Abstract

For hitless flexible coherent transceivers based next-generation agile optical network, efficient modulation format identification (MFI) is an essential element in digital signal processing (DSP) flow at the receiver-side (Rx). In this paper, we propose a blind and fast MFI scheme with high identification accuracy at low optical signal-to-noise ratio (OSNR) regime. This is achieved by first raising the signal to the 4th power and calculate the peak-to-average power ratio (PAPR) of the corresponding spectra to distinguish 32 quadrature amplitude modulation (QAM) from quadrature phase shift keying (QPSK), 16 and 64QAM signals. Then, followed by iterative partition schemes to remove signals with phase ±π4,±3π4 (or QPSK-like phases) based on the signal amplitudes, the PAPR of the remaining signals is calculated to distinguish the other three formats. Additionally, by frequency offset (FO) pre-compensation, the spectrum can be obtained using sparse-fast-Fourier-transform (S-FFT), which greatly reduces the total complexity. The MFI performance is numerically and experimentally investigated by 28 Gbaud dual-polarization (DP) coherent optical back-to-back (B2B) and up to 1500 km standard single mode fiber (SSMF) transmission system using QPSK, 16QAM, 32QAM, and 64QAM. Results show that high identification accuracy can be achieved, even when OSNR is lower than that required for the 20% forward error correction (FEC) threshold of BER=2×10-2 for each format. Furthermore, fast format switching between 64QAM-32QAM and 32QAM-16QAM are demonstrated experimentally for B2B scenario and 900 km SSMF with the proposed MFI technique, respectively.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modulation format identification enabled by the digital frequency-offset loading technique for hitless coherent transceiver

Songnian Fu, Zuying Xu, Jianing Lu, Hexun Jiang, Qiong Wu, Zhouyi Hu, Ming Tang, Deming Liu, and Calvin Chun-Kit Chan
Opt. Express 26(6) 7288-7296 (2018)

Modulation format identification aided hitless flexible coherent transceiver

Meng Xiang, Qunbi Zhuge, Meng Qiu, Xingyu Zhou, Fangyuan Zhang, Ming Tang, Deming Liu, Songnian Fu, and David V. Plant
Opt. Express 24(14) 15642-15655 (2016)

RF-pilot aided modulation format identification for hitless coherent transceiver

Meng Xiang, Qunbi Zhuge, Meng Qiu, Xinyu Zhou, Ming Tang, Deming Liu, Songnian Fu, and David V. Plant
Opt. Express 25(1) 463-471 (2017)

References

  • View by:
  • |
  • |
  • |

  1. V. N. I. Cisco, Forecast, “Cisco visual networking index: forecast and methodology 2013-2018” (Cisco, 2016). http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html .
  2. I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
    [Crossref]
  3. H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible optical networks: an energy efficiency perspective,” J. Lightwave Technol. 32(21), 3958 (2014).
    [Crossref]
  4. A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol. 28(4), 466–475 (2010).
    [Crossref]
  5. V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
    [Crossref]
  6. K. Roberts and C. Laperle, “Flexible transceivers,” in European Conference on Optical Communication2014(ECOC), paper We.3.A.3.
  7. M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, F. Zhang, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Modulation format identification aided hitless flexible coherent transceiver,” Opt. Express 24(14), 15642–15655 (2016).
    [Crossref] [PubMed]
  8. M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, M. Tang, D. Liu, S. Fu, and D. V. Plant, “RF-pilot aided modulation format identification for hitless coherent transceiver,” Opt. Express 25(1), 463–471 (2017).
    [Crossref] [PubMed]
  9. R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
    [Crossref] [PubMed]
  10. R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
    [Crossref]
  11. T. Bo, J. Tang, and C. C. K. Chan, “Modulation format recognition for optical signals using connected component analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
    [Crossref]
  12. F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
    [Crossref]
  13. J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
    [Crossref]
  14. G. Liu, R. Proietti, K. Zhang, H. Lu, and S. J. Ben Yoo, “Blind modulation format identification using nonlinear power transformation,” Opt. Express 25(25), 30895–30904 (2017).
    [Crossref] [PubMed]
  15. J. Lu, S. Fu, L. Deng, M. Tang, Z. Hu, D. Liu, and C. C. K. Chan, “Blind and Fast Modulation Format Identification by Frequency-offset Loading for Hitless Flexible Transceiver,” in The Optical Fiber Communication Conference and Exhibition2018(OFC), paper M2F.5. pp. 1–3.
  16. H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and Practical Algorithm for Sparse Fourier Transform,” ACM-SIAM Symposium on Discrete Algorithms (2012), p. 1183.
    [Crossref]
  17. H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, “Faster GPS via the Sparse Fourier Transform,” in Proceedings of the 18th Annual International Conference on Mobile Networking and Computing (2012), 6, p. 353.
    [Crossref]
  18. J. Lu, X. Li, S. Fu, M. Luo, M. Xiang, H. Zhou, M. Tang, and D. Liu, “Joint carrier phase and frequency-offset estimation with parallel implementation for dual-polarization coherent receiver,” Opt. Express 25(5), 5217–5231 (2017).
    [Crossref] [PubMed]
  19. F. Xiao, J. Lu, S. Fu, C. Xie, M. Tang, J. Tian, and D. Liu, “Feed-forward frequency offset estimation for 32-QAM optical coherent detection,” Opt. Express 25(8), 8828–8839 (2017).
    [Crossref] [PubMed]

2017 (6)

2016 (2)

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

M. Xiang, Q. Zhuge, M. Qiu, X. Zhou, F. Zhang, M. Tang, D. Liu, S. Fu, and D. V. Plant, “Modulation format identification aided hitless flexible coherent transceiver,” Opt. Express 24(14), 15642–15655 (2016).
[Crossref] [PubMed]

2015 (2)

V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

2014 (2)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible optical networks: an energy efficiency perspective,” J. Lightwave Technol. 32(21), 3958 (2014).
[Crossref]

2013 (1)

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

2010 (1)

Adib, F.

H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, “Faster GPS via the Sparse Fourier Transform,” in Proceedings of the 18th Annual International Conference on Mobile Networking and Computing (2012), 6, p. 353.
[Crossref]

Al-Arashi, W. H.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Arlunno, V.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Azodolmolky, S.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Ben Yoo, S. J.

Bo, T.

T. Bo, J. Tang, and C. C. K. Chan, “Modulation format recognition for optical signals using connected component analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
[Crossref]

Boada, R.

Borkowski, R.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Caballero, A.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Careglio, D.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Chan, C. C. K.

T. Bo, J. Tang, and C. C. K. Chan, “Modulation format recognition for optical signals using connected component analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
[Crossref]

Dong, Z.

J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
[Crossref]

Fu, S.

Guo, C.

J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
[Crossref]

Hassanieh, H.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and Practical Algorithm for Sparse Fourier Transform,” ACM-SIAM Symposium on Discrete Algorithms (2012), p. 1183.
[Crossref]

H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, “Faster GPS via the Sparse Fourier Transform,” in Proceedings of the 18th Annual International Conference on Mobile Networking and Computing (2012), 6, p. 353.
[Crossref]

Indyk, P.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and Practical Algorithm for Sparse Fourier Transform,” ACM-SIAM Symposium on Discrete Algorithms (2012), p. 1183.
[Crossref]

H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, “Faster GPS via the Sparse Fourier Transform,” in Proceedings of the 18th Annual International Conference on Mobile Networking and Computing (2012), 6, p. 353.
[Crossref]

Katabi, D.

H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, “Faster GPS via the Sparse Fourier Transform,” in Proceedings of the 18th Annual International Conference on Mobile Networking and Computing (2012), 6, p. 353.
[Crossref]

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and Practical Algorithm for Sparse Fourier Transform,” ACM-SIAM Symposium on Discrete Algorithms (2012), p. 1183.
[Crossref]

Khan, F. N.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Khodakarami, H.

H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible optical networks: an energy efficiency perspective,” J. Lightwave Technol. 32(21), 3958 (2014).
[Crossref]

Lau, A. P. T.

J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
[Crossref]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Li, X.

Liu, D.

Liu, G.

Liu, J.

J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
[Crossref]

Lu, C.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Lu, H.

Lu, J.

Lu, Y.

J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
[Crossref]

J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
[Crossref]

Luo, M.

Mello, D. A.

V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Monroy, I. T.

R. Boada, R. Borkowski, and I. T. Monroy, “Clustering algorithms for Stokes space modulation format recognition,” Opt. Express 23(12), 15521–15531 (2015).
[Crossref] [PubMed]

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

Mukherjee, B.

Nag, A.

Palkopoulou, E.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Pillai, B.

H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible optical networks: an energy efficiency perspective,” J. Lightwave Technol. 32(21), 3958 (2014).
[Crossref]

Plant, D. V.

Price, E.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and Practical Algorithm for Sparse Fourier Transform,” ACM-SIAM Symposium on Discrete Algorithms (2012), p. 1183.
[Crossref]

Proietti, R.

Qiu, M.

Rozental, V. N.

V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

Sedighi, B.

H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible optical networks: an energy efficiency perspective,” J. Lightwave Technol. 32(21), 3958 (2014).
[Crossref]

Shieh, W.

H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible optical networks: an energy efficiency perspective,” J. Lightwave Technol. 32(21), 3958 (2014).
[Crossref]

Sole-Pareta, J.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Tang, J.

T. Bo, J. Tang, and C. C. K. Chan, “Modulation format recognition for optical signals using connected component analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
[Crossref]

Tang, M.

Tian, J.

Tomkos, I.

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Tornatore, M.

Xiang, M.

Xiao, F.

Xie, C.

Yu, C.

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Zhang, F.

Zhang, K.

Zhong, K.

J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
[Crossref]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

Zhou, H.

Zhou, X.

Zhuge, Q.

Zibar, D.

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

IEEE Photonics J. (1)

V. N. Rozental and D. A. Mello, “Hitless rate switching for dynamically reconfigurable optical systems,” IEEE Photonics J. 7(2), 1–9 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (3)

R. Borkowski, D. Zibar, A. Caballero, V. Arlunno, and I. T. Monroy, “Stokes space-based optical modulation format recognition for digital coherent receivers,” IEEE Photonics Technol. Lett. 25(21), 2129–2132 (2013).
[Crossref]

T. Bo, J. Tang, and C. C. K. Chan, “Modulation format recognition for optical signals using connected component analysis,” IEEE Photonics Technol. Lett. 29(1), 11–14 (2017).
[Crossref]

F. N. Khan, K. Zhong, W. H. Al-Arashi, C. Yu, C. Lu, and A. P. T. Lau, “Modulation format identification in coherent receivers using deep machine learning,” IEEE Photonics Technol. Lett. 28(17), 1886–1889 (2016).
[Crossref]

J. Lightwave Technol. (2)

A. Nag, M. Tornatore, and B. Mukherjee, “Optical network design with mixed line rates and multiple modulation formats,” J. Lightwave Technol. 28(4), 466–475 (2010).
[Crossref]

H. Khodakarami, B. Pillai, B. Sedighi, and W. Shieh, “Flexible optical networks: an energy efficiency perspective,” J. Lightwave Technol. 32(21), 3958 (2014).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (1)

J. Liu, K. Zhong, Z. Dong, C. Guo, A. P. T. Lau, Y. Lu, and Y. Lu, “Signal power distribution based modulation format identification for coherent optical receivers,” Opt. Fiber Technol. 36, 75–81 (2017).
[Crossref]

Proc. IEEE (1)

I. Tomkos, S. Azodolmolky, J. Sole-Pareta, D. Careglio, and E. Palkopoulou, “A tutorial on the flexible optical networking paradigm: state of the art, trends, and research challenges,” Proc. IEEE 102(9), 1317–1337 (2014).
[Crossref]

Other (5)

V. N. I. Cisco, Forecast, “Cisco visual networking index: forecast and methodology 2013-2018” (Cisco, 2016). http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generation-network/white_paper_c11-481360.html .

K. Roberts and C. Laperle, “Flexible transceivers,” in European Conference on Optical Communication2014(ECOC), paper We.3.A.3.

J. Lu, S. Fu, L. Deng, M. Tang, Z. Hu, D. Liu, and C. C. K. Chan, “Blind and Fast Modulation Format Identification by Frequency-offset Loading for Hitless Flexible Transceiver,” in The Optical Fiber Communication Conference and Exhibition2018(OFC), paper M2F.5. pp. 1–3.

H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and Practical Algorithm for Sparse Fourier Transform,” ACM-SIAM Symposium on Discrete Algorithms (2012), p. 1183.
[Crossref]

H. Hassanieh, F. Adib, D. Katabi, and P. Indyk, “Faster GPS via the Sparse Fourier Transform,” in Proceedings of the 18th Annual International Conference on Mobile Networking and Computing (2012), 6, p. 353.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Constellations of (a) QPSK, (b) 16QAM, (c) 32QAM, (d) 64QAM.
Fig. 2
Fig. 2 4th power spectra of (a) QPSK, (b) 16QAM (c) 32QAM and (d) 64QAM. OSNR is 19.3 dB with the 0.1 nm resolution. The symbol rate is 28 Gbuad. The FO is 1.4 GHz.
Fig. 3
Fig. 3 (a) PAPR of the 4th power spectra for QPSK, 16, 32 and 64QAM. The FFT size is 512. (b) PAPR of 4th power spectra for QPSK, 16 and 64QAM, with the partition scheme I. The inserted figures are the 4th power spectra with OSNR of 21.9 dB. The FFT size is 256. (c) PAPR of the 4th power spectra for QPSK and 16QAM, with the partition scheme II. The inserted figures are the 4th power spectra with OSNR of 16.2 dB. The FFT size is 512.
Fig. 4
Fig. 4 Decision flow chart of the proposed MFI.
Fig. 5
Fig. 5 Schematic of time domain aliasing and frequency domain subsampling.
Fig. 6
Fig. 6 (a) Spectra for 4th power of QPSK signals without partition, (b) Spectra of the signal in (a) with FO compensation and partition scheme II. Spectra obtained by S-FFT with the subsampling rate p of (c) 4, (d) 16, (e) 64, (f) 256. FFT size is 512. OSNR is 16.2 dB
Fig. 7
Fig. 7 (a) Correct identification probability of DP-32QAM, (b)-(d) the false alarm probability of DP-QPSK, DP-16QAM, and DP-64QAM, respectively, without partition scheme.
Fig. 8
Fig. 8 (a) Correct identification probability of DP-64QAM, (b)-(c) the false alarm probability of DP-QPSK, and DP-16QAM, respectively, with the partition scheme I.
Fig. 9
Fig. 9 (a) Correct identification probability of DP-16QAM, (b) the false alarm probability of DP-QPSK, with the partition scheme II.
Fig. 10
Fig. 10 Correct identification probability of (a) DP-QPSK, (b) DP-16QAM, (c) DP- 32QAM, and (d) DP-64QAM, with different subsampling rate p.
Fig. 11
Fig. 11 (a) Experimental setup of hitless coherent transceiver, the offline DSP at the (b) Tx and (c) Rx. (d) measured B2B performance. (AOM: acousto-optic modulator, PBC: polarization beam combiner, PBS: polarization beam splitter, PC: polarization controller.)
Fig. 12
Fig. 12 Correct probability of MFIs versus OSNR under the scenario of B2B transmission. (a) DP-QPSK, (b) DP-16QAM, (c) DP-32QAM, and (d) DP-64QAM.
Fig. 13
Fig. 13 Correct probability of MFIs versus SSMF transmission length. (a) DP-QPSK, (b) DP-16QAM, (c) DP-32QAM, and (d) DP-64QAM.
Fig. 14
Fig. 14 BER and SNR versus block index for interleaved (a) DP-16QAM and DP-32QAM over 900 km SSMF transmission, (b) DP-32QAM and DP-64QAM under B2B transmission.

Tables (1)

Tables Icon

Table 1 Complexity comparison of proposed MFI

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r(n)=m(n)exp(j(ΔωnT+θ(n)))+v(n),n=0,1,2,
Δ f ^ = 1 4 1 TN arg max k,| k |N/2 | R 4 (f) |= 1 4 1 TN arg max k,| k |N/2 | n=0 N1 r 4 (n) e j 2πnk N |
PAPR= max k | R 4 (f) | ( k=0 N1 | R 4 (f) | max k | R 4 (f) | )/ ( N1 )

Metrics