Abstract

In this paper, we theoretically and experimentally analyze the frequency-comb interferometry at 518 nm in the underwater environment, which we use to measure the underwater distance with high accuracy and precision. In the time domain, we analyze the principle of pulse cross correlation. The interferograms can be obtained in the vicinity of Nlpp, where N is an integer and lpp is the pulse-to-pulse length. Due to the strong dispersion of water, the pulse can be broadened as the distance increases. The distance can be measured via the peak position of the interferograms. The experimental results show a difference within 100 μm at 8 m range, compared with the reference values. In the frequency domain, we analyze the principle of dispersive interferometry. The spectrograms can be observed near the location of Nlpp, due to the low resolution of the optical spectrum analyzer. Because of the strong dispersion of water, the modulation frequency of the spectrogram is not constant. A balanced wavelength will exist with the widest fringe, at which the group optical path difference between the reference and measurement arm is equal to Nlpp. The position of the widest fringe can be used to measure the distance. Compared with the reference values, the experimental results indicate a difference within 100 μm at 8 m range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser

Hanzhong Wu, Fumin Zhang, Tingyang Liu, Petr Balling, and Xinghua Qu
Appl. Opt. 55(15) 4210-4218 (2016)

Absolute distance measurement by chirped pulse interferometry using a femtosecond pulse laser

Hanzhong Wu, Fumin Zhang, Tingyang Liu, Fei Meng, Jianshuang Li, and Xinghua Qu
Opt. Express 23(24) 31582-31593 (2015)

Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser

Hanzhong Wu, Fumin Zhang, Shiying Cao, Shujian Xing, and Xinghua Qu
Opt. Express 22(9) 10380-10397 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
    [Crossref] [PubMed]
  2. T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
    [Crossref]
  3. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  4. M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
    [PubMed]
  5. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
    [Crossref]
  6. F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
    [Crossref]
  7. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [Crossref] [PubMed]
  8. J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
    [Crossref] [PubMed]
  9. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [Crossref] [PubMed]
  10. H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 46601 (2012).
  11. H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
    [Crossref] [PubMed]
  12. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).
  13. M. G. Zeitouny, M. Cui, A. J. E. M. Janssen, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Time-frequency distribution of interferograms from a frequency comb in dispersive media,” Opt. Express 19(4), 3406–3417 (2011).
    [Crossref] [PubMed]
  14. P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 94001 (2012).
  15. T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
    [Crossref] [PubMed]
  16. B. Xue, Z. Wang, K. Zhang, J. Li, and H. Wu, “Absolute distance measurement using optical sampling by sweeping the repetition frequency,” Opt. Lasers Eng. 109, 1–6 (2018).
    [Crossref]
  17. I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  18. X. Zhao, X. Qu, F. Zhang, Y. Zhao, and G. Tang, “Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb,” Opt. Lett. 43(4), 807–810 (2018).
    [Crossref] [PubMed]
  19. E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
    [Crossref]
  20. B. Lomsadze, B. Smith, and S. Cundiff, “Tri-comb spectroscopy,” arXiv preprint arXiv:1806.05071 (2018).
    [Crossref]
  21. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  22. G. Wu, M. Takahashi, H. Inaba, and K. Minoshima, “Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement,” Opt. Lett. 38(12), 2140–2143 (2013).
    [Crossref] [PubMed]
  23. K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  24. H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
    [Crossref]
  25. S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
    [PubMed]
  26. C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).
  27. P. Hlubina, R. Chlebus, and D. Ciprian, “Differential group refractive index dispersion of glasses of optical fibres measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
    [Crossref]
  28. T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
    [PubMed]
  29. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [Crossref] [PubMed]
  30. Y. Liu, J. Lin, L. Yang, Y. Wang, and J. Zhu, “Construction of traceable absolute distances network for multilateration with a femtosecond pulse laser,” Opt. Express 26(20), 26618–26632 (2018).
    [Crossref] [PubMed]
  31. S. Han, Y. J. Kim, and S. W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23(20), 25874–25882 (2015).
    [Crossref] [PubMed]
  32. K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
    [Crossref] [PubMed]
  33. A. Amiri-Simkooei, M. Snellen, and D. Simons, “Principal component analysis of single-beam echo-sounder signal features for seafloor classification,” IEEE J. Oceanic Eng. 36(2), 259–272 (2011).
    [Crossref]
  34. Y. Petillot, I. T. Ruiz, and D. M. Lane, “Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar,” IEEE J. Oceanic Eng. 26(2), 240–251 (2001).
    [Crossref]
  35. Y. Gu, C. Carrizo, A. A. Gilerson, P. C. Brady, M. E. Cummings, M. S. Twardowski, J. M. Sullivan, A. I. Ibrahim, and G. W. Kattawar, “Polarimetric imaging and retrieval of target polarization characteristics in underwater environment,” Appl. Opt. 55(3), 626–637 (2016).
    [Crossref] [PubMed]
  36. L. Bartolini, L. De Dominicis, M. F. de Collibus, G. Fornetti, M. Guarneri, E. Paglia, C. Poggi, and R. Ricci, “Underwater three-dimensional imaging with an amplitude-modulated laser radar at a 405 nm wavelength,” Appl. Opt. 44(33), 7130–7135 (2005).
    [Crossref] [PubMed]
  37. A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
    [Crossref]
  38. T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).
  39. Z. Meng, X. Zhai, J. Wei, Z. Wang, and H. Wu, “Absolute measurement of the refractive index of water by a mode-locked laser at 518 nm,” Sensors (Basel) 18(4), 1143 (2018).
    [PubMed]

2018 (5)

B. Xue, Z. Wang, K. Zhang, J. Li, and H. Wu, “Absolute distance measurement using optical sampling by sweeping the repetition frequency,” Opt. Lasers Eng. 109, 1–6 (2018).
[Crossref]

X. Zhao, X. Qu, F. Zhang, Y. Zhao, and G. Tang, “Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb,” Opt. Lett. 43(4), 807–810 (2018).
[Crossref] [PubMed]

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Y. Liu, J. Lin, L. Yang, Y. Wang, and J. Zhu, “Construction of traceable absolute distances network for multilateration with a femtosecond pulse laser,” Opt. Express 26(20), 26618–26632 (2018).
[Crossref] [PubMed]

Z. Meng, X. Zhai, J. Wei, Z. Wang, and H. Wu, “Absolute measurement of the refractive index of water by a mode-locked laser at 518 nm,” Sensors (Basel) 18(4), 1143 (2018).
[PubMed]

2017 (2)

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[PubMed]

M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
[PubMed]

2016 (2)

Y. Gu, C. Carrizo, A. A. Gilerson, P. C. Brady, M. E. Cummings, M. S. Twardowski, J. M. Sullivan, A. I. Ibrahim, and G. W. Kattawar, “Polarimetric imaging and retrieval of target polarization characteristics in underwater environment,” Appl. Opt. 55(3), 626–637 (2016).
[Crossref] [PubMed]

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

2015 (5)

S. Han, Y. J. Kim, and S. W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23(20), 25874–25882 (2015).
[Crossref] [PubMed]

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
[PubMed]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

G. Wu, M. Takahashi, H. Inaba, and K. Minoshima, “Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement,” Opt. Lett. 38(12), 2140–2143 (2013).
[Crossref] [PubMed]

2012 (2)

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 46601 (2012).

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 94001 (2012).

2011 (4)

2010 (2)

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

2009 (3)

2007 (2)

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).

P. Hlubina, R. Chlebus, and D. Ciprian, “Differential group refractive index dispersion of glasses of optical fibres measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

2006 (4)

2005 (1)

2001 (1)

Y. Petillot, I. T. Ruiz, and D. M. Lane, “Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar,” IEEE J. Oceanic Eng. 26(2), 240–251 (2001).
[Crossref]

1998 (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Amiri-Simkooei, A.

A. Amiri-Simkooei, M. Snellen, and D. Simons, “Principal component analysis of single-beam echo-sounder signal features for seafloor classification,” IEEE J. Oceanic Eng. 36(2), 259–272 (2011).
[Crossref]

Aoto, T.

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 46601 (2012).

Arai, K.

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

Balling, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 94001 (2012).

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

Bartolini, L.

Baumann, E.

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Bhattacharya, N.

Bouchand, R.

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Braat, J. J. M.

Brady, P. C.

Cao, S.

Carrizo, C.

Chlebus, R.

P. Hlubina, R. Chlebus, and D. Ciprian, “Differential group refractive index dispersion of glasses of optical fibres measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

Ciprian, D.

P. Hlubina, R. Chlebus, and D. Ciprian, “Differential group refractive index dispersion of glasses of optical fibres measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

Coddington, I.

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Cui, M.

Cui, P.

Cummings, M. E.

Dändliker, R.

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

de Collibus, M. F.

De Dominicis, L.

Doležal, M.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 94001 (2012).

Fan, S.

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

Fornetti, G.

Gallagher, J. S.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Gao, H.

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

Gilerson, A. A.

Giorgetta, F.

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Gohle, C.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).

Gorodetsky, M.

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Gu, Y.

Guarneri, M.

Guo, Y.

Hall, J. L.

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

Han, S.

S. Han, Y. J. Kim, and S. W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23(20), 25874–25882 (2015).
[Crossref] [PubMed]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

Hansch, T. W.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).

Hänsch, T. W.

M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
[PubMed]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

Harvey, A. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Hlubina, P.

P. Hlubina, R. Chlebus, and D. Ciprian, “Differential group refractive index dispersion of glasses of optical fibres measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

Hochrein, T.

Holzwarth, R.

Ibrahim, A. I.

Inaba, H.

Iwakuni, K.

M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
[PubMed]

Janssen, A. J. E. M.

Joo, K. N.

Karpov, M.

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Kato, T.

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[PubMed]

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Kattawar, G. W.

Kim, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

Kim, S. W.

Kim, Y.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

Kim, Y. J.

Kippenberg, T.

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Koch, M.

Kren, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 94001 (2012).

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

Krumbholz, N.

Lane, D. M.

Y. Petillot, I. T. Ruiz, and D. M. Lane, “Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar,” IEEE J. Oceanic Eng. 26(2), 240–251 (2001).
[Crossref]

Lee, J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Levelt Sengers, J. M. H.

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Lévêque, S.

Li, J.

B. Xue, Z. Wang, K. Zhang, J. Li, and H. Wu, “Absolute distance measurement using optical sampling by sweeping the repetition frequency,” Opt. Lasers Eng. 109, 1–6 (2018).
[Crossref]

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

Lihachev, G.

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Lin, J.

Liu, T.

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

Liu, Y.

Lucas, E.

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Luo, P. L.

M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
[PubMed]

Mašika, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 94001 (2012).

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

Matsumoto, H.

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 46601 (2012).

Mei, M.

Meng, F.

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

Meng, Z.

Z. Meng, X. Zhai, J. Wei, Z. Wang, and H. Wu, “Absolute measurement of the refractive index of water by a mode-locked laser at 518 nm,” Sensors (Basel) 18(4), 1143 (2018).
[PubMed]

Millot, G.

M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
[PubMed]

Minoshima, K.

Nenadovic, L.

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Paglia, E.

Pan, L.

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

Pavlov, N.

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Petillot, Y.

Y. Petillot, I. T. Ruiz, and D. M. Lane, “Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar,” IEEE J. Oceanic Eng. 26(2), 240–251 (2001).
[Crossref]

Picqué, N.

M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
[PubMed]

Poggi, C.

Qu, X.

X. Zhao, X. Qu, F. Zhang, Y. Zhao, and G. Tang, “Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb,” Opt. Lett. 43(4), 807–810 (2018).
[Crossref] [PubMed]

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

Raja, A.

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

Ricci, R.

Ruiz, I. T.

Y. Petillot, I. T. Ruiz, and D. M. Lane, “Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar,” IEEE J. Oceanic Eng. 26(2), 240–251 (2001).
[Crossref]

Salvadé, Y.

Schliesser, A.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).

Schuhler, N.

Simons, D.

A. Amiri-Simkooei, M. Snellen, and D. Simons, “Principal component analysis of single-beam echo-sounder signal features for seafloor classification,” IEEE J. Oceanic Eng. 36(2), 259–272 (2011).
[Crossref]

Sinclair, L.

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Snellen, M.

A. Amiri-Simkooei, M. Snellen, and D. Simons, “Principal component analysis of single-beam echo-sounder signal features for seafloor classification,” IEEE J. Oceanic Eng. 36(2), 259–272 (2011).
[Crossref]

Stein, B.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).

Sullivan, J. M.

Swann, C.

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Swann, W.

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Takahashi, M.

Takamasu, K.

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 46601 (2012).

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Tang, G.

Twardowski, M. S.

Uchida, M.

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[PubMed]

Udem, T.

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).

Urbach, H. P.

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

van den Berg, S. A.

van Eldik, S.

S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
[PubMed]

Wang, X.

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 46601 (2012).

Wang, Y.

Wang, Z.

B. Xue, Z. Wang, K. Zhang, J. Li, and H. Wu, “Absolute distance measurement using optical sampling by sweeping the repetition frequency,” Opt. Lasers Eng. 109, 1–6 (2018).
[Crossref]

Z. Meng, X. Zhai, J. Wei, Z. Wang, and H. Wu, “Absolute measurement of the refractive index of water by a mode-locked laser at 518 nm,” Sensors (Basel) 18(4), 1143 (2018).
[PubMed]

Wei, J.

Z. Meng, X. Zhai, J. Wei, Z. Wang, and H. Wu, “Absolute measurement of the refractive index of water by a mode-locked laser at 518 nm,” Sensors (Basel) 18(4), 1143 (2018).
[PubMed]

Wilk, R.

Wu, G.

Wu, H.

Z. Meng, X. Zhai, J. Wei, Z. Wang, and H. Wu, “Absolute measurement of the refractive index of water by a mode-locked laser at 518 nm,” Sensors (Basel) 18(4), 1143 (2018).
[PubMed]

B. Xue, Z. Wang, K. Zhang, J. Li, and H. Wu, “Absolute distance measurement using optical sampling by sweeping the repetition frequency,” Opt. Lasers Eng. 109, 1–6 (2018).
[Crossref]

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

Xing, S.

Xue, B.

B. Xue, Z. Wang, K. Zhang, J. Li, and H. Wu, “Absolute distance measurement using optical sampling by sweeping the repetition frequency,” Opt. Lasers Eng. 109, 1–6 (2018).
[Crossref]

Yan, M.

M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
[PubMed]

Yang, L.

Yang, Y.

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

Zeitouny, M. G.

Zhai, X.

Z. Meng, X. Zhai, J. Wei, Z. Wang, and H. Wu, “Absolute measurement of the refractive index of water by a mode-locked laser at 518 nm,” Sensors (Basel) 18(4), 1143 (2018).
[PubMed]

Zhang, F.

X. Zhao, X. Qu, F. Zhang, Y. Zhao, and G. Tang, “Absolute distance measurement by multi-heterodyne interferometry using an electro-optic triple comb,” Opt. Lett. 43(4), 807–810 (2018).
[Crossref] [PubMed]

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

Zhang, K.

B. Xue, Z. Wang, K. Zhang, J. Li, and H. Wu, “Absolute distance measurement using optical sampling by sweeping the repetition frequency,” Opt. Lasers Eng. 109, 1–6 (2018).
[Crossref]

Zhao, X.

Zhao, Y.

Zhu, J.

Appl. Opt. (2)

Appl. Phys. Express (1)

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 46601 (2012).

Chinese J. Lasers (1)

T. Liu, F. Zhang, H. Wu, X. Qu, S. Fan, Y. Yang, and H. Gao, “Time-frequency analysis in absolute distance measurement using chirped pulse interferometry,” Chinese J. Lasers,  43, 904005 (2016).

IEEE J. Oceanic Eng. (2)

A. Amiri-Simkooei, M. Snellen, and D. Simons, “Principal component analysis of single-beam echo-sounder signal features for seafloor classification,” IEEE J. Oceanic Eng. 36(2), 259–272 (2011).
[Crossref]

Y. Petillot, I. T. Ruiz, and D. M. Lane, “Underwater vehicle obstacle avoidance and path planning using a multi-beam forward looking sonar,” IEEE J. Oceanic Eng. 26(2), 240–251 (2001).
[Crossref]

J. Phys. Chem. Ref. Data (1)

A. H. Harvey, J. S. Gallagher, and J. M. H. Levelt Sengers, “Revised formulation for the refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 27(4), 761–774 (1998).
[Crossref]

Light Sci. Appl. (1)

M. Yan, P. L. Luo, K. Iwakuni, G. Millot, T. W. Hänsch, and N. Picqué, “Mid-infrared dual-comb spectroscopy with electro-optic modulators,” Light Sci. Appl. 6(10), e17076 (2017).
[PubMed]

Meas. Sci. Technol. (4)

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 45201 (2013).

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 94001 (2012).

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol. 27(1), 015202 (2015).
[Crossref]

P. Hlubina, R. Chlebus, and D. Ciprian, “Differential group refractive index dispersion of glasses of optical fibres measured by a white-light spectral interferometric technique,” Meas. Sci. Technol. 18(5), 1547–1552 (2007).
[Crossref]

Nat. Photonics (6)

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

E. Lucas, G. Lihachev, R. Bouchand, N. Pavlov, A. Raja, M. Karpov, M. Gorodetsky, and T. Kippenberg, “Spatial multiplexing of soliton microcombs,” Nat. Photonics 12(11), 699 (2018).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

F. Giorgetta, W. Swann, L. Sinclair, E. Baumann, I. Coddington, and N. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Opt. Express (9)

K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

S. Han, Y. J. Kim, and S. W. Kim, “Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses,” Opt. Express 23(20), 25874–25882 (2015).
[Crossref] [PubMed]

T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18(2), 1613–1617 (2010).
[Crossref] [PubMed]

M. G. Zeitouny, M. Cui, A. J. E. M. Janssen, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Time-frequency distribution of interferograms from a frequency comb in dispersive media,” Opt. Express 19(4), 3406–3417 (2011).
[Crossref] [PubMed]

K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
[Crossref] [PubMed]

Y. Liu, J. Lin, L. Yang, Y. Wang, and J. Zhu, “Construction of traceable absolute distances network for multilateration with a femtosecond pulse laser,” Opt. Express 26(20), 26618–26632 (2018).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

B. Xue, Z. Wang, K. Zhang, J. Li, and H. Wu, “Absolute distance measurement using optical sampling by sweeping the repetition frequency,” Opt. Lasers Eng. 109, 1–6 (2018).
[Crossref]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

C. Gohle, B. Stein, A. Schliesser, T. Udem, and T. W. Hansch, “Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra,” Phys. Rev. Lett. 99(26), 263902 (2007).

Rev. Mod. Phys. (2)

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

T. W. Hänsch, “Nobel Lecture: Passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

Sci. Rep. (2)

T. Kato, M. Uchida, and K. Minoshima, “No-scanning 3D measurement method using ultrafast dimensional conversion with a chirped optical frequency comb,” Sci. Rep. 7(1), 3670 (2017).
[PubMed]

S. A. van den Berg, S. van Eldik, and N. Bhattacharya, “Mode-resolved frequency comb interferometry for high-accuracy long distance measurement,” Sci. Rep. 5, 14661 (2015).
[PubMed]

Sensors (Basel) (1)

Z. Meng, X. Zhai, J. Wei, Z. Wang, and H. Wu, “Absolute measurement of the refractive index of water by a mode-locked laser at 518 nm,” Sensors (Basel) 18(4), 1143 (2018).
[PubMed]

Other (1)

B. Lomsadze, B. Smith, and S. Cundiff, “Tri-comb spectroscopy,” arXiv preprint arXiv:1806.05071 (2018).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Experimental scheme. BS: beam splitter; PD: photodetector; OSA: optical spectrum analyzer.
Fig. 2
Fig. 2 The photograph of the experiments.
Fig. 3
Fig. 3 Spectrum of the laser source.
Fig. 4
Fig. 4 Phase refractive index of water corresponding to different wavelengths.
Fig. 5
Fig. 5 Cross-correlation patterns at different distances. (a): initial position; (b): 1.1 m distance; (c): 2.2 m distance; (d): 7.7 m distance.
Fig. 6
Fig. 6 Distance measurement results of pulse cross correlation. The black solid points indicate the average value of five measurements, and the red x markers show the scatters of five single measurements. The error bars represent the standard deviation of five measurements. The pink dashed line indicates the uncertainty limit.
Fig. 7
Fig. 7 Fringe of dispersive interferometry at the initial position. (a): Fringe of dispersive interferometry before shifting 100 μm; (b): fringe of dispersive interferometry after shifting 100 μm; (c): High-pass signal of the fringe in (a); (d): High-pass signal of the fringe in (b);
Fig. 8
Fig. 8 Fringe of dispersive interferometry at 2.2 m distance. (a): Fringe of dispersive interferometry before shifting 1200 μm; (b): fringe of dispersive interferometry after shifting 1200 μm.
Fig. 9
Fig. 9 Distance measurement results of dispersive interferometry. The black solid points indicate the average value of five measurements, and the red x markers show the scatters of five single measurements. The error bars represent the standard deviation of five measurements. The green dashed line indicates the uncertainty limit.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E t r a i n ( t ) = E ( t ) exp ( i ω c t + i ( φ 0 + Δ φ c e t ) ) m = + δ ( t m T R ) ,
E r e f ( t ) = E ( t ) exp ( i ω c t + i φ 0 + i N Δ φ c e ) ,
E m e a s ( t ) = E ( t 2 n L c ) exp ( 2 C L ) exp ( i ω c ( t 2 n L c ) + i φ 0 ) ,
I = 1 T d T d [ E r e f ( t ) + E m e a s ( t ) ] 2 d t = 1 T d T d [ E r e f 2 ( t ) + E m e a s 2 ( t ) ] d t + 2 T d T d Re [ E r e f ( t ) + E m e a s * ( t ) ] d t ,
Γ exp ( 2 C L ) cos ( n ω c 2 L c + N × Δ φ c e ) T d E 2 ( t ) d t ,
Γ P m exp ( 2 C L ) cos ( n ω c 2 L c + N × Δ φ c e ) ,
E r e f ( ω ) = E ( ω ) ,
E m e a s ( ω ) = E ( ω ) exp ( i τ ω ) ,
I ( ω ) = ( E r e f ( ω ) + E m e a s ( ω ) ) 2 = ( E r e f ( ω ) + E m e a s ( ω ) ) ( E r e f ( ω ) + E m e a s ( ω ) ) = | E r e f ( ω ) | 2 + | E m e a s ( ω ) | 2 + 2 Re [ E r e f ( ω ) E m e a s ( ω ) ] = 2 E 2 ( ω ) [ 1 + cos ( τ ω ) ] = 2 E 2 ( ω ) [ 1 + cos ( n ( ω ) ω 2 L c ) ] ,
ϕ ( ω ) = n ( ω ) ω 2 L c = [ n ( ω 0 ) + α ( ω ω 0 ) ] ω 2 L c = [ α ω 2 + ( n ( ω 0 ) α ω 0 ) ω ] 2 L c ,
D 1 = 2 n 1 L ; D 2 = 2 n 2 L ,
l = D 1 D 2 = 2 α ( ω 1 ω 2 ) L = 4 π α ( f 1 f 2 ) L ,
l = χ ( f 1 f 2 ) ,
L = 1 2 ( N 1 f r e p c n g + χ f s h i f t n g ) ,
L = 1 2 ( N 1 f r e p c n g + d ) ,
u L 2 = ( 1 2 ) 2 { [ ( N 1 f r e p 2 c n g ) u f r e p ] 2 + [ ( N 1 f r e p c n g 2 ) u n g ] 2 + u d 2 } ,
χ = 100 μ m ( 580.217 T H z 578.393 T H z ) = 5.48 × 10 5 m T H z ,
L = 1 2 ( 2 1 100 M H z 299792458 1.3655989 - 3.03 × 10 4 ( 581.387 580.217 ) 1.3655989 ) = 2195.188 m m
u L 2 = ( 1 2 n g ) 2 { [ ( N 1 f r e p 2 c ) u f r e p ] 2 + [ 2 L u n g ] 2 + ( f s h i f t u χ ) 2 + ( χ u f s h i f t ) 2 } ,

Metrics