Abstract

Using an optical fiber to both excite the nitrogen-vacancy (NV) center in diamond and collect its fluorescence is essential to build NV-based endoscope-type sensor. Such endoscope-type sensor can reach inaccessible fields for traditional NV-based sensors built by bulky optical components and extend the application areas. Since single NV’s fluorescence is weak and can easily be buried in fluorescence from optical fiber core’s oxide defects excited by the green laser, fixing a micrometer size diamond containing high-density NVs rather than a nanodiamond containing single NV or several NVs on the apex of an optical fiber to build an endoscope-type sensor is more implementable. Unfortunately, due to small numerical aperture (NA), most of the optical fibers have a low fluorescence collection efficiency, which limits the sensitivity and spatial resolution of the NV-based endoscope-type sensor. Here, using a tapered optical fiber (TOF) tip, we significantly improve the efficiency of the laser excitation and fluorescence collection of the NV ensembles in diamond. This could potentially enhance the sensitivity and spatial resolution of the NV-based endoscope-type sensor. Numerical calculations show that the TOF tip delivers a high NA and has a high NV excitation and fluorescence collection efficiency. Experiments demonstrate that such TOF tip can obtain up to over 7-fold excitation efficiency and over 15-fold fluorescence collection efficiency of that from a flat-ended fiber (non-TOF) tip.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Magnetometry for precision measurement using frequency-modulation microwave combined efficient photon-collection technique on an ensemble of nitrogen-vacancy centers in diamond

Zongmin Ma, Shaowen Zhang, Yueping Fu, Hua Yuan, Yunbo Shi, Jian Gao, Li Qin, Jun Tang, Jun Liu, and Yanjun Li
Opt. Express 26(1) 382-390 (2018)

Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures

Masazumi Fujiwara, Hong-Quan Zhao, Tetsuya Noda, Kazuhiro Ikeda, Hitoshi Sumiya, and Shigeki Takeuchi
Opt. Lett. 40(24) 5702-5705 (2015)

Numerical simulations of nanodiamond nitrogen-vacancy centers coupled with tapered optical fibers as hybrid quantum nanophotonic devices

Mohamed Almokhtar, Masazumi Fujiwara, Hideaki Takashima, and Shigeki Takeuchi
Opt. Express 22(17) 20045-20059 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
    [Crossref]
  2. L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
    [Crossref]
  3. L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
    [Crossref]
  4. F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
    [Crossref]
  5. P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
    [Crossref]
  6. G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
    [Crossref]
  7. D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” PNAS 110, 8417–8421 (2013).
    [Crossref] [PubMed]
  8. J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding,” Applied Physics Letters 86, 134104 (2005).
    [Crossref]
  9. M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
    [Crossref]
  10. Y. Ruan, H. Ji, B. C. Johnson, T. Ohshima, A. D. Greentree, B. C. Gibson, T. M. Monro, and H. Ebendorff-Heidepriem, “Nanodiamond in tellurite glass part ii: practical nanodiamond-doped fibers,” Opt. Mater. Express 5, 73–87 (2015).
    [Crossref]
  11. T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Letters 11, 198–202 (2011).
    [Crossref]
  12. L. Mayer and T. Debuisschert, “Direct optical interfacing of cvd diamond for deported sensing experiments involving nitrogen-vacancy centres,” physica status solidi (a) 213, 2608–2613 (2016).
    [Crossref]
  13. M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Applied Physics Letters 95, 153110 (2009).
    [Crossref]
  14. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
    [Crossref]
  15. R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
    [Crossref]
  16. L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
    [Crossref]
  17. M. Fujiwara, H.-Q. Zhao, T. Noda, K. Ikeda, H. Sumiya, and S. Takeuchi, “Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures,” Opt. Lett. 40, 5702–5705 (2015).
    [Crossref]
  18. R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
    [Crossref]
  19. V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
    [Crossref]
  20. M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
    [Crossref]
  21. I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
    [Crossref]
  22. I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
    [Crossref] [PubMed]
  23. I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
    [Crossref]
  24. I. V. Fedotov, S. M. Blakley, E. E. Serebryannikov, P. Hemmer, M. O. Scully, and A. M. Zheltikov, “High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber,” Opt. Lett. 41, 472–475 (2016).
    [Crossref] [PubMed]
  25. M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
    [Crossref]
  26. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
    [Crossref]
  27. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, experimental and theoretical quantification,,#x0201D; IEE Proc. 138, 355–364 (1991).
  28. optgeo, “optgeo,” http://jeanmarie.biansan.free.fr/optgeo.html .
  29. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” Journal of Lightwave Technology 10, 432–438 (1992).
    [Crossref]
  30. A. Stiebeiner, R. Garcia-Fernandez, and A. Rauschenbeutel, “Design and optimization of broadband tapered optical fibers with a nanofiber waist,” Opt. Express 18, 22677–22685 (2010).
    [Crossref]
  31. S. Pricking and H. Giessen, “Tapering fibers with complex shape,” Opt. Express 18, 3426–3437 (2010).
    [Crossref]
  32. H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2, 340–356 (2012).
    [Crossref]
  33. S. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik 124, 538–543 (2013).
    [Crossref]
  34. T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
    [Crossref]
  35. D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
    [Crossref]

2018 (2)

M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

2017 (1)

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

2016 (4)

L. Mayer and T. Debuisschert, “Direct optical interfacing of cvd diamond for deported sensing experiments involving nitrogen-vacancy centres,” physica status solidi (a) 213, 2608–2613 (2016).
[Crossref]

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

I. V. Fedotov, S. M. Blakley, E. E. Serebryannikov, P. Hemmer, M. O. Scully, and A. M. Zheltikov, “High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber,” Opt. Lett. 41, 472–475 (2016).
[Crossref] [PubMed]

2015 (2)

2014 (7)

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
[Crossref]

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
[Crossref]

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

2013 (5)

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” PNAS 110, 8417–8421 (2013).
[Crossref] [PubMed]

S. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik 124, 538–543 (2013).
[Crossref]

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

2012 (2)

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2, 340–356 (2012).
[Crossref]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref]

2011 (3)

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Letters 11, 198–202 (2011).
[Crossref]

2010 (2)

2009 (1)

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Applied Physics Letters 95, 153110 (2009).
[Crossref]

2008 (1)

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

2005 (1)

J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding,” Applied Physics Letters 86, 134104 (2005).
[Crossref]

1992 (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” Journal of Lightwave Technology 10, 432–438 (1992).
[Crossref]

1991 (2)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, experimental and theoretical quantification,,#x0201D; IEE Proc. 138, 355–364 (1991).

Afshar, S. V.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Aharonovich, I.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Ahmad, H.

S. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik 124, 538–543 (2013).
[Crossref]

Aichele, T.

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Letters 11, 198–202 (2011).
[Crossref]

Akimov, A. V.

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Albrecht, R.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

Arumugam, S. R.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

Awschalom, D. D.

D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” PNAS 110, 8417–8421 (2013).
[Crossref] [PubMed]

Balasubramanian, G.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

Becher, C.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

Benson, O.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Letters 11, 198–202 (2011).
[Crossref]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Applied Physics Letters 95, 153110 (2009).
[Crossref]

Bhaskar, M. K.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Bielejec, E.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Birks, T. A.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” Journal of Lightwave Technology 10, 432–438 (1992).
[Crossref]

Black, R. J.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, experimental and theoretical quantification,,#x0201D; IEE Proc. 138, 355–364 (1991).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
[Crossref]

Blakley, S.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
[Crossref]

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

Blakley, S. M.

Bolshedvorskii, S. V.

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Bommer, A.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

Brunner, A.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Budker, D.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Burchardt, D.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Burek, M. J.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Burk, C.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Cappellaro, P.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Chang, H.-C.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Chang, W.-W.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Chen, E. H.

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

Cheng, C.-A.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Chien, C.-H.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Childress, L.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Christle, D. J.

D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” PNAS 110, 8417–8421 (2013).
[Crossref] [PubMed]

de las Casas, C. F.

D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” PNAS 110, 8417–8421 (2013).
[Crossref] [PubMed]

Debuisschert, T.

L. Mayer and T. Debuisschert, “Direct optical interfacing of cvd diamond for deported sensing experiments involving nitrogen-vacancy centres,” physica status solidi (a) 213, 2608–2613 (2016).
[Crossref]

Dimyati, K.

S. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik 124, 538–543 (2013).
[Crossref]

Dobrovitski, V. V.

D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” PNAS 110, 8417–8421 (2013).
[Crossref] [PubMed]

Doherty, M. W.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

Dolde, F.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Dong, M. M.

M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
[Crossref]

Doronina-Amitonova, L. V.

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

Du, G. X.

M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
[Crossref]

Duan, D.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

Ebendorff-Heidepriem, H.

Y. Ruan, H. Ji, B. C. Johnson, T. Ohshima, A. D. Greentree, B. C. Gibson, T. M. Monro, and H. Ebendorff-Heidepriem, “Nanodiamond in tellurite glass part ii: practical nanodiamond-doped fibers,” Opt. Mater. Express 5, 73–87 (2015).
[Crossref]

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Engel, P.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

Englund, D. R.

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

Evans, R. E.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Fedotov, A. B.

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

Fedotov, I. V.

I. V. Fedotov, S. M. Blakley, E. E. Serebryannikov, P. Hemmer, M. O. Scully, and A. M. Zheltikov, “High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber,” Opt. Lett. 41, 472–475 (2016).
[Crossref] [PubMed]

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
[Crossref]

Fujiwara, M.

Garcia-Fernandez, R.

Gibson, B. C.

Y. Ruan, H. Ji, B. C. Johnson, T. Ohshima, A. D. Greentree, B. C. Gibson, T. M. Monro, and H. Ebendorff-Heidepriem, “Nanodiamond in tellurite glass part ii: practical nanodiamond-doped fibers,” Opt. Mater. Express 5, 73–87 (2015).
[Crossref]

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Giessen, H.

Glenn, D.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Gonthier, F.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, experimental and theoretical quantification,,#x0201D; IEE Proc. 138, 355–364 (1991).

Greentree, A. D.

Y. Ruan, H. Ji, B. C. Johnson, T. Ohshima, A. D. Greentree, B. C. Gibson, T. M. Monro, and H. Ebendorff-Heidepriem, “Nanodiamond in tellurite glass part ii: practical nanodiamond-doped fibers,” Opt. Mater. Express 5, 73–87 (2015).
[Crossref]

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding,” Applied Physics Letters 86, 134104 (2005).
[Crossref]

Gregor, M.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Applied Physics Letters 95, 153110 (2009).
[Crossref]

Harun, S.

S. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik 124, 538–543 (2013).
[Crossref]

Hemmer, P.

Hemmer, P. R.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Henderson, M. R.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Henry, W. M.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
[Crossref]

Henze, R.

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Applied Physics Letters 95, 153110 (2009).
[Crossref]

Hermelbracht, J.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Hingant, T.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
[Crossref]

Honert, J.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Hosseini, S. M.

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2, 340–356 (2012).
[Crossref]

Hu, Z. Z.

M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
[Crossref]

Huntington, S. T.

J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding,” Applied Physics Letters 86, 134104 (2005).
[Crossref]

Ikeda, K.

Isoya, J.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Jacques, V.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
[Crossref]

Jakobi, I.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Javadzade, J.

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Jelezko, F.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

Ji, H.

Jiang, L.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Johnson, B. C.

Jorge, P.

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2, 340–356 (2012).
[Crossref]

Kavatamane, V. K.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

Kewes, G.

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Letters 11, 198–202 (2011).
[Crossref]

Kilin, S. Y.

Krueger, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Kuan, K.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Kubo, M.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Kucsko, G.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Kuo, Y.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Lacroix, S.

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, experimental and theoretical quantification,,#x0201D; IEE Proc. 138, 355–364 (1991).

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
[Crossref]

Latifi, H.

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2, 340–356 (2012).
[Crossref]

Lebedev, N.

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Levchenko, A. O.

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

Li, L.

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

Li, Y. W.

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” Journal of Lightwave Technology 10, 432–438 (1992).
[Crossref]

Liebermeister, L.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Lim, K.

S. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik 124, 538–543 (2013).
[Crossref]

Liu, Y.

M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
[Crossref]

Lo, P. K.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Loncar, M.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Love, J. D.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
[Crossref]

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, experimental and theoretical quantification,,#x0201D; IEE Proc. 138, 355–364 (1991).

Lukin, M. D.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Machielse, B.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Maletinsky, P.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
[Crossref]

Manson, N. B.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

Maurer, P. C.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Mayer, L.

L. Mayer and T. Debuisschert, “Direct optical interfacing of cvd diamond for deported sensing experiments involving nitrogen-vacancy centres,” physica status solidi (a) 213, 2608–2613 (2016).
[Crossref]

Meesala, S.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Meijer, J.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

Meinhardt, T.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Meuwly, C.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Michl, J.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

Monro, T. M.

Y. Ruan, H. Ji, B. C. Johnson, T. Ohshima, A. D. Greentree, B. C. Gibson, T. M. Monro, and H. Ebendorff-Heidepriem, “Nanodiamond in tellurite glass part ii: practical nanodiamond-doped fibers,” Opt. Mater. Express 5, 73–87 (2015).
[Crossref]

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Mouradian, S. L.

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

Mücklich, F.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

Münchow, A. v.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Naydenov, B.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

Neumann, P.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Nguyen, C. T.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Noda, T.

Noh, H. J.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Ohshima, T.

Onoda, S.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

Orwa, J. O.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Pacheco, J. L.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Park, H.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Patel, R. N.

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

Pauly, C.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

Petersen, F.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Pezzagna, S.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

Pham, L. M.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Prawer, S.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding,” Applied Physics Letters 86, 134104 (2005).
[Crossref]

Pricking, S.

Rabeau, J. R.

J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding,” Applied Physics Letters 86, 134104 (2005).
[Crossref]

Rahane, G.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

Rauschenbeutel, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

A. Stiebeiner, R. Garcia-Fernandez, and A. Rauschenbeutel, “Design and optimization of broadband tapered optical fibers with a nanofiber waist,” Opt. Express 18, 22677–22685 (2010).
[Crossref]

Reichel, J.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

Reuter, R.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Roch, J.-F.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
[Crossref]

Rondin, L.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
[Crossref]

Ruan, Y.

Safronov, N. A.

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
[Crossref]

Sage, D. L.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Schell, A. W.

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Letters 11, 198–202 (2011).
[Crossref]

Schröder, T.

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express 20, 10490–10497 (2012).
[Crossref]

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Letters 11, 198–202 (2011).
[Crossref]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Applied Physics Letters 95, 153110 (2009).
[Crossref]

Scully, M. O.

Serebryannikov, E. E.

I. V. Fedotov, S. M. Blakley, E. E. Serebryannikov, P. Hemmer, M. O. Scully, and A. M. Zheltikov, “High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber,” Opt. Lett. 41, 472–475 (2016).
[Crossref] [PubMed]

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
[Crossref]

Shim, J. H.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Sidorov-Biryukov, D. A.

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

Sipahigil, A.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Smolyaninov, A. N.

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Sorokin, V. N.

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Soshenko, V. V.

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Stanwix, P. L.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Stewart, W. J.

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
[Crossref]

Stiebeiner, A.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

A. Stiebeiner, R. Garcia-Fernandez, and A. Rauschenbeutel, “Design and optimization of broadband tapered optical fibers with a nanofiber waist,” Opt. Express 18, 22677–22685 (2010).
[Crossref]

Sukachev, D. D.

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Sumiya, H.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

M. Fujiwara, H.-Q. Zhao, T. Noda, K. Ikeda, H. Sumiya, and S. Takeuchi, “Ultrathin fiber-taper coupling with nitrogen vacancy centers in nanodiamonds at cryogenic temperatures,” Opt. Lett. 40, 5702–5705 (2015).
[Crossref]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Suter, D.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Takeuchi, S.

Tashima, T.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Taylor, J. M.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Tetienne, J.-P.

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
[Crossref]

Tio, C.

S. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik 124, 538–543 (2013).
[Crossref]

Tomljenovic-Hanic, S.

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Toyli, D. M.

D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” PNAS 110, 8417–8421 (2013).
[Crossref] [PubMed]

Trifonov, A.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Tzeng, Y.-K.

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Velichansky, V. L.

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
[Crossref]

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

Vorobyov, V. V.

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Voronin, A. A.

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

Waldherr, G.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Walsworth, R.

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Walsworth, R. L.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Wan, N.

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

Wang, Y. J.

M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
[Crossref]

Weber, M.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Weinfurter, H.

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

Wolf, T.

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Wrachtrup, J.

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Wu, T.-J.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Yacoby, A.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Yang, B.

M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
[Crossref]

Yao, N. Y.

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

Yeung, T. K.

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Yu, J.

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Zhao, H.-Q.

Zheltikov, A. M.

I. V. Fedotov, S. M. Blakley, E. E. Serebryannikov, P. Hemmer, M. O. Scully, and A. M. Zheltikov, “High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber,” Opt. Lett. 41, 472–475 (2016).
[Crossref] [PubMed]

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
[Crossref]

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

Zibaii, M. I.

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2, 340–356 (2012).
[Crossref]

Zibrov, S. A.

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

I. V. Fedotov, L. V. Doronina-Amitonova, D. A. Sidorov-Biryukov, N. A. Safronov, S. Blakley, A. O. Levchenko, S. A. Zibrov, A. B. Fedotov, S. Y. Kilin, M. O. Scully, V. L. Velichansky, and A. M. Zheltikov, “Fiber-optic magnetic-field imaging,” Opt. Lett. 39, 6954–6957 (2014).
[Crossref] [PubMed]

Advanced Materials (1)

M. R. Henderson, B. C. Gibson, H. Ebendorff-Heidepriem, K. Kuan, S. V. Afshar, J. O. Orwa, I. Aharonovich, S. Tomljenovic-Hanic, A. D. Greentree, S. Prawer, and T. M. Monro, “Hybrid materials: Diamond in tellurite glass: a new medium for quantum information,” Advanced Materials 23, 2772 (2011).
[Crossref]

Applied Physics Letters (7)

J. R. Rabeau, S. T. Huntington, A. D. Greentree, and S. Prawer, “Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding,” Applied Physics Letters 86, 134104 (2005).
[Crossref]

M. Gregor, R. Henze, T. Schröder, and O. Benson, “On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator,” Applied Physics Letters 95, 153110 (2009).
[Crossref]

R. Albrecht, A. Bommer, C. Pauly, F. Mücklich, A. W. Schell, P. Engel, T. Schröder, O. Benson, J. Reichel, and C. Becher, “Narrow-band single photon emission at room temperature based on a single nitrogen-vacancy center coupled to an all-fiber-cavity,” Applied Physics Letters 105, 073113 (2014).
[Crossref]

L. Liebermeister, F. Petersen, A. v. Münchow, D. Burchardt, J. Hermelbracht, T. Tashima, A. W. Schell, O. Benson, T. Meinhardt, A. Krueger, A. Stiebeiner, A. Rauschenbeutel, H. Weinfurter, and M. Weber, “Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center,” Applied Physics Letters 104, 031101 (2014).
[Crossref]

I. V. Fedotov, S. Blakley, E. E. Serebryannikov, N. A. Safronov, V. L. Velichansky, M. O. Scully, and A. M. Zheltikov, “Fiber-based thermometry using optically detected magnetic resonance,” Applied Physics Letters 105, 261109 (2014).
[Crossref]

M. M. Dong, Z. Z. Hu, Y. Liu, B. Yang, Y. J. Wang, and G. X. Du, “A fiber based diamond rf b-field sensor and characterization of a small helical antenna,” Applied Physics Letters 113, 131105 (2018).
[Crossref]

D. Duan, V. K. Kavatamane, S. R. Arumugam, G. Rahane, Y.-K. Tzeng, H.-C. Chang, H. Sumiya, S. Onoda, J. Isoya, and G. Balasubramanian, “Enhancing fluorescence excitation and collection from the nitrogen-vacancy center in diamond through a micro-concave mirror,” Applied Physics Letters 113, 041107 (2018).
[Crossref]

IEE Proc. (1)

R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, “Tapered single mode fibers and devices: Part 2, experimental and theoretical quantification,,#x0201D; IEE Proc. 138, 355–364 (1991).

IEE Proc., Optoelectron. (1)

J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, “Tapered single-mode fibers and devices: Part 1, adiabaticity criteria,” IEE Proc., Optoelectron. 138, 343–354 (1991).
[Crossref]

Journal of Lightwave Technology (1)

T. A. Birks and Y. W. Li, “The shape of fiber tapers,” Journal of Lightwave Technology 10, 432–438 (1992).
[Crossref]

Light: Sci. Appl. (1)

R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, and D. R. Englund, “Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber,” Light: Sci. Appl. 5, e16032 (2016).
[Crossref]

Nano Letters (2)

T. Schröder, A. W. Schell, G. Kewes, T. Aichele, and O. Benson, “Fiber-integrated diamond-based single photon source,” Nano Letters 11, 198–202 (2011).
[Crossref]

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert, T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup, “High-precision nanoscale temperature sensing using single defects in diamond,” Nano Letters 13, 2738–2742 (2013). PMID: .
[Crossref]

Nat Phys (1)

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, “High-sensitivity diamond magnetometer with nanoscale resolution,” Nat Phys 4, 810–816 (2008).
[Crossref]

Nat. Nano. (1)

T.-J. Wu, Y.-K. Tzeng, W.-W. Chang, C.-A. Cheng, Y. Kuo, C.-H. Chien, H.-C. Chang, and J. Yu, “Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds,” Nat. Nano. 8, 682–689 (2013).
[Crossref]

Nature (1)

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, “Nanometre-scale thermometry in a living cell,” Nature 500, 54–58 (2013).
[Crossref]

New Journal of Physics (1)

L. M. Pham, D. L. Sage, P. L. Stanwix, T. K. Yeung, D. Glenn, A. Trifonov, P. Cappellaro, P. R. Hemmer, M. D. Lukin, H. Park, A. Yacoby, and R. L. Walsworth, “Magnetic field imaging with nitrogen-vacancy ensembles,” New Journal of Physics 13, 045021 (2011).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Opt. Mater. Express (1)

Optik (1)

S. Harun, K. Lim, C. Tio, K. Dimyati, and H. Ahmad, “Theoretical analysis and fabrication of tapered fiber,” Optik 124, 538–543 (2013).
[Crossref]

Photonic Sensors (1)

H. Latifi, M. I. Zibaii, S. M. Hosseini, and P. Jorge, “Nonadiabatic tapered optical fiber for biosensor applications,” Photonic Sensors 2, 340–356 (2012).
[Crossref]

Phys. Rev. Applied (1)

M. J. Burek, C. Meuwly, R. E. Evans, M. K. Bhaskar, A. Sipahigil, S. Meesala, B. Machielse, D. D. Sukachev, C. T. Nguyen, J. L. Pacheco, E. Bielejec, M. D. Lukin, and M. Lončar, “Fiber-coupled diamond quantum nanophotonic interface,” Phys. Rev. Applied 8, 024026 (2017).
[Crossref]

Phys. Rev. Lett. (1)

F. Dolde, M. W. Doherty, J. Michl, I. Jakobi, B. Naydenov, S. Pezzagna, J. Meijer, P. Neumann, F. Jelezko, N. B. Manson, and J. Wrachtrup, “Nanoscale detection of a single fundamental charge in ambient conditions using the NV− center in diamond,” Phys. Rev. Lett. 112, 097603 (2014).
[Crossref]

physica status solidi (a) (1)

L. Mayer and T. Debuisschert, “Direct optical interfacing of cvd diamond for deported sensing experiments involving nitrogen-vacancy centres,” physica status solidi (a) 213, 2608–2613 (2016).
[Crossref]

PNAS (1)

D. M. Toyli, C. F. de las Casas, D. J. Christle, V. V. Dobrovitski, and D. D. Awschalom, “Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond,” PNAS 110, 8417–8421 (2013).
[Crossref] [PubMed]

Reports on Progress in Physics (1)

L. Rondin, J.-P. Tetienne, T. Hingant, J.-F. Roch, P. Maletinsky, and V. Jacques, “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics 77, 056503 (2014).
[Crossref]

Scientific Reports (1)

I. V. Fedotov, L. V. Doronina-Amitonova, A. A. Voronin, A. O. Levchenko, S. A. Zibrov, D. A. Sidorov-Biryukov, A. B. Fedotov, V. L. Velichansky, and A. M. Zheltikov, “Electron spin manipulation and readout through an optical fiber,” Scientific Reports 4, 5362 (2014).
[Crossref]

The European Physical Journal D (1)

V. V. Vorobyov, V. V. Soshenko, S. V. Bolshedvorskii, J. Javadzade, N. Lebedev, A. N. Smolyaninov, V. N. Sorokin, and A. V. Akimov, “Coupling of single nv center to adiabatically tapered opticalsingle mode fiber,” The European Physical Journal D 70, 269 (2016).
[Crossref]

Other (1)

optgeo, “optgeo,” http://jeanmarie.biansan.free.fr/optgeo.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 The tapered optical fiber (TOF) tip. (a) Schematic diagram of the light ray trace that resulting in the high NA for the multimode optical fiber based TOF tip. (b) Optical microscope image of part of a long TOF tip’s tapered region (total TOF length is ∼15 mm, the photo is taken with 50 times magnification). Scanning electron microscope (c) side view and (d) 45-degree view of a short TOF tip with a length of ∼1 mm.
Fig. 2
Fig. 2 Schematic of the collection efficiency calculation in case of TOF tip and flat-ended fiber (non-TOF) tip. (a) is the fiber light collection 3D illustration (solid angle). (b) and (c) are fluorescence acceptance angles of the TOF tip and non-TOF tip respectively when collecting light from an attached diamond.
Fig. 3
Fig. 3 Simulation of multiple reflections in (a) NV fluorescence collection and in (b) NV excitation for both TOF tip (top) and non-TOF tip (bottom). In (a), the original fluorescence rays are directed in 2°, 171°, 203° and 186° from same points/positions of the diamond in both the diamonds respectively. At the bottom of (b), the rays (blue) do not enter the diamond and do not exist, as un-tapered optical fiber does not support rays in such big angles. They are drawn for comparison. (The simulation is carried out by free software Optgeo [28])
Fig. 4
Fig. 4 The assessing setup of TOF tip’s fluorescence collection and excitation efficiency. O1, O2, and O3 are objectives; CF is a 512-nm clear-up filter and LP is a 615-nm long-pass filter. The diamond is attached (by UV-curing glue) to the center of a bare fiber tip (enlarged in the dashed box). In the TOF tip or non-TOF tip’s fluorescence collection efficiency measuring, the diamond is illuminated under constant laser intensity through the bare fiber tip; the fluorescence is collected by the tested TOF tip or non-TOF tip. In the TOF tip or non-TOF tip’s fluorescence excitation efficiency measuring (fiber tip allying need to be reversed in the enlarged dashed box), the fluorescence is collected by the bare fiber tip and the diamond is illuminated through the non-TOF tip or the tested TOF tip with constant laser intensity coupled into them.
Fig. 5
Fig. 5 Microscope images of fluorescence excitation and collection efficiency measuring sets of (a) a long TOF tip, (b) a short TOF tip and (c) a non-TOF tip.
Fig. 6
Fig. 6 Fiber-based NV center setup. The green excitation laser (solid arrow), after passing the 532-nm clean-up filter CF and the dichroic mirror DM, is coupled by the objective O1 into the optical fiber OF1 tip where the diamond is attached (dashed triangular box). The fluorescence collected by the non-TOF/TOF tip filtered by 615-nm long-pass filter LP (dashed arrow) and coupled by objective O2 into optical fiber OF2 which is connected to the optical power meter/optical spectrometer/photodiode OM/OS/PD. The DC power supply is used to apply a static magnetic field to the diamond.
Fig. 7
Fig. 7 Comparison of measured fluorescence spectra. In all cases, the excitation laser power launched into the fiber is ∼151 μW. (a) is the spectrum of a ∼12.5-μm diamond on a TOF tip, (b) is the spectrum of a ∼12.5-μm diamond on a TOF tip, (b) is the spectrum of a ∼12.5-μm diamond on the center of a cleaved flat fiber end, and (c) is the spectrum of a ∼156-μm diamond on a non-TOF tip. The inset shows microscope images of these samples. The length of the TOF is ∼15 mm, and its tip diameter is ∼12.8 μm. The fiber diameter is ∼125   μm.
Fig. 8
Fig. 8 (a) Microscope images of a ∼5.2-μm diamond on the center of the cleaved non-TOF tip of the Ultra-high NA photonic microstructure fiber. (b) Schematic diagram of the tapered ultra-high NA photonic microstructure fiber.
Fig. 9
Fig. 9 (a) the ODMR spectra of a ∼11.4-μm diamond UV-curing glue bonded on a non-TOF tip center in a 9.6 mT magnetic field. (b) the ODMR spectra of the UV-curing glue bonded∼7.9-μm diamond on TOF tip in a 9.0 mT magnetic field. The laser power used for both cases was same, ∼36.5   μW. The signals are read by a photodiode detector. (c) The Magnetic field sensitivity comparison of the two sensor heads (a) and (b).
Fig. 10
Fig. 10 ODMR spectra of the NV-center ensembles in a ∼11.3-μm diamond bonded on the tip of a ∼10-mm long TOF recorded for various magnetic field values (Fluorescence intensity have been normalized). The TOF tip’ diameter is ∼13.3   μm. The magnetic field was applied by the DC coil. The test was executed using the Fig.6 setup, the laser power used to excite the diamond was 0.239 mW and the collected fluorescence was 0.309   μW (the power meter was set at 635 nm).

Tables (2)

Tables Icon

Table 1 Excitation and collection enhancement

Tables Icon

Table 2 Require excitation laser power to obtain 262 nW of fluorescence

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η = 2 π [ 1 c o s ( θ m a x ) ] 4 π = 1 c o s ( θ m a x ) 2
θ m a x = a r c s i n [ s i n ( π / 2 a r c s i n ( n c l a d / n c o r e ) n d i × n c o r e ]

Metrics