Abstract

We realized a solid-state-based vacuum ultraviolet frequency comb by harmonics generation in an external enhancement cavity. Optical conversions were so far reported by only using gaseous media. We present a theory that allows the most suited solid generation medium to be selected for specific target harmonics by adapting the material’s bandgap. We experimentally use a thin AlN film grown on a sapphire substrate to realize a compact frequency comb high-harmonic source in the Deep Ultraviolet (DUV) / Vacuum Ultraviolet (VUV) spectral range. By extending our earlier VUV source [Opt. Express 26, 21900 (2018)] with the enhancement cavity, a sub-Watt level Ti:sapphire femtosecond frequency comb is enhanced to 24 W stored average power, its 3rd, 5th, and 7th harmonics are generated, and the targeted 5th harmonic’s power at 160 nm increased by two orders of magnitude. The emerging nonlinear effects in the solid medium, together with suitable intra-cavity dispersion management, support optimal enhancement and stable locking. To demonstrate the realized frequency comb’s spectroscopic ability, we report on the beat measurement between the 3rd harmonic beam and a 266 nm CW laser reaching about 1 MHz accuracy.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Non-perturbative generation of DUV/VUV harmonics from crystal surfaces at 108 MHz repetition rate

J. Seres, E. Seres, C. Serrat, and T. Schumm
Opt. Express 26(17) 21900-21909 (2018)

Vacuum ultraviolet frequency combs generated by a femtosecond enhancement cavity in the visible

Birgitta Bernhardt, Akira Ozawa, Andreas Vernaleken, Ioachim Pupeza, Jan Kaster, Yohei Kobayashi, Ronald Holzwarth, Ernst Fill, Ferenc Krausz, Theodor W. Hänsch, and Thomas Udem
Opt. Lett. 37(4) 503-505 (2012)

Optimizing intracavity high harmonic generation for XUV fs frequency combs

Jane Lee, David R. Carlson, and R. Jason Jones
Opt. Express 19(23) 23315-23326 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema, “High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths,” Phys. Rev. Lett. 117(17), 173201 (2016).
    [Crossref] [PubMed]
  2. R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs, and K. S. E. Eikema, “Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory,” Phys. Rev. Lett. 120(4), 043204 (2018).
    [Crossref] [PubMed]
  3. D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
    [Crossref]
  4. A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
    [Crossref] [PubMed]
  5. S. Cavalieri, R. Eramo, M. Materazzi, C. Corsi, and M. Bellini, “Ramsey-Type Spectroscopy with high-order harmonics,” Phys. Rev. Lett. 89(13), 133002 (2002).
    [Crossref] [PubMed]
  6. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
    [Crossref] [PubMed]
  7. A. Ozawa and Y. Kobayashi, “VUV frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87(2), 022507 (2013).
    [Crossref]
  8. D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “XUV frequency-comb metrology on the ground state of helium,” Phys. Rev. A 84(6), 062512 (2011).
    [Crossref]
  9. I. Liontos, C. Corsi, S. Cavalieri, M. Bellini, and R. Eramo, “Split-pulse spectrometer for absolute XUV frequency measurements,” Opt. Lett. 36(11), 2047–2049 (2011).
    [Crossref] [PubMed]
  10. T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. Chen, C. Zhang, Z. Xu, and J. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B 21(2), 370–375 (2004).
    [Crossref]
  11. S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
    [Crossref]
  12. J.-J. Li, F.-F. Zhang, Z.-M. Wang, Y.-C. Xu, X.-C. Liu, N. Zong, S.-J. Zhang, F.-L. Xu, F. Yang, L. Yuan, Y. Kou, Y. Bo, D.-F. Cui, Q.-J. Peng, X.-Y. Wang, L.-J. Liu, C.-T. Chen, and Z.-Y. Xu, “High-energy single-frequency 167 nm deep-ultraviolet laser,” Opt. Lett. 43(11), 2563–2566 (2018).
    [Crossref] [PubMed]
  13. C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
    [Crossref] [PubMed]
  14. D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
    [Crossref]
  15. A. K. Mills, T. J. Hammond, M. H. C. Lam, and D. J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45(14), 142001 (2012).
    [Crossref]
  16. K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117(3), 957–967 (2014).
    [Crossref]
  17. A. Ozawa, Z. Zhao, M. Kuwata-Gonokami, and Y. Kobayashi, “High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation,” Opt. Express 23(12), 15107–15118 (2015).
    [Crossref] [PubMed]
  18. G. Winkler, J. Fellinger, J. Seres, E. Seres, and T. Schumm, “Non-planar femtosecond enhancement cavity for VUV frequency comb applications,” Opt. Express 24(5), 5253–5262 (2016).
    [Crossref] [PubMed]
  19. D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Power optimization of XUV frequency combs for spectroscopy applications [Invited],” Opt. Express 19(23), 23483–23493 (2011).
    [Crossref] [PubMed]
  20. G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
    [Crossref]
  21. T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
    [Crossref] [PubMed]
  22. T. Tsang, “Third- and fifth-harmonic generation at the interfaces of glass and liquids,” Phys. Rev. A 54(6), 5454–5457 (1996).
    [Crossref] [PubMed]
  23. H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal,” ACS Photonics 4(7), 1627–1632 (2017).
    [Crossref]
  24. K. F. Lee, X. Ding, T. J. Hammond, M. E. Fermann, G. Vampa, and P. B. Corkum, “Harmonic generation in solids with direct fiber laser pumping,” Opt. Lett. 42(6), 1113–1116 (2017).
    [Crossref] [PubMed]
  25. J. Seres, E. Seres, C. Serrat, and T. Schumm, “Non-perturbative generation of DUV/VUV harmonics from crystal surfaces at 108 MHz repetition rate,” Opt. Express 26(17), 21900–21909 (2018).
    [Crossref] [PubMed]
  26. T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting ref-erence cavity,” Opt. Commun. 35(3), 441–444 (1980).
    [Crossref]
  27. K. Moll, R. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13(5), 1672–1678 (2005).
    [Crossref] [PubMed]
  28. T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett. 107(18), 183903 (2011).
    [Crossref] [PubMed]
  29. D. R. Carlson, J. Lee, J. Mongelli, E. M. Wright, and R. J. Jones, “Intracavity ionization and pulse formation in femtosecond enhancement cavities,” Opt. Lett. 36(15), 2991–2993 (2011).
    [Crossref] [PubMed]
  30. S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
    [Crossref] [PubMed]
  31. F. Preusch, B. Adelmann, and R. Hellmann, “Micromachining of AlN and Al2O3 using fiber laser,” Micromachines (Basel) 5(4), 1051–1060 (2014).
    [Crossref]
  32. O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
    [Crossref]
  33. A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, “Dispersion of the nonlinear refractive index in sapphire,” Opt. Lett. 29(6), 602–604 (2004).
    [Crossref] [PubMed]
  34. M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
    [Crossref]
  35. D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 075330 (2008).
    [Crossref]
  36. E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
    [Crossref]
  37. E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
    [Crossref]
  38. L. von der Wense, B. Seiferle, and P. G. Thirolf, “Towards a 229Th-based nuclear clock,” Meas. Tech. 60, 1178–1192 (2018).

2018 (5)

R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs, and K. S. E. Eikema, “Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory,” Phys. Rev. Lett. 120(4), 043204 (2018).
[Crossref] [PubMed]

J.-J. Li, F.-F. Zhang, Z.-M. Wang, Y.-C. Xu, X.-C. Liu, N. Zong, S.-J. Zhang, F.-L. Xu, F. Yang, L. Yuan, Y. Kou, Y. Bo, D.-F. Cui, Q.-J. Peng, X.-Y. Wang, L.-J. Liu, C.-T. Chen, and Z.-Y. Xu, “High-energy single-frequency 167 nm deep-ultraviolet laser,” Opt. Lett. 43(11), 2563–2566 (2018).
[Crossref] [PubMed]

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

J. Seres, E. Seres, C. Serrat, and T. Schumm, “Non-perturbative generation of DUV/VUV harmonics from crystal surfaces at 108 MHz repetition rate,” Opt. Express 26(17), 21900–21909 (2018).
[Crossref] [PubMed]

L. von der Wense, B. Seiferle, and P. G. Thirolf, “Towards a 229Th-based nuclear clock,” Meas. Tech. 60, 1178–1192 (2018).

2017 (3)

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

K. F. Lee, X. Ding, T. J. Hammond, M. E. Fermann, G. Vampa, and P. B. Corkum, “Harmonic generation in solids with direct fiber laser pumping,” Opt. Lett. 42(6), 1113–1116 (2017).
[Crossref] [PubMed]

A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
[Crossref] [PubMed]

2016 (5)

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema, “High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths,” Phys. Rev. Lett. 117(17), 173201 (2016).
[Crossref] [PubMed]

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

G. Winkler, J. Fellinger, J. Seres, E. Seres, and T. Schumm, “Non-planar femtosecond enhancement cavity for VUV frequency comb applications,” Opt. Express 24(5), 5253–5262 (2016).
[Crossref] [PubMed]

M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
[Crossref]

2015 (3)

E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
[Crossref]

A. Ozawa, Z. Zhao, M. Kuwata-Gonokami, and Y. Kobayashi, “High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation,” Opt. Express 23(12), 15107–15118 (2015).
[Crossref] [PubMed]

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

2014 (2)

F. Preusch, B. Adelmann, and R. Hellmann, “Micromachining of AlN and Al2O3 using fiber laser,” Micromachines (Basel) 5(4), 1051–1060 (2014).
[Crossref]

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117(3), 957–967 (2014).
[Crossref]

2013 (1)

A. Ozawa and Y. Kobayashi, “VUV frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87(2), 022507 (2013).
[Crossref]

2012 (2)

A. K. Mills, T. J. Hammond, M. H. C. Lam, and D. J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45(14), 142001 (2012).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

2011 (5)

2009 (1)

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

2008 (1)

D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 075330 (2008).
[Crossref]

2007 (1)

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

2005 (2)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

K. Moll, R. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13(5), 1672–1678 (2005).
[Crossref] [PubMed]

2004 (2)

2002 (2)

S. Cavalieri, R. Eramo, M. Materazzi, C. Corsi, and M. Bellini, “Ramsey-Type Spectroscopy with high-order harmonics,” Phys. Rev. Lett. 89(13), 133002 (2002).
[Crossref] [PubMed]

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

1996 (1)

T. Tsang, “Third- and fifth-harmonic generation at the interfaces of glass and liquids,” Phys. Rev. A 54(6), 5454–5457 (1996).
[Crossref] [PubMed]

1995 (1)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

1980 (1)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting ref-erence cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Adelmann, B.

F. Preusch, B. Adelmann, and R. Hellmann, “Micromachining of AlN and Al2O3 using fiber laser,” Micromachines (Basel) 5(4), 1051–1060 (2014).
[Crossref]

Aitchison, J. S.

Allison, T. K.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett. 107(18), 183903 (2011).
[Crossref] [PubMed]

D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Power optimization of XUV frequency combs for spectroscopy applications [Invited],” Opt. Express 19(23), 23483–23493 (2011).
[Crossref] [PubMed]

Altmann, R. K.

R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs, and K. S. E. Eikema, “Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory,” Phys. Rev. Lett. 120(4), 043204 (2018).
[Crossref] [PubMed]

R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema, “High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths,” Phys. Rev. Lett. 117(17), 173201 (2016).
[Crossref] [PubMed]

Bellini, M.

I. Liontos, C. Corsi, S. Cavalieri, M. Bellini, and R. Eramo, “Split-pulse spectrometer for absolute XUV frequency measurements,” Opt. Lett. 36(11), 2047–2049 (2011).
[Crossref] [PubMed]

S. Cavalieri, R. Eramo, M. Materazzi, C. Corsi, and M. Bellini, “Ramsey-Type Spectroscopy with high-order harmonics,” Phys. Rev. Lett. 89(13), 133002 (2002).
[Crossref] [PubMed]

Benko, C.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

Beyer, A.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Bo, Y.

J.-J. Li, F.-F. Zhang, Z.-M. Wang, Y.-C. Xu, X.-C. Liu, N. Zong, S.-J. Zhang, F.-L. Xu, F. Yang, L. Yuan, Y. Kou, Y. Bo, D.-F. Cui, Q.-J. Peng, X.-Y. Wang, L.-J. Liu, C.-T. Chen, and Z.-Y. Xu, “High-energy single-frequency 167 nm deep-ultraviolet laser,” Opt. Lett. 43(11), 2563–2566 (2018).
[Crossref] [PubMed]

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Bounds, J. R.

A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
[Crossref] [PubMed]

Bussiere, B.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

Canova, F.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

Carlson, D. R.

Carstens, H.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Cavalieri, S.

I. Liontos, C. Corsi, S. Cavalieri, M. Bellini, and R. Eramo, “Split-pulse spectrometer for absolute XUV frequency measurements,” Opt. Lett. 36(11), 2047–2049 (2011).
[Crossref] [PubMed]

S. Cavalieri, R. Eramo, M. Materazzi, C. Corsi, and M. Bellini, “Ramsey-Type Spectroscopy with high-order harmonics,” Phys. Rev. Lett. 89(13), 133002 (2002).
[Crossref] [PubMed]

Chambaret, J.-P.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

Chen, C.

Chen, C. T.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Chen, C.-T.

Chen, M.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Chen, X.-L.

M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
[Crossref]

Cingöz, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett. 107(18), 183903 (2011).
[Crossref] [PubMed]

D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Power optimization of XUV frequency combs for spectroscopy applications [Invited],” Opt. Express 19(23), 23483–23493 (2011).
[Crossref] [PubMed]

Corkum, P. B.

Corsi, C.

I. Liontos, C. Corsi, S. Cavalieri, M. Bellini, and R. Eramo, “Split-pulse spectrometer for absolute XUV frequency measurements,” Opt. Lett. 36(11), 2047–2049 (2011).
[Crossref] [PubMed]

S. Cavalieri, R. Eramo, M. Materazzi, C. Corsi, and M. Bellini, “Ramsey-Type Spectroscopy with high-order harmonics,” Phys. Rev. Lett. 89(13), 133002 (2002).
[Crossref] [PubMed]

Corwin, K. L.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

Couillaud, B.

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting ref-erence cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Cui, D. F.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Cui, D.-F.

Dai, S. B.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Davila-Rodriguez, J.

A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
[Crossref] [PubMed]

Delaporte, P.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

Ding, X.

Dorre, N.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

Dreissen, L. S.

R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs, and K. S. E. Eikema, “Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory,” Phys. Rev. Lett. 120(4), 043204 (2018).
[Crossref] [PubMed]

R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema, “High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths,” Phys. Rev. Lett. 117(17), 173201 (2016).
[Crossref] [PubMed]

Eidam, T.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Eikema, K. S. E.

R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs, and K. S. E. Eikema, “Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory,” Phys. Rev. Lett. 120(4), 043204 (2018).
[Crossref] [PubMed]

R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema, “High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths,” Phys. Rev. Lett. 117(17), 173201 (2016).
[Crossref] [PubMed]

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “XUV frequency-comb metrology on the ground state of helium,” Phys. Rev. A 84(6), 062512 (2011).
[Crossref]

Eramo, R.

I. Liontos, C. Corsi, S. Cavalieri, M. Bellini, and R. Eramo, “Split-pulse spectrometer for absolute XUV frequency measurements,” Opt. Lett. 36(11), 2047–2049 (2011).
[Crossref] [PubMed]

S. Cavalieri, R. Eramo, M. Materazzi, C. Corsi, and M. Bellini, “Ramsey-Type Spectroscopy with high-order harmonics,” Phys. Rev. Lett. 89(13), 133002 (2002).
[Crossref] [PubMed]

Fareed, Q.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Fellinger, J.

Fermann, M. E.

Fill, E.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Gaarde, M. B.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

Galtier, S.

R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema, “High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths,” Phys. Rev. Lett. 117(17), 173201 (2016).
[Crossref] [PubMed]

Gaska, R.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Gohle, C.

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “XUV frequency-comb metrology on the ground state of helium,” Phys. Rev. A 84(6), 062512 (2011).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

Golde, D.

D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 075330 (2008).
[Crossref]

Grinin, A.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Guo, L.-W.

M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
[Crossref]

Hammond, T. J.

K. F. Lee, X. Ding, T. J. Hammond, M. E. Fermann, G. Vampa, and P. B. Corkum, “Harmonic generation in solids with direct fiber laser pumping,” Opt. Lett. 42(6), 1113–1116 (2017).
[Crossref] [PubMed]

A. K. Mills, T. J. Hammond, M. H. C. Lam, and D. J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45(14), 142001 (2012).
[Crossref]

Han, S.

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Hansch, T. W.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting ref-erence cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Hänsch, T. W.

A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
[Crossref] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

Hartl, I.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Power optimization of XUV frequency combs for spectroscopy applications [Invited],” Opt. Express 19(23), 23483–23493 (2011).
[Crossref] [PubMed]

Hayasaka, K.

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117(3), 957–967 (2014).
[Crossref]

Hellmann, R.

F. Preusch, B. Adelmann, and R. Hellmann, “Micromachining of AlN and Al2O3 using fiber laser,” Micromachines (Basel) 5(4), 1051–1060 (2014).
[Crossref]

Herrmann, M.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

Heyl, C. M.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

Högner, M.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Holzberger, S.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Holzwarth, R.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

Hostetter, J.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

Hu, W.-J.

M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
[Crossref]

Ido, T.

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117(3), 957–967 (2014).
[Crossref]

Itina, T.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

Jones, D. J.

A. K. Mills, T. J. Hammond, M. H. C. Lam, and D. J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45(14), 142001 (2012).
[Crossref]

Jones, R.

Jones, R. J.

Kanai, T.

Kanda, T.

Kandula, D. Z.

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “XUV frequency-comb metrology on the ground state of helium,” Phys. Rev. A 84(6), 062512 (2011).
[Crossref]

Khabarova, K.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Khan, M. A.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Kim, H.

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Kim, S.

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Kim, S.-W.

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Kim, Y. W.

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Kobayashi, Y.

Koch, S. W.

D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 075330 (2008).
[Crossref]

Kolachevsky, N.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Kou, Y.

Krausz, F.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

Kuokstis, E.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Kuwata-Gonokami, M.

Lam, M. H. C.

A. K. Mills, T. J. Hammond, M. H. C. Lam, and D. J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45(14), 142001 (2012).
[Crossref]

Lee, J.

Lee, K. F.

Li, J.-J.

Li, R. K.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Lilienfein, N.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Limpert, J.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Liontos, I.

Liu, L. J.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Liu, L.-J.

Liu, X.-C.

Lücking, F.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Maisenbacher, L.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Major, A.

Materazzi, M.

S. Cavalieri, R. Eramo, M. Materazzi, C. Corsi, and M. Bellini, “Ramsey-Type Spectroscopy with high-order harmonics,” Phys. Rev. Lett. 89(13), 133002 (2002).
[Crossref] [PubMed]

Matveev, A.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Meier, T.

D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 075330 (2008).
[Crossref]

Mills, A. K.

A. K. Mills, T. J. Hammond, M. H. C. Lam, and D. J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45(14), 142001 (2012).
[Crossref]

Moll, K.

Mongelli, J.

Nikolakakos, I.

Okhapkin, M.

E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
[Crossref]

Ozawa, A.

A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
[Crossref] [PubMed]

A. Ozawa, Z. Zhao, M. Kuwata-Gonokami, and Y. Kobayashi, “High average power coherent vuv generation at 10 MHz repetition frequency by intracavity high harmonic generation,” Opt. Express 23(12), 15107–15118 (2015).
[Crossref] [PubMed]

A. Ozawa and Y. Kobayashi, “VUV frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87(2), 022507 (2013).
[Crossref]

Peik, E.

E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
[Crossref]

Peng, Q. J.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Peng, Q.-J.

Pervak, V.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Peters, E.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Pinkert, T. J.

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “XUV frequency-comb metrology on the ground state of helium,” Phys. Rev. A 84(6), 062512 (2011).
[Crossref]

Pohl, R.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Porat, G.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

Preusch, F.

F. Preusch, B. Adelmann, and R. Hellmann, “Micromachining of AlN and Al2O3 using fiber laser,” Micromachines (Basel) 5(4), 1051–1060 (2014).
[Crossref]

Pupeza, I.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Rauschenberger, J.

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

Rojo, C.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Ruehl, A.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Power optimization of XUV frequency combs for spectroscopy applications [Invited],” Opt. Express 19(23), 23483–23493 (2011).
[Crossref] [PubMed]

Salumbides, E. J.

R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs, and K. S. E. Eikema, “Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory,” Phys. Rev. Lett. 120(4), 043204 (2018).
[Crossref] [PubMed]

Saule, T.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Schafer, K. J.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

Schibli, T. R.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

Schoun, S. B.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

Schowalter, L.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Schuessler, H. A.

A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
[Crossref] [PubMed]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

Schumm, T.

Seiferle, B.

L. von der Wense, B. Seiferle, and P. G. Thirolf, “Towards a 229Th-based nuclear clock,” Meas. Tech. 60, 1178–1192 (2018).

Sekikawa, T.

Sentis, M.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

Seres, E.

Seres, J.

Serrat, C.

Shur, M.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Simin, G.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Smith, P. W. E.

Tate, J. L.

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

Thirolf, P. G.

L. von der Wense, B. Seiferle, and P. G. Thirolf, “Towards a 229Th-based nuclear clock,” Meas. Tech. 60, 1178–1192 (2018).

Togashi, T.

Trubetskov, M.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Tsang, T.

T. Tsang, “Third- and fifth-harmonic generation at the interfaces of glass and liquids,” Phys. Rev. A 54(6), 5454–5457 (1996).
[Crossref] [PubMed]

Tsang, T. Y. F.

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

Tünnermann, A.

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

Ubachs, W.

R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs, and K. S. E. Eikema, “Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory,” Phys. Rev. Lett. 120(4), 043204 (2018).
[Crossref] [PubMed]

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “XUV frequency-comb metrology on the ground state of helium,” Phys. Rev. A 84(6), 062512 (2011).
[Crossref]

Udem, T.

A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
[Crossref] [PubMed]

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

Uteza, O.

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

Vampa, G.

von der Wense, L.

L. von der Wense, B. Seiferle, and P. G. Thirolf, “Towards a 229Th-based nuclear clock,” Meas. Tech. 60, 1178–1192 (2018).

Wakui, K.

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117(3), 957–967 (2014).
[Crossref]

Wang, J.

Wang, W.-J.

M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
[Crossref]

Wang, X. Y.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Wang, X.-Y.

Wang, Z. C.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Wang, Z. M.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Wang, Z.-M.

Watanabe, S.

Winkler, G.

Wright, E. M.

Xu, C.-H.

M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
[Crossref]

Xu, F.-L.

Xu, Y.-C.

Xu, Z.

Xu, Z. Y.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Xu, Z.-Y.

Yang, F.

J.-J. Li, F.-F. Zhang, Z.-M. Wang, Y.-C. Xu, X.-C. Liu, N. Zong, S.-J. Zhang, F.-L. Xu, F. Yang, L. Yuan, Y. Kou, Y. Bo, D.-F. Cui, Q.-J. Peng, X.-Y. Wang, L.-J. Liu, C.-T. Chen, and Z.-Y. Xu, “High-energy single-frequency 167 nm deep-ultraviolet laser,” Opt. Lett. 43(11), 2563–2566 (2018).
[Crossref] [PubMed]

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Yang, J. W.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Ye, J.

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett. 107(18), 183903 (2011).
[Crossref] [PubMed]

D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Power optimization of XUV frequency combs for spectroscopy applications [Invited],” Opt. Express 19(23), 23483–23493 (2011).
[Crossref] [PubMed]

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

K. Moll, R. Jones, and J. Ye, “Nonlinear dynamics inside femtosecond enhancement cavities,” Opt. Express 13(5), 1672–1678 (2005).
[Crossref] [PubMed]

Yoshino, F.

Yost, D. C.

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett. 107(18), 183903 (2011).
[Crossref] [PubMed]

D. C. Yost, A. Cingöz, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Power optimization of XUV frequency combs for spectroscopy applications [Invited],” Opt. Express 19(23), 23483–23493 (2011).
[Crossref] [PubMed]

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

Yuan, L.

Zhang, C.

Zhang, F. F.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Zhang, F.-F.

Zhang, J.

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

Zhang, J. Y.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Zhang, S. J.

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Zhang, S.-J.

Zhao, M.

M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
[Crossref]

Zhao, Z.

Zong, N.

J.-J. Li, F.-F. Zhang, Z.-M. Wang, Y.-C. Xu, X.-C. Liu, N. Zong, S.-J. Zhang, F.-L. Xu, F. Yang, L. Yuan, Y. Kou, Y. Bo, D.-F. Cui, Q.-J. Peng, X.-Y. Wang, L.-J. Liu, C.-T. Chen, and Z.-Y. Xu, “High-energy single-frequency 167 nm deep-ultraviolet laser,” Opt. Lett. 43(11), 2563–2566 (2018).
[Crossref] [PubMed]

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

ACS Photonics (1)

H. Kim, S. Han, Y. W. Kim, S. Kim, and S.-W. Kim, “Generation of coherent extreme-ultraviolet radiation from bulk sapphire crystal,” ACS Photonics 4(7), 1627–1632 (2017).
[Crossref]

Appl. Phys. B (1)

K. Wakui, K. Hayasaka, and T. Ido, “Generation of vacuum ultraviolet radiation by intracavity high-harmonic generation toward state detection of single trapped ions,” Appl. Phys. B 117(3), 957–967 (2014).
[Crossref]

Appl. Phys. Lett. (1)

E. Kuokstis, J. Zhang, Q. Fareed, J. W. Yang, G. Simin, M. A. Khan, R. Gaska, M. Shur, C. Rojo, and L. Schowalter, “Near-band-edge photoluminescence of wurtzite-type AlN,” Appl. Phys. Lett. 81(15), 2755–2757 (2002).
[Crossref]

C. R. Phys. (1)

E. Peik and M. Okhapkin, “Nuclear clocks based on resonant excitation of γ-transitions,” C. R. Phys. 16(5), 516–523 (2015).
[Crossref]

Chin. Phys. Lett. (1)

M. Zhao, C.-H. Xu, W.-J. Hu, W.-J. Wang, L.-W. Guo, and X.-L. Chen, “Observation of two-photon absorption and nonlinear refraction in AlN,” Chin. Phys. Lett. 33(10), 104201 (2016).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

A. K. Mills, T. J. Hammond, M. H. C. Lam, and D. J. Jones, “XUV frequency combs via femtosecond enhancement cavities,” J. Phys. B 45(14), 142001 (2012).
[Crossref]

Laser Phys. Lett. (1)

S. B. Dai, M. Chen, S. J. Zhang, Z. M. Wang, F. F. Zhang, F. Yang, Z. C. Wang, N. Zong, L. J. Liu, X. Y. Wang, J. Y. Zhang, Y. Bo, D. F. Cui, Q. J. Peng, R. K. Li, C. T. Chen, and Z. Y. Xu, “2.14 mW deep-ultraviolet laser at 165 nm by eighth-harmonic generation of a 1319 nm Nd:YAG laser in KBBF,” Laser Phys. Lett. 13(3), 035401 (2016).
[Crossref]

Meas. Tech. (1)

L. von der Wense, B. Seiferle, and P. G. Thirolf, “Towards a 229Th-based nuclear clock,” Meas. Tech. 60, 1178–1192 (2018).

Micromachines (Basel) (1)

F. Preusch, B. Adelmann, and R. Hellmann, “Micromachining of AlN and Al2O3 using fiber laser,” Micromachines (Basel) 5(4), 1051–1060 (2014).
[Crossref]

Nat. Commun. (1)

A. Ozawa, J. Davila-Rodriguez, J. R. Bounds, H. A. Schuessler, T. W. Hänsch, and T. Udem, “Single ion fluorescence excited with a single mode of an UV frequency comb,” Nat. Commun. 8(1), 44 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

G. Porat, C. M. Heyl, S. B. Schoun, C. Benko, N. Dorre, K. L. Corwin, and J. Ye, “Phase-matched extreme-ultraviolet frequency-comb generation,” Nat. Photonics 12(7), 387–391 (2018).
[Crossref]

Nat. Phys. (1)

D. C. Yost, T. R. Schibli, J. Ye, J. L. Tate, J. Hostetter, M. B. Gaarde, and K. J. Schafer, “Vacuum-ultraviolet frequency combs from below-threshold harmonics,” Nat. Phys. 5(11), 815–820 (2009).
[Crossref]

Nature (2)

C. Gohle, T. Udem, M. Herrmann, J. Rauschenberger, R. Holzwarth, H. A. Schuessler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436(7048), 234–237 (2005).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Direct frequency comb spectroscopy in the extreme ultraviolet,” Nature 482(7383), 68–71 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

T. W. Hansch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting ref-erence cavity,” Opt. Commun. 35(3), 441–444 (1980).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. A (4)

T. Y. F. Tsang, “Optical third-harmonic generation at interfaces,” Phys. Rev. A 52(5), 4116–4125 (1995).
[Crossref] [PubMed]

T. Tsang, “Third- and fifth-harmonic generation at the interfaces of glass and liquids,” Phys. Rev. A 54(6), 5454–5457 (1996).
[Crossref] [PubMed]

A. Ozawa and Y. Kobayashi, “VUV frequency-comb spectroscopy of atomic xenon,” Phys. Rev. A 87(2), 022507 (2013).
[Crossref]

D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “XUV frequency-comb metrology on the ground state of helium,” Phys. Rev. A 84(6), 062512 (2011).
[Crossref]

Phys. Rev. A (Coll. Park) (1)

D. C. Yost, A. Matveev, A. Grinin, E. Peters, L. Maisenbacher, A. Beyer, R. Pohl, N. Kolachevsky, K. Khabarova, T. W. Hansch, and T. Udem, “Spectroscopy of the hydrogen 1S-3S transition with chirped laser pulses,” Phys. Rev. A (Coll. Park) 93(4), 042509 (2016).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

D. Golde, T. Meier, and S. W. Koch, “High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations,” Phys. Rev. B Condens. Matter Mater. Phys. 77(7), 075330 (2008).
[Crossref]

Phys. Rev. Lett. (5)

S. Holzberger, N. Lilienfein, H. Carstens, T. Saule, M. Högner, F. Lücking, M. Trubetskov, V. Pervak, T. Eidam, J. Limpert, A. Tünnermann, E. Fill, F. Krausz, and I. Pupeza, “Femtosecond enhancement cavities in the nonlinear regime,” Phys. Rev. Lett. 115(2), 023902 (2015).
[Crossref] [PubMed]

T. K. Allison, A. Cingöz, D. C. Yost, and J. Ye, “Extreme nonlinear optics in a femtosecond enhancement cavity,” Phys. Rev. Lett. 107(18), 183903 (2011).
[Crossref] [PubMed]

S. Cavalieri, R. Eramo, M. Materazzi, C. Corsi, and M. Bellini, “Ramsey-Type Spectroscopy with high-order harmonics,” Phys. Rev. Lett. 89(13), 133002 (2002).
[Crossref] [PubMed]

R. K. Altmann, S. Galtier, L. S. Dreissen, and K. S. E. Eikema, “High-precision Ramsey-comb spectroscopy at deep ultraviolet wavelengths,” Phys. Rev. Lett. 117(17), 173201 (2016).
[Crossref] [PubMed]

R. K. Altmann, L. S. Dreissen, E. J. Salumbides, W. Ubachs, and K. S. E. Eikema, “Deep-ultraviolet frequency metrology of H2 for tests of molecular quantum theory,” Phys. Rev. Lett. 120(4), 043204 (2018).
[Crossref] [PubMed]

Proc. SPIE (1)

O. Uteza, B. Bussiere, F. Canova, J.-P. Chambaret, P. Delaporte, T. Itina, and M. Sentis, “Damage threshold of sapphire in short and long pulse regime,” Proc. SPIE 6732, 67321P (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup with (a) HR: high reflectors; CM: chirped mirror; L1: BK7 lens, f = 750 mm; L2: MgF2 lens, f = 160 mm; IC: input coupler, OC: output coupler; PBS: polarizing beam splitter; PD: photo diodes, PMT: photo-multiplier tube. (b) Magnified area around the crystal.
Fig. 2
Fig. 2 (a) Generated high-harmonic spectra at several introduced intra-cavity GDDs. The base lines are shifted for better visibility and dashed grey lines help to guide the eyes at the base lines and at the harmonic orders. (b) The power of the generated harmonics is strongly affected by the introduced intra-cavity GDD and follows the peak intensity of the intra-cavity laser pulses. (c) Comparing to an extra-cavity setup, when the harmonics are directly generated with the output of the Ti:sapphire oscillator [25], strong increase of the 5th harmonic power is obtained by placing the AlN sample into the enhancement cavity.
Fig. 3
Fig. 3 (a) The intra-cavity spectrum (base lines are shifted for better visibility), (b) the intra-cavity pulse energy and pulse duration (orange curve is added to guide the eye) are dependent on the introduced intra-cavity GDD. At the GDD of −40 fs2, the intra-cavity spectrum almost perfectly overlaps with the seed spectrum (black dashed in panel Fig. 3(a)). (c) Measured autocorrelation curves of the intra-cavity pluses.
Fig. 4
Fig. 4 Effect of the nonlinearity on the cavity-length detuning curves at added intra-cavity GDD of (a) −20 fs2, (b) −40 fs2, (orange solid/dashed: intra-cavity laser intensity; blue: 5th harmonic intensity H5; grey: signal from the locking electronics). The locking possibilities in panel Fig. 4(b) are indicated in the linear (dotted black) and the nonlinear (dashed black) cases.
Fig. 5
Fig. 5 Beat measurement to verify the frequency comb character of the generated harmonic beam. (a) Experimental setup. Inset: measured spectra of the 3rd harmonic beam and the CW laser. (b) Beat-signal peaks relative to the two nearest comb lines (distance 108 MHz) are observed and (inset) tuned by sub-Hz tuning of the repetition rate of the seed laser.
Fig. 6
Fig. 6 (a) Measured high-harmonic spectra generated from an AlN film on sapphire (blue) and from the sapphire substrate without film (green) at laser intensity of 1.6 TW/cm2. The origin of the fluorescence peak at 220 nm is discussed in the text. (b) Calculated spectra of sapphire (green) and AlN (blue) for the same condition as in panel Fig. 6(a), the dashed black line indicates the detection limit. Rabi frequencies Ω R are 2.2 eV and 6.5 eV, respectively. (c) Calculated spectrum series and (d) the intensities of the individual harmonic lines for AlN by changing the band gap energy between 1 eV and 10 eV. Calculations in Fig. 6(d) were performed for H3 (dashed lines), H5 (solid lines) and H7 (fine dashed lines) and for two transition dipoles of 1 × 10−28 Cm (orange) and 3 × 10−28 Cm (blue), or Rabi frequency of 2.2 eV and 6.5 eV, respectively.

Metrics