Abstract

Recently, optical Skyrmion lattices (OSLs) have been realized in evanescent electromagnetic fields. OSLs possess topologically stable field configurations, which promise many optics and photonics applications. Here, we demonstrate that OSLs can serve as versatile structured optical near-fields to assist with studies of a variety of photonic modes in nanoparticles. We firstly show that OSL is capable of selectively exciting electric and magnetic multipole modes by placing a nanoparticle at different positions in the lattice. We then disclose that OSLs can efficiently excite some intriguing resonant modes, including toroidal and plasmonic dark modes, in dielectric or metal nanoparticles. Our results may enhance understanding of the interaction between OSLs and nanoparticles and find applications associated with precise control over resonant modes in nanostructures.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generalized Kerker effects in nanophotonics and meta-optics [Invited]

Wei Liu and Yuri S. Kivshar
Opt. Express 26(10) 13085-13105 (2018)

Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface

Andrey B. Evlyukhin, Carsten Reinhardt, Egor Evlyukhin, and Boris N. Chichkov
J. Opt. Soc. Am. B 30(10) 2589-2598 (2013)

Analysis of the phonon-polariton response of silicon carbide microparticles and nanoparticles by use of the boundary element method

Carsten Rockstuhl, Martin G. Salt, and Hans P. Herzig
J. Opt. Soc. Am. B 22(2) 481-487 (2005)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications. (Springer-Verlag, 2007).
  2. A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
    [Crossref] [PubMed]
  3. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 045404 (2010).
    [Crossref]
  4. J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
    [Crossref] [PubMed]
  5. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19(6), 4815–4826 (2011).
    [Crossref] [PubMed]
  6. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  7. K. Ullah, L. Huang, M. Habib, and X. Liu, “Engineering the optical properties of dielectric nanospheres by resonant modes,” Nanotechnology 29(50), 505204 (2018).
    [Crossref] [PubMed]
  8. R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
    [Crossref] [PubMed]
  9. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  10. M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
    [Crossref]
  11. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  12. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
    [Crossref] [PubMed]
  13. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref] [PubMed]
  14. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
    [Crossref] [PubMed]
  15. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  16. A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
    [Crossref]
  17. E. Hutter and D. Maysinger, “Gold nanoparticles and quantum dots for bioimaging,” Microsc. Res. Tech. 74(7), 592–604 (2011).
    [Crossref] [PubMed]
  18. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [Crossref] [PubMed]
  19. T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Converg. 5(1), 1 (2018).
    [Crossref] [PubMed]
  20. Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
    [Crossref] [PubMed]
  21. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [Crossref] [PubMed]
  22. Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B Condens. Matter Mater. Phys. 78(15), 153111 (2008).
    [Crossref]
  23. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
    [Crossref] [PubMed]
  24. Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21(5), 6601–6608 (2013).
    [Crossref] [PubMed]
  25. Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
    [Crossref] [PubMed]
  26. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
    [Crossref]
  27. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
    [Crossref]
  28. T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B Condens. Matter Mater. Phys. 92(24), 241110 (2015).
    [Crossref]
  29. K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
    [Crossref] [PubMed]
  30. T. Das and J. A. Schuller, “Dark modes and field enhancements in dielectric dimers illuminated by cylindrical vector beams,” Phys. Rev. B 95(20), 201111 (2017).
    [Crossref]
  31. J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
    [Crossref] [PubMed]
  32. Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
    [Crossref] [PubMed]
  33. M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc. Rapid Publ. 13(1), 23 (2017).
    [Crossref]
  34. S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
    [Crossref] [PubMed]
  35. P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, B. A. Malomed, and F. K. Diakonos, “Skyrmion-like states in two- and three-dimensional dynamical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026603 (2007).
    [Crossref] [PubMed]
  36. U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442(7104), 797–801 (2006).
    [Crossref] [PubMed]
  37. S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
    [Crossref] [PubMed]
  38. E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
    [Crossref]
  39. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
    [Crossref] [PubMed]
  40. M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
    [Crossref] [PubMed]
  41. Z. Xi, L. Wei, A. J. Adam, and H. P. Urbach, “Broadband active tuning of unidirectional scattering from nanoantenna using combined radially and azimuthally polarized beams,” Opt. Lett. 41(1), 33–36 (2016).
    [Crossref] [PubMed]
  42. G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
    [Crossref]
  43. L. Novotny, B. Hecht, and O. Keller, Principles of Nano-Optics (Cambridge University, 2006).
  44. W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
    [Crossref]
  45. W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
    [Crossref] [PubMed]
  46. P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
    [Crossref]
  47. A. B. Evlyukhin, C. Reinhardt, E. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30(10), 2589–2598 (2013).
    [Crossref]
  48. A. Pors, S. K. Andersen, and S. I. Bozhevolnyi, “Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions,” Opt. Express 23(22), 28808–28828 (2015).
    [Crossref] [PubMed]
  49. Q. Zhang, J. J. Xiao, X. M. Zhang, D. Z. Han, and L. Gao, “Core-shell-structured dielectric-metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
    [Crossref]
  50. N. Talebi, S. R. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
    [Crossref]
  51. F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
    [Crossref] [PubMed]
  52. F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
    [Crossref] [PubMed]
  53. M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
    [Crossref]
  54. G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
    [Crossref] [PubMed]
  55. Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
    [Crossref]
  56. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter Mater. Phys. 6(12), 4370–4379 (1972).
    [Crossref]

2018 (9)

K. Ullah, L. Huang, M. Habib, and X. Liu, “Engineering the optical properties of dielectric nanospheres by resonant modes,” Nanotechnology 29(50), 505204 (2018).
[Crossref] [PubMed]

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Converg. 5(1), 1 (2018).
[Crossref] [PubMed]

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
[Crossref] [PubMed]

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
[Crossref] [PubMed]

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

N. Talebi, S. R. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
[Crossref] [PubMed]

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

2017 (3)

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc. Rapid Publ. 13(1), 23 (2017).
[Crossref]

T. Das and J. A. Schuller, “Dark modes and field enhancements in dielectric dimers illuminated by cylindrical vector beams,” Phys. Rev. B 95(20), 201111 (2017).
[Crossref]

2016 (3)

Z. Xi, L. Wei, A. J. Adam, and H. P. Urbach, “Broadband active tuning of unidirectional scattering from nanoantenna using combined radially and azimuthally polarized beams,” Opt. Lett. 41(1), 33–36 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

2015 (9)

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B Condens. Matter Mater. Phys. 92(24), 241110 (2015).
[Crossref]

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

A. Pors, S. K. Andersen, and S. I. Bozhevolnyi, “Unidirectional scattering by nanoparticles near substrates: generalized Kerker conditions,” Opt. Express 23(22), 28808–28828 (2015).
[Crossref] [PubMed]

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Z. Han, and L. Gao, “Core-shell-structured dielectric-metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
[Crossref]

2014 (3)

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

2013 (3)

2012 (7)

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (3)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 045404 (2010).
[Crossref]

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

2009 (1)

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

2008 (3)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B Condens. Matter Mater. Phys. 78(15), 153111 (2008).
[Crossref]

2007 (3)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, B. A. Malomed, and F. K. Diakonos, “Skyrmion-like states in two- and three-dimensional dynamical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026603 (2007).
[Crossref] [PubMed]

2006 (1)

U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442(7104), 797–801 (2006).
[Crossref] [PubMed]

2003 (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

1998 (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter Mater. Phys. 6(12), 4370–4379 (1972).
[Crossref]

Adam, A. J.

Aizpurua, J.

Andersen, S. K.

Artemyev, Y. A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Bakker, R. M.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Banzer, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Bao, Y.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bartal, G.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
[Crossref] [PubMed]

Baryshnikova, K. V.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Bauer, T.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Bautista, G.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Belitsch, M.

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

Belov, P. A.

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Binz, B.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

Bogdanov, A. N.

U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442(7104), 797–801 (2006).
[Crossref] [PubMed]

Boltasseva, A.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Böni, P.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

Bosch, S.

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

Brongersma, M. L.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B Condens. Matter Mater. Phys. 78(15), 153111 (2008).
[Crossref]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Cai, X.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Cai, Y.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Camacho-Morales, R.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Campion, A.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Carregal-Romero, S.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Carretero-González, R.

P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, B. A. Malomed, and F. K. Diakonos, “Skyrmion-like states in two- and three-dimensional dynamical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026603 (2007).
[Crossref] [PubMed]

Chantada, L.

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, E. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30(10), 2589–2598 (2013).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 045404 (2010).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter Mater. Phys. 6(12), 4370–4379 (1972).
[Crossref]

Cohen, K.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
[Crossref] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Das, T.

T. Das and J. A. Schuller, “Dark modes and field enhancements in dielectric dimers illuminated by cylindrical vector beams,” Phys. Rev. B 95(20), 201111 (2017).
[Crossref]

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B Condens. Matter Mater. Phys. 92(24), 241110 (2015).
[Crossref]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Decker, M.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

DeCrescent, R. A.

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B Condens. Matter Mater. Phys. 92(24), 241110 (2015).
[Crossref]

Diakonos, F. K.

P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, B. A. Malomed, and F. K. Diakonos, “Skyrmion-like states in two- and three-dimensional dynamical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026603 (2007).
[Crossref] [PubMed]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Ditlbacher, H.

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Evlyukhin, A. B.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, E. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30(10), 2589–2598 (2013).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 045404 (2010).
[Crossref]

Evlyukhin, E.

Fang, H.

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc. Rapid Publ. 13(1), 23 (2017).
[Crossref]

Fang, Z.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

Fedyanin, A. A.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Ferrari, A. C.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Frantzeskakis, D. J.

P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, B. A. Malomed, and F. K. Diakonos, “Skyrmion-like states in two- and three-dimensional dynamical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026603 (2007).
[Crossref] [PubMed]

Froufe-Pérez, L. S.

Gao, L.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Z. Han, and L. Gao, “Core-shell-structured dielectric-metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
[Crossref]

García-Etxarri, A.

Gašparic, M.

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

Georgii, R.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

Gjonaj, B.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
[Crossref] [PubMed]

Gómez-Medina, R.

Gonzaga, L.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Grange, R.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Gucciardi, P. G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Guo, S. R.

N. Talebi, S. R. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

Habib, M.

K. Ullah, L. Huang, M. Habib, and X. Liu, “Engineering the optical properties of dielectric nanospheres by resonant modes,” Nanotechnology 29(50), 505204 (2018).
[Crossref] [PubMed]

Halas, N. J.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Han, D. Z.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Z. Han, and L. Gao, “Core-shell-structured dielectric-metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
[Crossref]

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Hofer, F.

F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hohenau, A.

F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
[Crossref] [PubMed]

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hohenester, U.

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Hsieh, C. L.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Hu, H.

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Huang, L.

K. Ullah, L. Huang, M. Habib, and X. Liu, “Engineering the optical properties of dielectric nanospheres by resonant modes,” Nanotechnology 29(50), 505204 (2018).
[Crossref] [PubMed]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Hutter, E.

E. Hutter and D. Maysinger, “Gold nanoparticles and quantum dots for bioimaging,” Microsc. Res. Tech. 74(7), 592–604 (2011).
[Crossref] [PubMed]

Huttunen, M. J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Iyer, P. P.

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B Condens. Matter Mater. Phys. 92(24), 241110 (2015).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Jang, J.

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Converg. 5(1), 1 (2018).
[Crossref] [PubMed]

Jeong, H.

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Converg. 5(1), 1 (2018).
[Crossref] [PubMed]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter Mater. Phys. 6(12), 4370–4379 (1972).
[Crossref]

Jones, P. H.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Jonietz, F.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B Condens. Matter Mater. Phys. 78(15), 153111 (2008).
[Crossref]

Kambhampati, P.

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

Karabchevsky, A.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Kauranen, M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Kekatpure, R. D.

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B Condens. Matter Mater. Phys. 78(15), 153111 (2008).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Kevrekidis, P. G.

P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, B. A. Malomed, and F. K. Diakonos, “Skyrmion-like states in two- and three-dimensional dynamical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026603 (2007).
[Crossref] [PubMed]

Kildishev, A. V.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Kivshar, Y.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Kivshar, Y. S.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kociak, M.

F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
[Crossref] [PubMed]

Kontio, J. M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Krasnok, A. E.

Krenn, J. R.

F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
[Crossref] [PubMed]

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Krug, M. K.

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Kruk, S. S.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Lamprianidis, A.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Lee, T.

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Converg. 5(1), 1 (2018).
[Crossref] [PubMed]

Lei, B.

Lei, D. Y.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
[Crossref] [PubMed]

Leuchs, G.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Li, M.

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc. Rapid Publ. 13(1), 23 (2017).
[Crossref]

Li, X.

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc. Rapid Publ. 13(1), 23 (2017).
[Crossref]

Lindner, N. H.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
[Crossref] [PubMed]

Liu, H.

Liu, W.

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

Liu, X.

K. Ullah, L. Huang, M. Habib, and X. Liu, “Engineering the optical properties of dielectric nanospheres by resonant modes,” Nanotechnology 29(50), 505204 (2018).
[Crossref] [PubMed]

López, C.

Losquin, A.

F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
[Crossref] [PubMed]

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 045404 (2010).
[Crossref]

Mäkitalo, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Malomed, B. A.

P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, B. A. Malomed, and F. K. Diakonos, “Skyrmion-like states in two- and three-dimensional dynamical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026603 (2007).
[Crossref] [PubMed]

Maragò, O. M.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Markovich, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Maysinger, D.

E. Hutter and D. Maysinger, “Gold nanoparticles and quantum dots for bioimaging,” Microsc. Res. Tech. 74(7), 592–604 (2011).
[Crossref] [PubMed]

Melik-Gaykazyan, E. V.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Miroshnichenko, A. E.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express 20(18), 20599–20604 (2012).
[Crossref] [PubMed]

Mühlbauer, S.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

Neshev, D. N.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Neubauer, A.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

Neugebauer, M.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Nieto-Vesperinas, M.

Nomura, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Ostrovsky, E.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
[Crossref] [PubMed]

Ouyang, X.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
[Crossref] [PubMed]

Paniagua-Domínguez, R.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Parak, W. J.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Permyakov, D.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Pfleiderer, C.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442(7104), 797–801 (2006).
[Crossref] [PubMed]

Pors, A.

Psaltis, D.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Pu, Y.

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

Rahmani, M.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, E. Evlyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30(10), 2589–2598 (2013).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 045404 (2010).
[Crossref]

Reisecker, M.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Rho, J.

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Converg. 5(1), 1 (2018).
[Crossref] [PubMed]

Rosch, A.

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

Rößler, U. K.

U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442(7104), 797–801 (2006).
[Crossref] [PubMed]

Rui, G.

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

Sachan, R.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Sáenz, J. J.

Sakai, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Samusev, A.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Sancho-Parramon, J.

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[Crossref] [PubMed]

Sasaki, K.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Schaffernak, G.

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Scheffold, F.

Schmidt, F. P.

F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Schuller, J. A.

T. Das and J. A. Schuller, “Dark modes and field enhancements in dielectric dimers illuminated by cylindrical vector beams,” Phys. Rev. B 95(20), 201111 (2017).
[Crossref]

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B Condens. Matter Mater. Phys. 92(24), 241110 (2015).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 045404 (2010).
[Crossref]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Shalin, A. S.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Simonen, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

Staude, I.

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Talebi, N.

N. Talebi, S. R. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

Tam, H. Y.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
[Crossref] [PubMed]

Taubner, T.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Terekhov, P. D.

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

Trügler, A.

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Tsesses, S.

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
[Crossref] [PubMed]

Ullah, K.

K. Ullah, L. Huang, M. Habib, and X. Liu, “Engineering the optical properties of dielectric nanospheres by resonant modes,” Nanotechnology 29(50), 505204 (2018).
[Crossref] [PubMed]

Urbach, H. P.

van Aken, P. A.

N. Talebi, S. R. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

Van Duyne, R. P.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Volpe, G.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Wang, N.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Wei, L.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B Condens. Matter Mater. Phys. 78(15), 153111 (2008).
[Crossref]

Wozniak, P.

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Xi, Z.

Xiao, J. J.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Z. Han, and L. Gao, “Core-shell-structured dielectric-metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
[Crossref]

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21(5), 6601–6608 (2013).
[Crossref] [PubMed]

Xu, L.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Yamamoto, T.

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Yao, Y.

Yu, X.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Yu, Y. F.

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

Yuan, X.

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc. Rapid Publ. 13(1), 23 (2017).
[Crossref]

Zangeneh Kamali, K.

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Zhan, Q.

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

Zhang, A. P.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
[Crossref] [PubMed]

Zhang, J.

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

W. Liu, J. Zhang, B. Lei, H. Hu, and A. E. Miroshnichenko, “Invisible nanowires with interfering electric and toroidal dipoles,” Opt. Lett. 40(10), 2293–2296 (2015).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
[Crossref] [PubMed]

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Z. Han, and L. Gao, “Core-shell-structured dielectric-metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
[Crossref]

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21(5), 6601–6608 (2013).
[Crossref] [PubMed]

Zhang, X. M.

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Z. Han, and L. Gao, “Core-shell-structured dielectric-metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
[Crossref]

Q. Zhang, J. J. Xiao, X. M. Zhang, Y. Yao, and H. Liu, “Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer,” Opt. Express 21(5), 6601–6608 (2013).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
[Crossref] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhu, X.

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

Zhu, Y.

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Zia, R.

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

ACS Nano (2)

Y. Zhang, Q. Zhang, X. Ouyang, D. Y. Lei, A. P. Zhang, and H. Y. Tam, “Ultrafast light-controlled growth of silver nanoparticles for direct plasmonic color printing,” ACS Nano 12(10), 9913–9921 (2018).
[Crossref] [PubMed]

J. Sancho-Parramon and S. Bosch, “Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams,” ACS Nano 6(9), 8415–8423 (2012).
[Crossref] [PubMed]

ACS Photonics (4)

E. V. Melik-Gaykazyan, S. S. Kruk, R. Camacho-Morales, L. Xu, M. Rahmani, K. Zangeneh Kamali, A. Lamprianidis, A. E. Miroshnichenko, A. A. Fedyanin, D. N. Neshev, and Y. S. Kivshar, “Selective third-harmonic generation by structured light in mie-resonant nanoparticles,” ACS Photonics 5(3), 728–733 (2018).
[Crossref]

Q. Zhang, J. J. Xiao, X. M. Zhang, D. Z. Han, and L. Gao, “Core-shell-structured dielectric-metal circular nanodisk antenna: gap plasmon assisted magnetic toroid-like cavity modes,” ACS Photonics 2(1), 60–65 (2015).
[Crossref]

F. P. Schmidt, A. Losquin, F. Hofer, A. Hohenau, J. R. Krenn, and M. Kociak, “How dark are radial breathing modes in plasmonic nanodisks?” ACS Photonics 5(3), 861–866 (2018).
[Crossref] [PubMed]

G. Schaffernak, M. K. Krug, M. Belitsch, M. Gašparić, H. Ditlbacher, U. Hohenester, J. R. Krenn, and A. Hohenau, “Plasmonic dispersion relations and intensity enhancement of metal-insulator-metal nanodisks,” ACS Photonics 5(12), 4823–4827 (2018).
[Crossref] [PubMed]

Adv. Quantum Technol. (1)

Q. Zhang, X. Cai, X. Yu, S. Carregal-Romero, W. J. Parak, R. Sachan, Y. Cai, N. Wang, Y. Zhu, and D. Y. Lei, “Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers,” Adv. Quantum Technol. 1(1), 1800016 (2018).
[Crossref]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 1(1), 601–626 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

M. K. Krug, M. Reisecker, A. Hohenau, H. Ditlbacher, A. Trügler, U. Hohenester, and J. R. Krenn, “Probing plasmonic breathing modes optically,” Appl. Phys. Lett. 105(17), 171103 (2014).
[Crossref]

Chem. Soc. Rev. (1)

A. Campion and P. Kambhampati, “Surface-enhanced Raman scattering,” Chem. Soc. Rev. 27(4), 241–250 (1998).
[Crossref]

J. Eur. Opt. Soc. Rapid Publ. (1)

M. Li, H. Fang, X. Li, and X. Yuan, “Exclusive and efficient excitation of plasmonic breathing modes of a metallic nanodisc with the radially polarized optical beams,” J. Eur. Opt. Soc. Rapid Publ. 13(1), 23 (2017).
[Crossref]

J. Opt. (1)

M. Decker and I. Staude, “Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics,” J. Opt. 18(10), 103001 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Laser Photonics Rev. (2)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

W. Liu, J. Zhang, and A. E. Miroshnichenko, “Toroidal dipole-induced transparency in core–shell nanoparticles,” Laser Photonics Rev. 9(5), 564–570 (2015).
[Crossref]

Microsc. Res. Tech. (1)

E. Hutter and D. Maysinger, “Gold nanoparticles and quantum dots for bioimaging,” Microsc. Res. Tech. 74(7), 592–604 (2011).
[Crossref] [PubMed]

Nano Converg. (1)

T. Lee, J. Jang, H. Jeong, and J. Rho, “Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications,” Nano Converg. 5(1), 1 (2018).
[Crossref] [PubMed]

Nano Lett. (5)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[Crossref] [PubMed]

R. M. Bakker, D. Permyakov, Y. F. Yu, D. Markovich, R. Paniagua-Domínguez, L. Gonzaga, A. Samusev, Y. Kivshar, B. Luk’yanchuk, and A. I. Kuznetsov, “Magnetic and electric hotspots with silicon nanodimers,” Nano Lett. 15(3), 2137–2142 (2015).
[Crossref] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett. 12(6), 3207–3212 (2012).
[Crossref] [PubMed]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

F. P. Schmidt, H. Ditlbacher, U. Hohenester, A. Hohenau, F. Hofer, and J. R. Krenn, “Dark plasmonic breathing modes in silver nanodisks,” Nano Lett. 12(11), 5780–5783 (2012).
[Crossref] [PubMed]

Nanophotonics (2)

G. Rui and Q. Zhan, “Trapping of resonant metallic nanoparticles with engineered vectorial optical field,” Nanophotonics 3(6), 351–361 (2014).
[Crossref]

N. Talebi, S. R. Guo, and P. A. van Aken, “Theory and applications of toroidal moments in electrodynamics: their emergence, characteristics, and technological relevance,” Nanophotonics 7(1), 93–110 (2018).
[Crossref]

Nanotechnology (1)

K. Ullah, L. Huang, M. Habib, and X. Liu, “Engineering the optical properties of dielectric nanospheres by resonant modes,” Nanotechnology 29(50), 505204 (2018).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013).
[Crossref] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics 6(11), 737–748 (2012).
[Crossref]

Nature (1)

U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, “Spontaneous skyrmion ground states in magnetic metals,” Nature 442(7104), 797–801 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

P. D. Terekhov, K. V. Baryshnikova, Y. A. Artemyev, A. Karabchevsky, A. S. Shalin, and A. B. Evlyukhin, “Multipolar response of nonspherical silicon nanoparticles in the visible and near-infrared spectral ranges,” Phys. Rev. B 96(3), 035443 (2017).
[Crossref]

T. Das and J. A. Schuller, “Dark modes and field enhancements in dielectric dimers illuminated by cylindrical vector beams,” Phys. Rev. B 95(20), 201111 (2017).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (4)

T. Das, P. P. Iyer, R. A. DeCrescent, and J. A. Schuller, “Beam engineering for selective and enhanced coupling to multipolar resonances,” Phys. Rev. B Condens. Matter Mater. Phys. 92(24), 241110 (2015).
[Crossref]

Y. C. Jun, R. D. Kekatpure, J. S. White, and M. L. Brongersma, “Nonresonant enhancement of spontaneous emission in metal-dielectric-metal plasmon waveguide structures,” Phys. Rev. B Condens. Matter Mater. Phys. 78(15), 153111 (2008).
[Crossref]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B Condens. Matter Mater. Phys. 82(4), 045404 (2010).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B Condens. Matter Mater. Phys. 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, B. A. Malomed, and F. K. Diakonos, “Skyrmion-like states in two- and three-dimensional dynamical lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(2), 026603 (2007).
[Crossref] [PubMed]

Phys. Rev. Lett. (3)

Y. Pu, R. Grange, C. L. Hsieh, and D. Psaltis, “Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation,” Phys. Rev. Lett. 104(20), 207402 (2010).
[Crossref] [PubMed]

J. A. Schuller, R. Zia, T. Taubner, and M. L. Brongersma, “Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles,” Phys. Rev. Lett. 99(10), 107401 (2007).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Sci. Rep. (2)

K. Sakai, K. Nomura, T. Yamamoto, and K. Sasaki, “Excitation of multipole plasmons by optical vortex beams,” Sci. Rep. 5(1), 8431 (2015).
[Crossref] [PubMed]

Y. Bao, X. Zhu, and Z. Fang, “Plasmonic toroidal dipolar response under radially polarized excitation,” Sci. Rep. 5(1), 11793 (2015).
[Crossref] [PubMed]

Science (4)

S. Tsesses, E. Ostrovsky, K. Cohen, B. Gjonaj, N. H. Lindner, and G. Bartal, “Optical skyrmion lattice in evanescent electromagnetic fields,” Science 361(6406), 993–996 (2018).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, “Optically resonant dielectric nanostructures,” Science 354(6314), aag2472 (2016).
[Crossref] [PubMed]

S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Böni, “Skyrmion lattice in a chiral magnet,” Science 323(5916), 915–919 (2009).
[Crossref] [PubMed]

Other (2)

L. Novotny, B. Hecht, and O. Keller, Principles of Nano-Optics (Cambridge University, 2006).

S. A. Maier, Plasmonics: Fundamentals and Applications. (Springer-Verlag, 2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Sketch of generating an OSL at the interface between a dielectric medium (refractive n 1 >1) and the air (refractive index n 2 =1) by interfering three pairs of counter-propagating evanescent waves (red arrows labeled w1~w6). (b) The pair of counter-propagating evanescent waves w1 and w2 (red arrows) is generated by two incident waves w 1 i and w 2 i (black arrows) coming from the dielectric side with the same incident angle and opposite in-plane propagating directions. The blue arrows represent the reflected waves w 1 r and w 2 r . (c) Vector decomposition of the in-plane ( xyplane) magnetic field components ( H ix ϕ and H iy ϕ ) of a TM polarized incident wave ( H i ϕ ). The in-plane propagating direction of the incident wave is determined by the azimuthal angleϕbetween the in-plane wave vector k and the +xaxis.
Fig. 2
Fig. 2 Field configuration of an electric-type OSL generated through total internal reflection at the glass-air interface with θ i =1.1 θ c at wavelength λ 0 =600nm. (a) Vector representation of the unit electric field vector e ^ at the xyplane. (b) Variation of the electric field along the lattice vector represented by the green arrow in lower-left inset. The left inset shows the amplitude distribution of the out-of plane electric field ( | E z |) in one unit cell and the right one shows that of the in-plane electric field | E |with the field vectors represented by the white arrows. (c) Vector representation of the unit magnetic field vector h ^ at the xyplane. (d) Magnetic field components in one unit cell along the lattice vector. Inset shows the amplitude distribution of the in-plane magnetic field | H |=| H x x ^ + H y y ^ |and field vectors (white arrows) of the magnetic field in one unit cell.
Fig. 3
Fig. 3 (a) Total and multipole decomposed SCS spectra of the Si nanosphere excited by a linearly polarized plane wave. Inset shows the excitation configuration. (b) Total SCS of the Si nanosphere excited by an electric-type OSL as a function of the wavelength and particle position along the lattice vector represented by the red arrow in the inset. (c) and (d) show the total and multipole decomposed SCS spectra of the Si nanosphere placed at the center ( s=0) and off-center ( s=0.3 p sky ) of the unit cell, respectively. Insets show the positions (red spots) of the particle center in the hexagonal unit cell.
Fig. 4
Fig. 4 Multipole decomposed SCS of the Si nanosphere excited by the electric-type OSL as a function of the wavelength and particle position. (a) The SCS of the ED as a function of the wavelength and particle position, (b) the SCS of the TD as a function of the wavelength and particle position, (c) the SCS of the MD as a function of the wavelength and particle position, and (d) the SCS of the MQ as a function of the wavelength and particle position.
Fig. 5
Fig. 5 (a) Total and multipole decomposed SCS spectra of the Si nanodisk excited by a linearly polarize plane wave. Inset shows the excitation configuration. (b) Total SCS of the Si nanodisk excited by an electric-type OSL as a function of the wavelength and particle position along the lattice vector represented by the red arrow in the inset. (c) and (d) show the total and multipole decomposed SCS spectra of the Si nanodisk when it is placed at the center ( s=0) and off-center ( s=0.3 p sky ) of the unit cell, respectively. The bottom inset in (c) shows the magnetic field distribution of the pure TD at 575 nm, which is strongly confined in the disk region (enclosed by the green-dashed line) with a vortex pattern (white arrows for field vectors).
Fig. 6
Fig. 6 (a) EELS spectrum of a silver nanodisk excited by an electron beam penetrating the disk through the center. The lower inset shows the excitation configuration. The upper inset shows the snapshot of the surface charge distribution of the fundamental plasmonic breathing mode. (b) Total and multipole decomposed SCS spectra of the silver nanodisk placed at the center ( s=0, see upper-right inset) of the unit cell of the electric-type OSL. (c) EELS spectrum of a gold nanorod homodimer excited by an electron beam passing through the center of the dimer gap as shown by the lower inset. (d) SCS spectra of the gold nanorod dimer placed at the center ( s=0, see lower-right inset) of the unit cell of the electric-type OSL. Surface charge distributions of the plasmon modes are shown by the insets close to the respect scattering peaks.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

( H ix ϕ (ω) H iy ϕ (ω) )=( sin(ϕ) e j k z1 z H 0 e j( k x ϕ x+ k y ϕ y) cos(ϕ) e j k z1 z H 0 e j( k x ϕ x+ k y ϕ y) ),
( E x (ω) E y (ω) E z (ω) )= E t e | k z2 |z ( | k z2 | k ϕ= π 3 ,0, π 3 cos(ϕ)sin( k [cos(ϕ)x+sin(ϕ)y]) | k z2 | k ϕ= π 3 ,0, π 3 sin(ϕ)sin( k [cos(ϕ)x+sin(ϕ)y]) ϕ= π 3 ,0, π 3 cos( k [cos(ϕ)x+sin(ϕ)y] ) ),
N sk = 1 4π A e ^ ( e ^ x × e ^ y )da,
P= 1 jω J( r ) d 3 r ,
M= 1 2c r ×J( r ) d 3 r ,
T= 1 10c [ [ r J( r )] r 2 r 2 J( r ) ] d 3 r ,
Q ^ e = 1 iω [ r J( r )+J( r ) r 2 3 I ^ [rJ( r )] ] d 3 r ,
Q ^ m = 1 3c [ r ×J( r )] r + r [ r ×J( r )] d 3 r ,
Γ EELS (ω)= e πω dzRe[ E z ind (ω,z)exp(iωz/v )] ,

Metrics