Abstract

A novel approach to realizing an optoelectronic oscillator (OEO) based on an integrated multi-section (IMS) distributed feedback (DFB) laser is proposed and experimentally demonstrated. Our scheme adopts the method of direct modulation and a built-in microwave photonic filter (MPF), making the structure simpler and more flexible than an external modulator and electrical bandpass filter (EBPF). The IMS-DFB laser, which can overcome the drawbacks of using discrete lasers, is the key device in the scheme. Further, the two DFB sections, which are fabricated by Reconstruction Equivalent Chirp (REC) technique, are injected mutually. The SSB phase noise of the generated signal at the frequency of 20.3 GHz is −115.3 dBc/Hz@10kHz and −92.9 dBc/Hz@1kHz. The sidemode suppression ratio (SMSR) is 60.94 dB, which is a 40 dB improvement over a single loop. Furthermore, we demonstrate that the phase noise improves about 8 dB at the frequency offset of 1 kHz, when employing 13 km and 5.4 km fibers as the dual loop. The simple and compact structure, which consists of an IMS-DFB laser with high wavelength controlling accuracy and low process requirement, is a promising development for OEO integration.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection

Peng Wang, Jintian Xiong, Tingting Zhang, Dalei Chen, Peng Xiang, Jilin Zheng, Yunshan Zhang, Ruoming Li, Long Huang, Tao Pu, and Xiangfei Chen
Opt. Express 23(16) 20450-20458 (2015)

An optically tunable wideband optoelectronic oscillator based on a bandpass microwave photonic filter

Fan Jiang, Jia Haur Wong, Huy Quoc Lam, Junqiang Zhou, Sheel Aditya, Peng Huei Lim, Kenneth Eng Kian Lee, Perry Ping Shum, and Xinliang Zhang
Opt. Express 21(14) 16381-16389 (2013)

Wideband frequency-tunable optoelectronic oscillator with a directly modulated AlGaInAs/InP integrated twin-square microlaser

Jun-Yuan Han, Yong-Tao Huang, You-Zeng Hao, Min Tang, Fu-Li Wang, Jin-Long Xiao, Yue-De Yang, and Yong-Zhen Huang
Opt. Express 26(24) 31784-31793 (2018)

References

  • View by:
  • |
  • |
  • |

  1. X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
    [Crossref]
  2. S. Huang, M. Tu, X. S. Yao, and L. Maleki, “ A ‘turnkey’ optoelectronic oscillator with low acceleration sensitivity,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2000), pp. 269–279.
    [Crossref]
  3. D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580–583.
    [Crossref]
  4. T. Sakamoto, T. Kawanishi, S. Shinada, and M. Izutsu, “Optoelectronic oscillator using LiNbO3 intensity modulator with resonant electrode,” IEEE Electron. Lett. 41(12), 716–718 (2005).
    [Crossref]
  5. X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
    [Crossref]
  6. W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
    [Crossref]
  7. N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2004), pp. 219–223.
  8. D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based opto-electronic oscillator,” in Proceedings of the International Microwave Symposium Digest, (IEEE, 2003), pp. 2185–2187.
    [Crossref]
  9. J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
    [Crossref] [PubMed]
  10. H. L. T. Lee, R. J. Ram, O. Kjebon, and R. Schatz, “Bandwidth enhancement and chirp reduction in DBR lasers by strong optical injection,” in Conference on Lasers and Electro-Optics, (OSA, 2000), paper CMS4.
    [Crossref]
  11. H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
    [Crossref]
  12. S. Pan and J. Yao, “Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection,” Opt. Lett. 35(11), 1911–1913 (2010).
    [Crossref] [PubMed]
  13. P. Wang, J. Xiong, T. Zhang, D. Chen, P. Xiang, J. Zheng, Y. Zhang, R. Li, L. Huang, T. Pu, and X. Chen, “Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection,” Opt. Express 23(16), 20450–20458 (2015).
    [Crossref] [PubMed]
  14. P. Zhou, F. Zhang, D. Zhang, and S. Pan, “Performance enhancement of an optically-injected-semiconductor-laser-based optoelectronic oscillator by subharmonic microwave modulation,” Opt. Lett. 43(21), 5439–5442 (2018).
    [Crossref] [PubMed]
  15. G. Chen, D. Lu, S. Liang, L. Guo, W. Zhao, and L. Zhao, “Synchronized narrow linewidth laser and high quality microwave signal generation using optically mutual-injection-locked DFB lasers with optoelectronic feedback,” in Conference on Lasers and Electro-Optics, (OSA, 2018), paper SW4Q.6.
    [Crossref]
  16. J. Cho and H. Sung, “Simple optoelectronic oscillators using direct modulation of dual-section distributed-feedback lasers,” IEEE Photonics Technol. Lett. 24(23), 2172–2174 (2012).
    [Crossref]
  17. B. Pan, D. Lu, L. Zhang, and L. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
    [Crossref]
  18. J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
    [Crossref]
  19. Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
    [Crossref] [PubMed]
  20. J. Li, T. Pu, J. Zheng, Y. Zhang, Y. Shi, H. Zhu, Y. Li, X. Zhang, G. Zhao, Y. Zhou, and X. Chen, “Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser,” Opt. Express 26(8), 9676–9685 (2018).
    [Crossref] [PubMed]
  21. Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
    [Crossref] [PubMed]
  22. Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
    [PubMed]
  23. J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
    [Crossref]
  24. T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
    [Crossref] [PubMed]
  25. X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
    [Crossref]
  26. W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
    [Crossref]
  27. J. Yang, Y. Jin-Long, W. Yao-Tian, Z. Li-Tai, and Y. En-Ze, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
    [Crossref]

2018 (2)

2017 (2)

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

2015 (2)

2014 (1)

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

2013 (2)

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

J. Cho and H. Sung, “Simple optoelectronic oscillators using direct modulation of dual-section distributed-feedback lasers,” IEEE Photonics Technol. Lett. 24(23), 2172–2174 (2012).
[Crossref]

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

2010 (1)

2009 (1)

H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

2007 (1)

J. Yang, Y. Jin-Long, W. Yao-Tian, Z. Li-Tai, and Y. En-Ze, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

2005 (2)

T. Sakamoto, T. Kawanishi, S. Shinada, and M. Izutsu, “Optoelectronic oscillator using LiNbO3 intensity modulator with resonant electrode,” IEEE Electron. Lett. 41(12), 716–718 (2005).
[Crossref]

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[Crossref]

2000 (1)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

1996 (2)

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

1995 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Blasche, G.

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[Crossref]

Cahill, J.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

Cater, G.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

Chang-Hasnain, C. J.

H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Chen, D.

Chen, X.

J. Li, T. Pu, J. Zheng, Y. Zhang, Y. Shi, H. Zhu, Y. Li, X. Zhang, G. Zhao, Y. Zhou, and X. Chen, “Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser,” Opt. Express 26(8), 9676–9685 (2018).
[Crossref] [PubMed]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

P. Wang, J. Xiong, T. Zhang, D. Chen, P. Xiang, J. Zheng, Y. Zhang, R. Li, L. Huang, T. Pu, and X. Chen, “Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection,” Opt. Express 23(16), 20450–20458 (2015).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

Cho, J.

J. Cho and H. Sung, “Simple optoelectronic oscillators using direct modulation of dual-section distributed-feedback lasers,” IEEE Photonics Technol. Lett. 24(23), 2172–2174 (2012).
[Crossref]

Clayton, C. M.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Docherty, A.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

Du, Y.

Eliyahu, D.

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based opto-electronic oscillator,” in Proceedings of the International Microwave Symposium Digest, (IEEE, 2003), pp. 2185–2187.
[Crossref]

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580–583.
[Crossref]

En-Ze, Y.

J. Yang, Y. Jin-Long, W. Yao-Tian, Z. Li-Tai, and Y. En-Ze, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Fang, T.

J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Feng, Y.

Gavrielides, A.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Horowitz, M.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

Hou, L.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Huang, L.

Huang, S.

S. Huang, M. Tu, X. S. Yao, and L. Maleki, “ A ‘turnkey’ optoelectronic oscillator with low acceleration sensitivity,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2000), pp. 269–279.
[Crossref]

Izutsu, M.

T. Sakamoto, T. Kawanishi, S. Shinada, and M. Izutsu, “Optoelectronic oscillator using LiNbO3 intensity modulator with resonant electrode,” IEEE Electron. Lett. 41(12), 716–718 (2005).
[Crossref]

Jin-Long, Y.

J. Yang, Y. Jin-Long, W. Yao-Tian, Z. Li-Tai, and Y. En-Ze, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Kamran, A.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580–583.
[Crossref]

Kawanishi, T.

T. Sakamoto, T. Kawanishi, S. Shinada, and M. Izutsu, “Optoelectronic oscillator using LiNbO3 intensity modulator with resonant electrode,” IEEE Electron. Lett. 41(12), 716–718 (2005).
[Crossref]

Kovanis, V.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Lau, E. K.

H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Levy, E.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

Li, J.

J. Li, T. Pu, J. Zheng, Y. Zhang, Y. Shi, H. Zhu, Y. Li, X. Zhang, G. Zhao, Y. Zhou, and X. Chen, “Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser,” Opt. Express 26(8), 9676–9685 (2018).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Li, L.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

Li, R.

Li, S.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

Li, Y.

Li-Tai, Z.

J. Yang, Y. Jin-Long, W. Yao-Tian, Z. Li-Tai, and Y. En-Ze, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Liu, J. M.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Liu, Y.

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Lu, D.

B. Pan, D. Lu, L. Zhang, and L. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Lu, J.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Lu, L.

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
[Crossref] [PubMed]

Maleki, L.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

S. Huang, M. Tu, X. S. Yao, and L. Maleki, “ A ‘turnkey’ optoelectronic oscillator with low acceleration sensitivity,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2000), pp. 269–279.
[Crossref]

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based opto-electronic oscillator,” in Proceedings of the International Microwave Symposium Digest, (IEEE, 2003), pp. 2185–2187.
[Crossref]

N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2004), pp. 219–223.

Marsh, J. H.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Menyuk, C.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

Okusaga, O.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

Pan, B.

B. Pan, D. Lu, L. Zhang, and L. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Pan, S.

Parekh, D.

H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Pu, T.

Qiu, B.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Sakamoto, T.

T. Sakamoto, T. Kawanishi, S. Shinada, and M. Izutsu, “Optoelectronic oscillator using LiNbO3 intensity modulator with resonant electrode,” IEEE Electron. Lett. 41(12), 716–718 (2005).
[Crossref]

Salik, E.

N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2004), pp. 219–223.

Sariri, K.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580–583.
[Crossref]

Shi, Y.

J. Li, T. Pu, J. Zheng, Y. Zhang, Y. Shi, H. Zhu, Y. Li, X. Zhang, G. Zhao, Y. Zhou, and X. Chen, “Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser,” Opt. Express 26(8), 9676–9685 (2018).
[Crossref] [PubMed]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

Shinada, S.

T. Sakamoto, T. Kawanishi, S. Shinada, and M. Izutsu, “Optoelectronic oscillator using LiNbO3 intensity modulator with resonant electrode,” IEEE Electron. Lett. 41(12), 716–718 (2005).
[Crossref]

Simpson, T. B.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Sun, G.

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Sung, H.

J. Cho and H. Sung, “Simple optoelectronic oscillators using direct modulation of dual-section distributed-feedback lasers,” IEEE Photonics Technol. Lett. 24(23), 2172–2174 (2012).
[Crossref]

Sung, H.-K.

H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Tang, S.

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Tokhmakhian, M.

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580–583.
[Crossref]

Tu, M.

S. Huang, M. Tu, X. S. Yao, and L. Maleki, “ A ‘turnkey’ optoelectronic oscillator with low acceleration sensitivity,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2000), pp. 269–279.
[Crossref]

Wang, P.

Wang, R.

J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
[Crossref] [PubMed]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Wei, Z.

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

Wu, M. C.

H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Xiang, P.

Xiong, J.

Yang, J.

J. Yang, Y. Jin-Long, W. Yao-Tian, Z. Li-Tai, and Y. En-Ze, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Yao, J.

Yao, X. S.

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic microwave oscillator,” J. Opt. Soc. Am. B 13(8), 1725–1735 (1996).
[Crossref]

S. Huang, M. Tu, X. S. Yao, and L. Maleki, “ A ‘turnkey’ optoelectronic oscillator with low acceleration sensitivity,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2000), pp. 269–279.
[Crossref]

Yao-Tian, W.

J. Yang, Y. Jin-Long, W. Yao-Tian, Z. Li-Tai, and Y. En-Ze, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

Yu, N.

N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2004), pp. 219–223.

Zhang, D.

Zhang, F.

Zhang, L.

B. Pan, D. Lu, L. Zhang, and L. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Zhang, T.

P. Wang, J. Xiong, T. Zhang, D. Chen, P. Xiang, J. Zheng, Y. Zhang, R. Li, L. Huang, T. Pu, and X. Chen, “Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection,” Opt. Express 23(16), 20450–20458 (2015).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Zhang, X.

J. Li, T. Pu, J. Zheng, Y. Zhang, Y. Shi, H. Zhu, Y. Li, X. Zhang, G. Zhao, Y. Zhou, and X. Chen, “Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser,” Opt. Express 26(8), 9676–9685 (2018).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Zhang, Y.

Zhang, Z.

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Zhao, G.

Zhao, J.

Zhao, L.

B. Pan, D. Lu, L. Zhang, and L. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

Zhao, X.

H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

Zheng, J.

J. Li, T. Pu, J. Zheng, Y. Zhang, Y. Shi, H. Zhu, Y. Li, X. Zhang, G. Zhao, Y. Zhou, and X. Chen, “Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser,” Opt. Express 26(8), 9676–9685 (2018).
[Crossref] [PubMed]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

P. Wang, J. Xiong, T. Zhang, D. Chen, P. Xiang, J. Zheng, Y. Zhang, R. Li, L. Huang, T. Pu, and X. Chen, “Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection,” Opt. Express 23(16), 20450–20458 (2015).
[Crossref] [PubMed]

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

J. Xiong, R. Wang, T. Fang, T. Pu, D. Chen, L. Lu, P. Xiang, J. Zheng, and J. Zhao, “Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser,” Opt. Lett. 38(20), 4128–4130 (2013).
[Crossref] [PubMed]

Zhou, P.

Zhou, W.

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[Crossref]

Zhou, Y.

J. Li, T. Pu, J. Zheng, Y. Zhang, Y. Shi, H. Zhu, Y. Li, X. Zhang, G. Zhao, Y. Zhou, and X. Chen, “Photonic generation of linearly chirped microwave waveforms using a monolithic integrated three-section laser,” Opt. Express 26(8), 9676–9685 (2018).
[Crossref] [PubMed]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Zhang, L. Li, Y. Zhou, G. Zhao, Y. Shi, J. Zheng, Z. Zhang, Y. Liu, L. Zou, Y. Zhou, Y. Du, and X. Chen, “Modulation properties enhancement in a monolithic integrated two-section DFB laser utilizing side-mode injection locking method,” Opt. Express 25(22), 27595–27608 (2017).
[Crossref] [PubMed]

Y. Shi, X. Chen, Y. Zhou, S. Li, L. Li, and Y. Feng, “Experimental demonstration of the three phase shifted DFB semiconductor laser based on Reconstruction-Equivalent-Chirp technique,” Opt. Express 20(16), 17374–17379 (2012).
[Crossref] [PubMed]

Zhu, H.

Zou, L.

IEEE Electron. Lett. (1)

T. Sakamoto, T. Kawanishi, S. Shinada, and M. Izutsu, “Optoelectronic oscillator using LiNbO3 intensity modulator with resonant electrode,” IEEE Electron. Lett. 41(12), 716–718 (2005).
[Crossref]

IEEE J. Quantum Electron. (2)

X. S. Yao and L. Maleki, “Multiloop optoelectronic oscillator,” IEEE J. Quantum Electron. 36(1), 79–84 (2000).
[Crossref]

X. S. Yao and L. Maleki, “Optoelectronic oscillator for photonic systems,” IEEE J. Quantum Electron. 32(7), 1141–1149 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H.-K. Sung, X. Zhao, E. K. Lau, D. Parekh, C. J. Chang-Hasnain, and M. C. Wu, “Optoelectronic oscillators using direct-modulated semiconductor lasers under strong optical injection,” IEEE J. Sel. Top. Quantum Electron. 15(3), 572–577 (2009).
[Crossref]

IEEE Photonics J. (2)

B. Pan, D. Lu, L. Zhang, and L. Zhao, “A widely tunable optoelectronic oscillator based on directly modulated dual-mode laser,” IEEE Photonics J. 7(6), 1–7 (2015).
[Crossref]

J. Zheng, G. Zhao, Y. Zhou, Z. Zhang, T. Pu, Y. Shi, Y. Zhang, Y. Liu, L. Li, J. Lu, X. Zhang, J. Li, Y. Zhou, and X. Chen, “Experimental demonstration of amplified feedback DFB laser with modulation bandwidth enhancement based on the Reconstruction Equivalent Chirp Technique,” IEEE Photonics J. 9(6), 1–8 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (3)

J. Xiong, R. Wang, T. Pu, L. Lu, T. Fang, Z. Wei, G. Sun, J. Zheng, and P. Xiang, “A novel approach to realizing SSB modulation with optimum optical carrier to sideband ratio,” IEEE Photonics Technol. Lett. 25(12), 1114–1117 (2013).
[Crossref]

J. Cho and H. Sung, “Simple optoelectronic oscillators using direct modulation of dual-section distributed-feedback lasers,” IEEE Photonics Technol. Lett. 24(23), 2172–2174 (2012).
[Crossref]

J. Yang, Y. Jin-Long, W. Yao-Tian, Z. Li-Tai, and Y. En-Ze, “An optical domain combined dual-loop optoelectronic oscillator,” IEEE Photonics Technol. Lett. 19(11), 807–809 (2007).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Zhou and G. Blasche, “Injection-locked dual opto-electronic oscillator with ultra-low phase noise and ultra-low spurious level,” IEEE Trans. Microw. Theory Tech. 53(3), 929–933 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. A (1)

T. B. Simpson, J. M. Liu, K. F. Huang, K. Tai, C. M. Clayton, A. Gavrielides, and V. Kovanis, “Cavity enhancement of resonant frequencies in semiconductor lasers subject to optical injection,” Phys. Rev. A 52(6), R4348–R4351 (1995).
[Crossref] [PubMed]

Proc. SPIE (1)

W. Zhou, O. Okusaga, E. Levy, J. Cahill, A. Docherty, C. Menyuk, G. Cater, and M. Horowitz, “Potentials and challenges for the optoelectronic oscillator,” Proc. SPIE 8255, 82551N (2012).
[Crossref]

Sci. Rep. (1)

Y. Shi, S. Li, X. Chen, L. Li, J. Li, T. Zhang, J. Zheng, Y. Zhang, S. Tang, L. Hou, J. H. Marsh, and B. Qiu, “High channel count and high precision channel spacing multi-wavelength laser array for future PICs,” Sci. Rep. 4(7377), 7377 (2014).
[PubMed]

Other (6)

G. Chen, D. Lu, S. Liang, L. Guo, W. Zhao, and L. Zhao, “Synchronized narrow linewidth laser and high quality microwave signal generation using optically mutual-injection-locked DFB lasers with optoelectronic feedback,” in Conference on Lasers and Electro-Optics, (OSA, 2018), paper SW4Q.6.
[Crossref]

H. L. T. Lee, R. J. Ram, O. Kjebon, and R. Schatz, “Bandwidth enhancement and chirp reduction in DBR lasers by strong optical injection,” in Conference on Lasers and Electro-Optics, (OSA, 2000), paper CMS4.
[Crossref]

S. Huang, M. Tu, X. S. Yao, and L. Maleki, “ A ‘turnkey’ optoelectronic oscillator with low acceleration sensitivity,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2000), pp. 269–279.
[Crossref]

D. Eliyahu, K. Sariri, A. Kamran, and M. Tokhmakhian, “Improving short and long term frequency stability of the opto-electronic oscillator,” in Proceedings of the International Frequency Control Symposium and PDA Exhibition (IEEE, 2002), pp. 580–583.
[Crossref]

N. Yu, E. Salik, and L. Maleki, “Photonic microwave oscillator using mode-locked laser as the high Q resonator,” in Proceedings of the International Frequency Control Symposium and Exhibition, (IEEE, 2004), pp. 219–223.

D. Eliyahu and L. Maleki, “Tunable, ultra-low phase noise YIG based opto-electronic oscillator,” in Proceedings of the International Microwave Symposium Digest, (IEEE, 2003), pp. 2185–2187.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram (a) of the proposed OEO based on the integrated multi-section laser (b) (OSA: optical spectrum analyzer, PC: polarization controller, PBS: polarization-beam splitter, PBC: polarization-beam coupler, PD: photodetector, EA: electrical amplifier, EC: electrical coupler, ESA: electrical spectrum analyzer).
Fig. 2
Fig. 2 Illustration of the IMS-DFB laser under mutual injection: (a) four cavity modes under different conditions: free-running rear laser mode fr and red-shift mode fr with a gain spectrum under injection, free-running front laser mode ff and red-shift mode ff under injection (b) optical signal of the modulated front section laser with the modulation frequency fm. (c) the red-shift front laser mode with amplified + 1st sidemode locking the red-shifted rear laser mode. (d) the frequency response of the front section laser under injection and no injection.
Fig. 3
Fig. 3 Optical spectrum of the integrated laser at different currents: black curve is the free-running mode of front section laser when IDC1 = 0 mA, IDC2 = 76 mA; the blue curve is free-running mode of rear section laser when IDC1 = 86 mA, IDC2 = 29 mA ; the red curve is spectrum of mutual injection when IDC1 = 86 mA, IDC2 = 76 mA.
Fig. 4
Fig. 4 The frequency response of the IMS-DFB laser: (a) no injection with IDC1 = 0 mA, IDC2 = 75 mA ; (b) under injection when adjusting IDC1 and IDC2 with the frequency of the oscillation peak varied from 16.9 GHz to 34.7 GHz. There exists a deep notch around 15 GHz which is caused by the package. (c) details of the MPF at 26.31 GHz. (d) bandwidth of the MPF at different frequencies.
Fig. 5
Fig. 5 Measured electrical spectrum of the generated 19.78 GHz beat signal. (a) single loop OEO, (b) dual-loop OEO. (Span, 2MHz; RBW, 10kHz). The inset is the long-term frequency stability that drifts 6.8 kHz in 20 min.
Fig. 6
Fig. 6 Microwave signals of different frequencies (a) electrical spectrum of the generated microwave signal at different frequencies (Span: 26 GHz, RBW: 10kHz, VBW: 100Hz), and the blue curve is the measured frequency response of EA2 (Mini-Circults ZX60-24-S + ). (b) measured output frequency as a function of IDC2 when IDC1 is fixed at 91 mA.
Fig. 7
Fig. 7 The corresponding optical spectrum of IMS-DFB laser when generating microwave signals at different frequencies.
Fig. 8
Fig. 8 (a) measured phase noise of the OEO at different frequencies. (b) phase noises at 1 kHz (red) and 10kHz (black) of the stabilized OEO for different frequencies.
Fig. 9
Fig. 9 Comparison of the SSB phase noise spectrum with different length of SMFs: black one is 2.9 km and 1.1 km, red one is 13 km and 5.4 km.

Metrics