (2014).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

J. Aulbach, A. Bretagne, M. Fink, M. Tanter, and A. Tourin, “Optimal spatiotemporal focusing through complex scattering media,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(1 Pt 2), 016605 (2012).
[Crossref] [PubMed]

Proc. IEEE (1)

W. Akemann, J.-F. Léger, C. Ventalon, B. Mathieu, S. Dieudonné, L. Bourdieu, J. Xu, and R. Stroud, “Spatial light modulators; (110.1080) Active or adaptive optics; (120.5800) Scanners; (140.3300) Laser beam shaping; (180.4315) Nonlinear microscopy; (230.1040) Acousto-optical devices,” Proc. IEEE 69, 54–64 (1992).

Prog. Opt. (1)

C. Froehly, B. Colombeau, and M. Vampouille, “II Shaping and Analysis of Picosecond Light Pulses,” Prog. Opt. 20, 63–153 (1983).
[Crossref]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (15)

D. S. Monaghan, U. Gopinathan, B. M. Hennelly, D. P. Kelly, T. J. Naughton, and J. T. Sheridan, “Applications of spatial light modulators in optical signal processing systems,” in B. W. Bowe, G. Byrne, A. J. Flanagan, T. J. Glynn, J. Magee, G. M. O’Connor, R. F. O’Dowd, G. D. O’Sullivan, and J. T. Sheridan, eds. (2005), p. 358.

B. Javidi, E. Tajahuerce, and P. Andrés, eds., Multi-Dimensional Imaging (John Wiley & Sons, Ltd, 2014).

S. N. Chandrasekaran, H. Ligtenberg, W. Steenbergen, and I. M. Vellekoop, “Using digital micromirror devices for focusing light through turbid media,” in Emerging Digital Micromirror Device Based Systems and ApplicationsVI (International Society for Optics and Photonics, 2014), 8979, p. 897905.

J. Xu and R. Stroud, Acousto-Optic Devices : Principles, Design, and Applications (Wiley, 1992).

M. G. Scopelliti and M. Chamanzar, “Ultrasonic Guiding and Steering of Light in Scattering Tissue,” in Conference on Lasers and Electro-Optics (OSA, 2018), p. ATh1Q-2.
[Crossref]

M. Chamanzar, M. Huh, N. H. Do, M. R. Alam, and M. M. Maharbiz, “Virtual Acousto-optic Beam Paths for Steerable Deep-tissue Optical Stimulation and Imaging,” in CLEO:2015 (OSA, 2015), p. JW2A.90.

S. W. Rienstra and A. Hirschberg, An Introduction to Acoustics (2018).

D. H. Chambers, Acoustically Driven Vibrations in Cylindrical Structures (2013).

P. Hoskins, K. Martin, and A. Thrush, Diagnostic Ultrasound : Physics and Equipment (Cambridge University, 2010).

M. Born and E. Wolf, Principles of Optics : Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University, 1999).

G. Lifante, Integrated Photonics: Fundamentals (John Wiley & Sons, Ltd., 2003).

B. D. Guenther, Modern Optics (Oxford University, 2015).

P. M. Morse and K. U. Ingard, Theoretical Acoustics (Princeton University, 1986).

“Guidance for Industry and FDA Staff Information for Manufacturers Seeking Marketing Clearance of Diagnostic Ultrasound Systems and Transducers This Document Supersedes,” September 30, 1997, Preface Public Comment (n.d.).

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” (n.d.).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 FEM simulation of the ultrasound pressure profile in 2D (shown in a window of 8 mm × 8 mm) for (a) the fundamental mode (first azimuthal mode, m = 0) at 829 kHz, (b) the dipole mode (second azimuthal mode, m = 1) at 848 kHz, and (c) the quadrupole mode (third azimuthal mode, m = 2) at 867 kHz. (d) Schematic of a multi-segment transducer array and electrodes placement in a cylindrical geometry. (e) Schematic showing the electric potential distribution.
Fig. 2
Fig. 2 (a) Dipole and (b) quadrupole acoustic modes at the ultrasound frequencies of 848 kHz and 867 kHz, respectively. (c) Radial cross section of the pressure profile of the dipole mode. The radial distance between the first extrema is shown as r 1 . (d) Radial cross section of the pressure profile of the quadrupole mode. The radial distance between the first extrema is shown as r 2 . (e) and (f) The refractive index profile corresponding to the dipole and quadruple ultrasound pressure profiles, respectively. The red dashed lines in (e) and (f) represent the background refractive index of the medium. (g) and (h) Ray-tracing simulation showing the axial profile of the light beam passing through a modulated medium.
Fig. 3
Fig. 3 (a) Schematic of the experimental setup. (b) Top view of the dipole beam pattern. The inset shows the image taken with a zoom lens (6X magnification compared to image (b)). Only the first lobes are captured in this image. The radial distance between the two lobes is r 1 . (c) Top view of the quadrupole beam pattern. The inset shows the image taken with a zoom lens (3X magnification compared to image (c)), showing the four focal points and the distance between them ( r 2 ). (d) and (e) The axial reconstruction of the two beam patterns depicted in the insets of (b) and (c) at the cross-section of y = 0, showing that the incident light is gradually converged to the focal points after passing through the modulated medium.
Fig. 4
Fig. 4 Experimentally imaged dipole and quadrupole beam patterns at different resonance frequencies to demonstrate radial scanning. The driving frequency is shown in the upper left corner of the picture for each case. The driving electric potential distribution of the dipole and quadrupole beam patterns were set as [ V 0 0, V 0 0, V 0 π, V 0 π] and [ V 0 0, V 0 π, V 0 π, V 0 0], respectively. The electric potential amplitude and radial spacing between the focal points are: (a) V 0 =36 V,  r 1 =1.243 mm, (b) V 0 =15 V,  r 1 =0.865 mm, (c) V 0 =60 V,  r 1 =0.657 mm, (d) V 0 =64 V,  r 2 =1.911 mm, (e) V 0 =17 V,  r 2 =1.4 mm, (f) V 0 =60 V,  r 2 =1.089 mm. Each image is normalized to its own maximum intensity and is plotted in the logarithmic scale.
Fig. 5
Fig. 5 (a) Schematic of the VNA connection configuration used to measure the admittance spectrum of the transducer array for exciting the dipole and quadrupole modes, while immersed in water. (b) and (c) The measured admittance spectrum when the transducer array was connected to VNA in the dipole and quadrupole mode excitation signal arrangement, respectively, showing well-defined resonant frequencies starting from f1,19 = 734 kHz to f1,34 = 1.313 MHz (dipole) and f2,19 = 753 kHz to f2,33 = 1.297 MHz (quadrupole). (d) List of the resonant frequencies at which the transducer array has been driven to excite consecutive radial modes in both m = 1 and m = 2 azimuthal modes. The table also shows the repetitive resonance behavior, with a free spectral range of ~38.6 kHz both for the dipole and the quadrupole modes.
Fig. 6
Fig. 6 (a) The distances between the first extrema (r1 and r2) of the first- and second-order Bessel function of the first kind, corresponding to the dipole and quadrupole beam patterns. Comparison between the theory, simulation, and experiment for (b) the radial spacing (r1) between the crescents in the dipole beam pattern, (c) and the radial spacing (r2) between the focal points in the quadrupole beam pattern for discrete modes in the frequency range f = 730 kHz-1.320 MHz.
Fig. 7
Fig. 7 The experimental results showing the rotation of the dipole pattern (6X magnification) by changing the sequence of the applied electric potentials, when the axis is at (a) π/2 (with respect to the horizontal axis), (b) π/4, and (c) 0, and in the quadrupole beam pattern (3X magnification) at (d) π/4 and (e) 0.
Fig. 8
Fig. 8 (a) Temporal dynamics of the ultrasound wave. (b) Schematic illustrating illumination by a CW laser and (c) illumination by a pulsed laser. φ is the phase delay between the pulsed laser and ultrasound. (d) Experimentally imaged dipole beam pattern at 851 kHz and V0 = 17 V with a CW laser, and with a pulsed laser when (e) φ = 0 and (f) φ = π. (g) The quadrupole beam pattern imaged at 830 kHz and V0 = 19 V with a CW laser and with a pulsed laser when (h) φ = 0 and (i) φ = π.
Fig. 9
Fig. 9 Demonstration of ultrasonic spatial light modulation in a turbid medium with an optical thickness of OT = 50 MFP when (a) ultrasound is off and (b) when ultrasound is on and the dipole beam pattern is shaped in the turbid medium at f = 853 kHz. The magnified (6X) image of the dipole pattern is shown in the inset. (c) The quadrupole pattern formed in the turbid medium when ultrasound is on at f = 833 kHz. e) The magnified (3X) image of the quadrupole pattern is shown in the inset. The normalized intensities at the cross section passing through y = 0 are shown for (d) dipole and (e) quadrupole beam patterns. Blue curve shows the signal and the red curve shows the average background (ultrasound off). (f) and (g) Extinction ratio (ER) vs. optical thickness of the turbid medium.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

P m,n ( r,φ,z )= J m ( k r m,n r ). ϕ m ( φ ). e i k z z ,
n( r,φ,t )= n 0 + n max J m ( k r r )cos( mφ )sin(ωt),
nρp.
f m,n = c s 2a α m,n ,
α m,n =n+ m 2 3 4 ;m<n1.
Dipole: k r 1,n × r 1 2 =x | J 1 ( x )=0 r 1 =2× 1.8412 k r 1,n r 1 = 1.8412 c s π f 1,n = 1.8412×2a π α 1,n ,
Quadrupole: k r 2,n × r 2 2 =x | J 2 ( x )=0 r 2 =2× 1.8412 k r 2,n r 2 = 3.0542 c s π f 2,n = 3.0542×2a π α 2,n ,

Metrics