Abstract

Structuring metal surfaces on the nanoscale has been shown to alter their fundamental processes like reflection or absorption by supporting surface plasmon resonances. Here, we propose metal films with subwavelength rectangular nanostructuring that perfectly absorb the incident radiation in the optical regime. The structures are fabricated with low-cost nanoimprint lithography and thus constitute an appealing alternative to elaborate absorber designs with complex meta-atoms or multilayer structuring. We conduct a thorough numerical analysis to gain physical insight on how the key structural parameters affect the optical response and identify the designs leading to broad spectral and angular bandwidths, both of which are highly desirable in practical absorber applications. Subsequently, we fabricate and measure the structures with an FT-IR spectrometer demonstrating very good agreement with theory. Finally, we assess the performance of the proposed structures as sensing devices by quantifying the dependence of the absorption peak frequency position on the superstrate material.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoimprinted plasmonic nanocavity arrays

Sangsik Kim, Yi Xuan, Vladimir P. Drachev, Leo T. Varghese, Li Fan, Minghao Qi, and Kevin J. Webb
Opt. Express 21(13) 15081-15089 (2013)

Cost-effective near-perfect absorber at visible frequency based on homogenous meta-surface nickel with two-dimension cylinder array

Yun Zhou, Minghui Luo, Su Shen, Heng Zhang, Donglin Pu, and Linsen Chen
Opt. Express 26(21) 27482-27491 (2018)

Controlled angular redirection of light via nanoimprinted disordered gratings

Thomas Buß, Jérémie Teisseire, Simon Mazoyer, Cameron L. C. Smith, Morten Bo Mikkelsen, Anders Kristensen, and Elin Søndergård
Appl. Opt. 52(4) 709-716 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  4. O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(9), 093109 (2009).
    [Crossref]
  5. A. V. Krasavin and N. I. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
    [Crossref]
  6. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
    [Crossref]
  7. V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).
  8. M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
    [Crossref]
  9. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
    [Crossref] [PubMed]
  10. S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
    [Crossref]
  11. S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250(4-6), 328–333 (2005).
    [Crossref]
  12. A. Boltasseva, S. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005).
    [Crossref] [PubMed]
  13. D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
    [Crossref]
  14. T. Christopoulos, G. Sinatkas, O. Tsilipakos, and E. E. Kriezis, “Bistable action with hybrid plasmonic Bragg-grating resonators,” Opt. Quantum Electron. 48(2), 128 (2016).
    [Crossref]
  15. I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B Condens. Matter Mater. Phys. 86(20), 205122 (2012).
    [Crossref]
  16. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
    [Crossref] [PubMed]
  17. X. Sun, X. Shu, and C. Chen, “Grating surface plasmon resonance sensor: angular sensitivity, metal oxidization effect of Al-based device in optimal structure,” Appl. Opt. 54(6), 1548–1554 (2015).
    [Crossref] [PubMed]
  18. Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, “Independent light-trapping cavity for ultra-sensitive plasmonic sensing,” Appl. Phys. Lett. 105(6), 061112 (2014).
    [Crossref]
  19. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  20. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
    [Crossref] [PubMed]
  21. G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
    [Crossref]
  22. D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
    [Crossref]
  23. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  24. K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
    [Crossref] [PubMed]
  25. K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
    [Crossref]
  26. G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
    [Crossref]
  27. S. A. Tretyakov and S. I. Maslovski, “Thin absorbing structure for all incidence angles based on the use of a high-impedance surface,” Microw. Opt. Technol. Lett. 38(3), 175–178 (2003).
    [Crossref]
  28. H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
    [Crossref]
  29. M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
    [Crossref]
  30. A. N. Papadimopoulos, N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, “Wide-angle absorption of visible light from simple bilayers,” Appl. Opt. 56(35), 9779–9786 (2017).
    [Crossref] [PubMed]
  31. I. R. Hooper and J. R. Sambles, “Some considerations on the transmissivity of thin metal films,” Opt. Express 16(22), 17249–17257 (2008).
    [Crossref] [PubMed]
  32. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155412 (2002).
    [Crossref]
  33. Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
    [Crossref]

2018 (2)

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
[Crossref]

2017 (3)

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

A. N. Papadimopoulos, N. V. Kantartzis, N. L. Tsitsas, and C. A. Valagiannopoulos, “Wide-angle absorption of visible light from simple bilayers,” Appl. Opt. 56(35), 9779–9786 (2017).
[Crossref] [PubMed]

2016 (2)

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

T. Christopoulos, G. Sinatkas, O. Tsilipakos, and E. E. Kriezis, “Bistable action with hybrid plasmonic Bragg-grating resonators,” Opt. Quantum Electron. 48(2), 128 (2016).
[Crossref]

2015 (3)

X. Sun, X. Shu, and C. Chen, “Grating surface plasmon resonance sensor: angular sensitivity, metal oxidization effect of Al-based device in optimal structure,” Appl. Opt. 54(6), 1548–1554 (2015).
[Crossref] [PubMed]

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

2014 (1)

Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, “Independent light-trapping cavity for ultra-sensitive plasmonic sensing,” Appl. Phys. Lett. 105(6), 061112 (2014).
[Crossref]

2013 (2)

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
[Crossref]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

2012 (2)

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B Condens. Matter Mater. Phys. 86(20), 205122 (2012).
[Crossref]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[Crossref] [PubMed]

2011 (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

2010 (1)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

2009 (1)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(9), 093109 (2009).
[Crossref]

2008 (3)

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

I. R. Hooper and J. R. Sambles, “Some considerations on the transmissivity of thin metal films,” Opt. Express 16(22), 17249–17257 (2008).
[Crossref] [PubMed]

2006 (1)

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

2005 (4)

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[Crossref] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[Crossref]

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250(4-6), 328–333 (2005).
[Crossref]

A. Boltasseva, S. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005).
[Crossref] [PubMed]

2004 (1)

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

S. A. Tretyakov and S. I. Maslovski, “Thin absorbing structure for all incidence angles based on the use of a high-impedance surface,” Microw. Opt. Technol. Lett. 38(3), 175–178 (2003).
[Crossref]

2002 (1)

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155412 (2002).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Arie, A.

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B Condens. Matter Mater. Phys. 86(20), 205122 (2012).
[Crossref]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[Crossref] [PubMed]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Bar-Lev, D.

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B Condens. Matter Mater. Phys. 86(20), 205122 (2012).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Baudrion, A.-L.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

Beccherelli, R.

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
[Crossref]

Berini, P.

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[Crossref]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[Crossref] [PubMed]

Bhattarai, K.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
[Crossref]

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250(4-6), 328–333 (2005).
[Crossref]

A. Boltasseva, S. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005).
[Crossref] [PubMed]

Bozhevolnyi, S.

Bozhevolnyi, S. I.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
[Crossref]

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250(4-6), 328–333 (2005).
[Crossref]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
[Crossref]

Capasso, F.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Charbonneau, R.

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[Crossref]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[Crossref] [PubMed]

Chen, C.

Christopoulos, T.

T. Christopoulos, G. Sinatkas, O. Tsilipakos, and E. E. Kriezis, “Bistable action with hybrid plasmonic Bragg-grating resonators,” Opt. Quantum Electron. 48(2), 128 (2016).
[Crossref]

Delaunay, J.-J.

Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, “Independent light-trapping cavity for ultra-sensitive plasmonic sensing,” Appl. Phys. Lett. 105(6), 061112 (2014).
[Crossref]

Dereux, A.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

Dolev, I.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[Crossref] [PubMed]

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B Condens. Matter Mater. Phys. 86(20), 205122 (2012).
[Crossref]

Ebbesen, T. W.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Economou, E. N.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Epstein, I.

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B Condens. Matter Mater. Phys. 86(20), 205122 (2012).
[Crossref]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Gajic, R.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

García-Vidal, F. J.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
[Crossref]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155412 (2002).
[Crossref]

González, M. U.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Ho, Y.-L.

Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, “Independent light-trapping cavity for ultra-sensitive plasmonic sensing,” Appl. Phys. Lett. 105(6), 061112 (2014).
[Crossref]

Hooper, I. R.

Huang, L.-C.

Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, “Independent light-trapping cavity for ultra-sensitive plasmonic sensing,” Appl. Phys. Lett. 105(6), 061112 (2014).
[Crossref]

Isic, G.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Jeon, J.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Jetté-Charbonneau, S.

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[Crossref] [PubMed]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[Crossref]

Kafesaki, M.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

Kantartzis, N. V.

Kats, M. A.

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Katsarakis, N.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

Kenanakis, G.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

Kim, J. O.

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Kim, S.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

Krasavin, A. V.

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Krenn, J. R.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

Kriezis, E. E.

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

T. Christopoulos, G. Sinatkas, O. Tsilipakos, and E. E. Kriezis, “Bistable action with hybrid plasmonic Bragg-grating resonators,” Opt. Quantum Electron. 48(2), 128 (2016).
[Crossref]

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(9), 093109 (2009).
[Crossref]

Ku, Z.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Lahoud, N.

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[Crossref]

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of Bragg gratings based on long-ranging surface plasmon polariton waveguides,” Opt. Express 13(12), 4674–4682 (2005).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lebrasseur, E.

Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, “Independent light-trapping cavity for ultra-sensitive plasmonic sensing,” Appl. Phys. Lett. 105(6), 061112 (2014).
[Crossref]

Lee, S. J.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Leosson, K.

A. Boltasseva, S. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250(4-6), 328–333 (2005).
[Crossref]

Liu, X.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Lotfi, E.

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

Martín-Moreno, L.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
[Crossref]

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155412 (2002).
[Crossref]

Maslovski, S. I.

S. A. Tretyakov and S. I. Maslovski, “Thin absorbing structure for all incidence angles based on the use of a high-impedance surface,” Microw. Opt. Technol. Lett. 38(3), 175–178 (2003).
[Crossref]

Mattiussi, G.

Mattiussi, G. A.

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[Crossref]

Mavidis, C. P.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

Mita, Y.

Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, “Independent light-trapping cavity for ultra-sensitive plasmonic sensing,” Appl. Phys. Lett. 105(6), 061112 (2014).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Nikolajsen, T.

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250(4-6), 328–333 (2005).
[Crossref]

A. Boltasseva, S. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005).
[Crossref] [PubMed]

Padilla, W. J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Papadimopoulos, A. N.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
[Crossref]

Rushton, J. J.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sambles, J. R.

Shahada, L. A.

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

Shu, X.

Sievenpiper, D. F.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

Silva, S.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Sinatkas, G.

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

T. Christopoulos, G. Sinatkas, O. Tsilipakos, and E. E. Kriezis, “Bistable action with hybrid plasmonic Bragg-grating resonators,” Opt. Quantum Electron. 48(2), 128 (2016).
[Crossref]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Søndergaard, T.

A. Boltasseva, S. Bozhevolnyi, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13(11), 4237–4243 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250(4-6), 328–333 (2005).
[Crossref]

Song, K.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

Soukoulis, C. M.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

Stepanov, A. L.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

Sun, X.

Swillam, M. A.

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

Tagay, Z.

Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
[Crossref]

Tretyakov, S. A.

S. A. Tretyakov and S. I. Maslovski, “Thin absorbing structure for all incidence angles based on the use of a high-impedance surface,” Microw. Opt. Technol. Lett. 38(3), 175–178 (2003).
[Crossref]

Tsilipakos, O.

T. Christopoulos, G. Sinatkas, O. Tsilipakos, and E. E. Kriezis, “Bistable action with hybrid plasmonic Bragg-grating resonators,” Opt. Quantum Electron. 48(2), 128 (2016).
[Crossref]

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(9), 093109 (2009).
[Crossref]

Tsitsas, N. L.

Urbas, A.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Valagiannopoulos, C.

Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
[Crossref]

Valagiannopoulos, C. A.

Vasic, B.

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Vasilaki, E.

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

Wakatsuchi, H.

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

Wang, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Weeber, J.-C.

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

Yioultsis, T. V.

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(9), 093109 (2009).
[Crossref]

Zheludev, N. I.

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

Zhou, J.

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Zhou, L.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zografopoulos, D. C.

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
[Crossref]

Adv. Opt. Mater. (1)

K. Bhattarai, Z. Ku, S. Silva, J. Jeon, J. O. Kim, S. J. Lee, A. Urbas, and J. Zhou, “A Large-Area, Mushroom-Capped Plasmonic Perfect Absorber: Refractive Index Sensing and Fabry-Perot Cavity Mechanism,” Adv. Opt. Mater. 3(12), 1779–1786 (2015).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

Y.-L. Ho, L.-C. Huang, E. Lebrasseur, Y. Mita, and J.-J. Delaunay, “Independent light-trapping cavity for ultra-sensitive plasmonic sensing,” Appl. Phys. Lett. 105(6), 061112 (2014).
[Crossref]

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: Controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84(8), 1416–1418 (2004).
[Crossref]

H. Wakatsuchi, S. Kim, J. J. Rushton, and D. F. Sievenpiper, “Circuit-based nonlinear metasurface absorbers for high power surface currents,” Appl. Phys. Lett. 102(21), 214103 (2013).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

G. Kenanakis, C. P. Mavidis, E. Vasilaki, N. Katsarakis, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Perfect absorbers based on metal-insulator-metal structures in the visible region: a simple approach for practical applications,” Appl. Phys., A Mater. Sci. Process. 123(1), 77 (2017).
[Crossref]

D. C. Zografopoulos, G. Sinatkas, E. Lotfi, L. A. Shahada, M. A. Swillam, E. E. Kriezis, and R. Beccherelli, “Amplitude modulation in infrared metamaterial absorbers based on electro-optically tunable conducting oxides,” Appl. Phys., A Mater. Sci. Process. 124(2), 105 (2018).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Jetté-Charbonneau, R. Charbonneau, N. Lahoud, G. A. Mattiussi, and P. Berini, “Bragg gratings based on long-range surface plasmon-polariton waveguides: comparison of theory and experiment,” IEEE J. Quantum Electron. 41(12), 1480–1491 (2005).
[Crossref]

J. Appl. Phys. (1)

O. Tsilipakos, T. V. Yioultsis, and E. E. Kriezis, “Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides,” J. Appl. Phys. 106(9), 093109 (2009).
[Crossref]

J. Opt. (1)

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal-tunable metal–insulator–metal plasmonic waveguides and Bragg resonators,” J. Opt. 15(5), 055009 (2013).
[Crossref]

Laser Photonics Rev. (1)

M. A. Kats and F. Capasso, “Optical absorbers based on strong interference in ultra-thin films,” Laser Photonics Rev. 10(5), 735–749 (2016).
[Crossref]

Microw. Opt. Technol. Lett. (1)

S. A. Tretyakov and S. I. Maslovski, “Thin absorbing structure for all incidence angles based on the use of a high-impedance surface,” Microw. Opt. Technol. Lett. 38(3), 175–178 (2003).
[Crossref]

Nat. Commun. (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2(1), 517 (2011).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Commun. (1)

S. I. Bozhevolnyi, A. Boltasseva, T. Søndergaard, T. Nikolajsen, and K. Leosson, “Photonic bandgap structures for long-range surface plasmon polaritons,” Opt. Commun. 250(4-6), 328–333 (2005).
[Crossref]

Opt. Express (3)

Opt. Quantum Electron. (1)

T. Christopoulos, G. Sinatkas, O. Tsilipakos, and E. E. Kriezis, “Bistable action with hybrid plasmonic Bragg-grating resonators,” Opt. Quantum Electron. 48(2), 128 (2016).
[Crossref]

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Phys. Rev. Appl. (1)

G. Isić, B. Vasić, D. C. Zografopoulos, R. Beccherelli, and R. Gajić, “Electrically tunable critically coupled terahertz metamaterial absorber based on nematic liquid crystals,” Phys. Rev. Appl. 3(6), 064007 (2015).
[Crossref]

Phys. Rev. B (1)

Z. Tagay and C. Valagiannopoulos, “Highly selective transmission and absorption from metasurfaces of periodically corrugated cylindrical particles,” Phys. Rev. B 98(11), 115306 (2018).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (4)

F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B Condens. Matter Mater. Phys. 66(15), 155412 (2002).
[Crossref]

M. U. González, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B Condens. Matter Mater. Phys. 73(15), 155416 (2006).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B Condens. Matter Mater. Phys. 78(11), 115115 (2008).
[Crossref]

I. Epstein, I. Dolev, D. Bar-Lev, and A. Arie, “Plasmon-enhanced Bragg diffraction,” Phys. Rev. B Condens. Matter Mater. Phys. 86(20), 205122 (2012).
[Crossref]

Phys. Rev. Lett. (2)

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109(20), 203903 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sci. Rep. (1)

K. Bhattarai, S. Silva, K. Song, A. Urbas, S. J. Lee, Z. Ku, and J. Zhou, “Metamaterial Perfect Absorber Analyzed by a Meta-cavity Model Consisting of Multilayer Metasurfaces,” Sci. Rep. 7(1), 10569 (2017).
[Crossref] [PubMed]

Other (2)

V. M. Shalaev and S. Kawata, eds., Nanophotonics with Surface Plasmons (Elsevier, 2007).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Binary metallic grating illuminated by a TM polarized plane wave impinging at an incidence angle θ. All relevant geometric parameters (pitch a, ridge width s, and ridge height h) are included. t = 200 nm throughout the paper.
Fig. 2
Fig. 2 (a) Absorption vs wavelength when varying the ridge height, h, while keeping the width constant at s = 250 nm. (b) Absorption vs wavelength when varying the ridge width, s, while keeping the height constant at h = 50 nm. (c) Electric field amplitude at the absorption peak (red denotes high values and blue low values). With increasing s the field becomes tightly confined in the slot and the field enhancement increases. (d) Maximum value of the absorption spectrum for any parameter combination in the entire (s, h) parametric space and (e) the corresponding wavelength where it is observed.
Fig. 3
Fig. 3 (a) Absorption vs wavelength for varying incidence angle (TM polarization) when a = 400 nm, h = 50 nm and s = 0.9375a = 375 nm. The absorption remains high but the position and linewidth of the peak change. (b) Absorption vs wavelength for varying incidence angle when a = 275 nm, h = 50 nm and s = 0.9375a = 258 nm. The efficiency, position and linewidth of absorption remain unchanged for incidence angles up to 65°. Markers denote the analytically calculated onset of the first diffraction order. Field distributions (real part of scattered Ey component) for three characteristic points: (c) At 536 nm on the 20-degree curve in panel (a). The first diffraction order has just become propagating and is leaving the structure at grazing angle. (d) At 621 nm on the 20-degree curve in panel (a).(e) At 625 nm on the 20-degree curve in panel (b).
Fig. 4
Fig. 4 Simulated and measured reflection and absorption spectra for (a) the design (a, h, s) = (400 nm, 50 nm, 375 nm) and (b) the design (a, h, s) = (400 nm, 20 nm, 200 nm). Excellent agreement between simulation and experiment is observed. The SEM image inset in panel (b) demonstrates that the actual dimensions of the fabricated sample are in excellent agreement with the nominal values.
Fig. 5
Fig. 5 Response of metallic binary grating with (a,h,s) = (400 nm, 20 nm, 200 nm) for different superstrate materials. The absorption peak is significantly shifted towards higher wavelengths while maintaining 100% absorption efficiency.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k SPP = 2π a k 0 ε s ε m (ω) ε s + ε m (ω) = 2π a ,