Abstract

We experimentally demonstrate a one-color two-photon transition from the 5S1/2 ground state to the 6S1/2 excited state in rubidium (Rb) vapor using a continuous wave laser at 993 nm. The Rb vapor contains both isotopes (85Rb and 87Rb) in their natural abundances. The electric dipole-allowed transitions are characterized by varying the power and polarization of the excitation laser. Since the optical setup is relatively simple, and the energies of the allowed levels are impervious to stray magnetic fields, this is an attractive choice for a frequency reference at 993 nm, with possible applications in precision measurements and quantum information processing.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polarization-dependent Zeeman spectroscopy in the two-photon 3S1/24D3/2,5/2 transition in Na vapor

Kotaro Shijo, Kazuki Harimaya, and Masaharu Mitsunaga
J. Opt. Soc. Am. B 33(8) 1731-1739 (2016)

Background-free fluorescence detection of cold atoms in a two-color magneto-optical trap

Baodong Yang, Qiangbing Liang, Jun He, and Junmin Wang
Opt. Express 20(11) 11944-11952 (2012)

Lifetime and hyperfine splitting measurements on the 7s and 6p levels in rubidium

E. Gomez, S. Aubin, L. A. Orozco, and G. D. Sprouse
J. Opt. Soc. Am. B 21(11) 2058-2067 (2004)

References

  • View by:
  • |
  • |
  • |

  1. K. Shimoda, High-Resolution Laser Spectroscopy, Topics in Applied Physics (SpringerBerlin, 2014).
  2. L. S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” JETP Lett. 12, 113–115 (1970).
  3. B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet Doppler,” J. Phys. (Paris) 34, 845–858 (1973).
    [Crossref]
  4. N. Bloembergen, M. D. Levenson, and M. M. Salour, “Zeeman effect in the two-photon 3S−5S transition in sodium vapor,” Phys. Rev. Lett. 32, 867–869 (1974).
    [Crossref]
  5. P. Morzyński, P. Wcisło, P. Ablewski, R. Gartman, W. Gawlik, P. Masłowski, B. Nagórny, F. Ozimek, C. Radzewicz, M. Witkowski, R. Ciuryło, and M. Zawada, “Absolute frequency measurement of rubidium 5s-7s two-photon transitions,” Opt. Lett. 38, 4581–4584 (2013).
    [Crossref]
  6. T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
    [Crossref]
  7. S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
    [Crossref]
  8. I. D. Abella, “Optical double-photon absorption in cesium vapor,” Phys. Rev. Lett. 9, 453–455 (1962).
    [Crossref]
  9. F. Biraben, B. Cagnac, and G. Grynberg, “Observation of the 3S−5S two-photon transition in sodium vapor without Doppler broadening, using a CW dye laser,” Phys. Lett. A 49, 71 – 72 (1974).
    [Crossref]
  10. D. Roberts and E. Fortson, “Rubidium isotope shifts and hyperfine structure by two-photon spectroscopy with a multi-mode laser,” Opt. Commun. 14, 332 – 335 (1975).
    [Crossref]
  11. E. Campani, G. Degan, G. Gorini, and E. Polacco, “Measurement of the 8S hyperfine splitting in cesium,” Opt. Commun. 24, 203–206 (1978).
    [Crossref]
  12. Y.-W. Liu and P. E. G. Baird, “Two-photon spectroscopy in potassium,” Meas. Sci. Technol. 12, 740 (2001).
    [Crossref]
  13. B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of  6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
    [Crossref]
  14. M.-S. Ko and Y.-W. Liu, “Observation of rubidium 5S1/2 →7S1/2 two-photon transitions with a diode laser,” Opt. Lett. 29, 1799–1801 (2004).
    [Crossref] [PubMed]
  15. Y.-C. Lee, Y.-H. Chang, Y.-Y. Chen, C.-C. Tsai, and H.-C. Chui, “Polarization and pressure effects in cæsium 6S-8S two-photon spectroscopy,” J. Phys. B: At. Mol. Opt. Phys. 43, 235003 (2010).
    [Crossref]
  16. T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, “Doppler-free two-photon spectroscopy of hydrogen 1s−2s,” Phys. Rev. Lett. 34, 307–309 (1975).
    [Crossref]
  17. A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
    [Crossref]
  18. R. Roy, P. C. Condylis, Y. J. Johnathan, and B. Hessmo, “Atomic frequency reference at 1033 nm for ytterbium (Yb)-doped fiber lasers and applications exploiting a rubidium (Rb) 5S1/2 to 4D5/2 one-colour two-photon transition,” Opt. Express 25, 7960–7969 (2017).
    [Crossref] [PubMed]
  19. T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
    [Crossref] [PubMed]
  20. K. D. Bonin and T. J. McIlrath, “Two-photon electric-dipole selection rules,” J. Opt. Soc. Am. B 1, 52–55 (1984).
    [Crossref]
  21. A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
    [Crossref]
  22. G. Grynberg, F. Biraben, E. Giacobino, and B. Cagnac, “Doppler-free two-photon spectroscopy of neon. ii. line intensities,” J. Phys. France 38, 629–640 (1977).
    [Crossref]
  23. G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791 (1977).
    [Crossref]
  24. E. Gomez, S. Aubin, L. A. Orozco, and G. D. Sprouse, “Lifetime and hyperfine splitting measurements on the 7S and 6P levels in rubidium,” J. Opt. Soc. Am. B 21, 2058–2067 (2004).
    [Crossref]
  25. E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, “Lifetime measurement of the 6S level of rubidium,” Phys. Rev. A 72, 012502 (2005).
    [Crossref]
  26. C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
    [Crossref]
  27. J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
    [Crossref]
  28. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82, 053842 (2010).
    [Crossref]
  29. T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
    [Crossref]
  30. H. You, S. M. Hendrickson, and J. D. Franson, “Analysis of enhanced two-photon absorption in tapered optical fibers,” Phys. Rev. A 78, 053803 (2008).
    [Crossref]

2017 (1)

2016 (1)

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

2013 (2)

P. Morzyński, P. Wcisło, P. Ablewski, R. Gartman, W. Gawlik, P. Masłowski, B. Nagórny, F. Ozimek, C. Radzewicz, M. Witkowski, R. Ciuryło, and M. Zawada, “Absolute frequency measurement of rubidium 5s-7s two-photon transitions,” Opt. Lett. 38, 4581–4584 (2013).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

2010 (2)

Y.-C. Lee, Y.-H. Chang, Y.-Y. Chen, C.-C. Tsai, and H.-C. Chui, “Polarization and pressure effects in cæsium 6S-8S two-photon spectroscopy,” J. Phys. B: At. Mol. Opt. Phys. 43, 235003 (2010).
[Crossref]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82, 053842 (2010).
[Crossref]

2008 (2)

H. You, S. M. Hendrickson, and J. D. Franson, “Analysis of enhanced two-photon absorption in tapered optical fibers,” Phys. Rev. A 78, 053803 (2008).
[Crossref]

A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
[Crossref]

2006 (2)

T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

2005 (1)

E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, “Lifetime measurement of the 6S level of rubidium,” Phys. Rev. A 72, 012502 (2005).
[Crossref]

2004 (2)

2003 (3)

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of  6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
[Crossref]

2001 (1)

Y.-W. Liu and P. E. G. Baird, “Two-photon spectroscopy in potassium,” Meas. Sci. Technol. 12, 740 (2001).
[Crossref]

1999 (1)

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[Crossref]

1984 (1)

1978 (1)

E. Campani, G. Degan, G. Gorini, and E. Polacco, “Measurement of the 8S hyperfine splitting in cesium,” Opt. Commun. 24, 203–206 (1978).
[Crossref]

1977 (2)

G. Grynberg, F. Biraben, E. Giacobino, and B. Cagnac, “Doppler-free two-photon spectroscopy of neon. ii. line intensities,” J. Phys. France 38, 629–640 (1977).
[Crossref]

G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791 (1977).
[Crossref]

1975 (2)

T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, “Doppler-free two-photon spectroscopy of hydrogen 1s−2s,” Phys. Rev. Lett. 34, 307–309 (1975).
[Crossref]

D. Roberts and E. Fortson, “Rubidium isotope shifts and hyperfine structure by two-photon spectroscopy with a multi-mode laser,” Opt. Commun. 14, 332 – 335 (1975).
[Crossref]

1974 (2)

F. Biraben, B. Cagnac, and G. Grynberg, “Observation of the 3S−5S two-photon transition in sodium vapor without Doppler broadening, using a CW dye laser,” Phys. Lett. A 49, 71 – 72 (1974).
[Crossref]

N. Bloembergen, M. D. Levenson, and M. M. Salour, “Zeeman effect in the two-photon 3S−5S transition in sodium vapor,” Phys. Rev. Lett. 32, 867–869 (1974).
[Crossref]

1973 (1)

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet Doppler,” J. Phys. (Paris) 34, 845–858 (1973).
[Crossref]

1970 (1)

L. S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” JETP Lett. 12, 113–115 (1970).

1962 (1)

I. D. Abella, “Optical double-photon absorption in cesium vapor,” Phys. Rev. Lett. 9, 453–455 (1962).
[Crossref]

Abella, I. D.

I. D. Abella, “Optical double-photon absorption in cesium vapor,” Phys. Rev. Lett. 9, 453–455 (1962).
[Crossref]

Abgrall, M.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Ablewski, P.

Alnis, J.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Altschul, B.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Aubin, S.

Baird, P. E. G.

Y.-W. Liu and P. E. G. Baird, “Two-photon spectroscopy in potassium,” Meas. Sci. Technol. 12, 740 (2001).
[Crossref]

Baumer, F.

E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, “Lifetime measurement of the 6S level of rubidium,” Phys. Rev. A 72, 012502 (2005).
[Crossref]

Becerra, F. E.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82, 053842 (2010).
[Crossref]

Becher, C.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Bennett, S. C.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[Crossref]

Beyer, A.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Biraben, F.

G. Grynberg, F. Biraben, E. Giacobino, and B. Cagnac, “Doppler-free two-photon spectroscopy of neon. ii. line intensities,” J. Phys. France 38, 629–640 (1977).
[Crossref]

F. Biraben, B. Cagnac, and G. Grynberg, “Observation of the 3S−5S two-photon transition in sodium vapor without Doppler broadening, using a CW dye laser,” Phys. Lett. A 49, 71 – 72 (1974).
[Crossref]

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet Doppler,” J. Phys. (Paris) 34, 845–858 (1973).
[Crossref]

Blatt, R.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Bloembergen, N.

N. Bloembergen, M. D. Levenson, and M. M. Salour, “Zeeman effect in the two-photon 3S−5S transition in sodium vapor,” Phys. Rev. Lett. 32, 867–869 (1974).
[Crossref]

Bonin, K. D.

Bouchiat, M. A.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Bushaw, B. A.

B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of  6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
[Crossref]

Cagnac, B.

G. Grynberg, F. Biraben, E. Giacobino, and B. Cagnac, “Doppler-free two-photon spectroscopy of neon. ii. line intensities,” J. Phys. France 38, 629–640 (1977).
[Crossref]

G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791 (1977).
[Crossref]

F. Biraben, B. Cagnac, and G. Grynberg, “Observation of the 3S−5S two-photon transition in sodium vapor without Doppler broadening, using a CW dye laser,” Phys. Lett. A 49, 71 – 72 (1974).
[Crossref]

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet Doppler,” J. Phys. (Paris) 34, 845–858 (1973).
[Crossref]

Campani, E.

E. Campani, G. Degan, G. Gorini, and E. Polacco, “Measurement of the 8S hyperfine splitting in cesium,” Opt. Commun. 24, 203–206 (1978).
[Crossref]

Chanelière, T.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Chang, Y.-H.

Y.-C. Lee, Y.-H. Chang, Y.-Y. Chen, C.-C. Tsai, and H.-C. Chui, “Polarization and pressure effects in cæsium 6S-8S two-photon spectroscopy,” J. Phys. B: At. Mol. Opt. Phys. 43, 235003 (2010).
[Crossref]

Chapman, M. S.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Chauvat, D.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Chebotaev, V. P.

L. S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” JETP Lett. 12, 113–115 (1970).

Chen, Y.-Y.

Y.-C. Lee, Y.-H. Chang, Y.-Y. Chen, C.-C. Tsai, and H.-C. Chui, “Polarization and pressure effects in cæsium 6S-8S two-photon spectroscopy,” J. Phys. B: At. Mol. Opt. Phys. 43, 235003 (2010).
[Crossref]

Cho, D.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[Crossref]

Chuang, I. L.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Chui, H.-C.

Y.-C. Lee, Y.-H. Chang, Y.-Y. Chen, C.-C. Tsai, and H.-C. Chui, “Polarization and pressure effects in cæsium 6S-8S two-photon spectroscopy,” J. Phys. B: At. Mol. Opt. Phys. 43, 235003 (2010).
[Crossref]

Ciurylo, R.

Condylis, P. C.

Dax, A.

B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of  6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
[Crossref]

Degan, G.

E. Campani, G. Degan, G. Gorini, and E. Polacco, “Measurement of the 8S hyperfine splitting in cesium,” Opt. Commun. 24, 203–206 (1978).
[Crossref]

Drake, G. W. F.

B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of  6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
[Crossref]

Eschner, J.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Ewald, G.

B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of  6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
[Crossref]

Fortson, E.

D. Roberts and E. Fortson, “Rubidium isotope shifts and hyperfine structure by two-photon spectroscopy with a multi-mode laser,” Opt. Commun. 14, 332 – 335 (1975).
[Crossref]

Franson, J. D.

H. You, S. M. Hendrickson, and J. D. Franson, “Analysis of enhanced two-photon absorption in tapered optical fibers,” Phys. Rev. A 78, 053803 (2008).
[Crossref]

Gartman, R.

Gawlik, W.

Giacobino, E.

G. Grynberg, F. Biraben, E. Giacobino, and B. Cagnac, “Doppler-free two-photon spectroscopy of neon. ii. line intensities,” J. Phys. France 38, 629–640 (1977).
[Crossref]

Gokhroo, V.

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

Gomez, E.

E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, “Lifetime measurement of the 6S level of rubidium,” Phys. Rev. A 72, 012502 (2005).
[Crossref]

E. Gomez, S. Aubin, L. A. Orozco, and G. D. Sprouse, “Lifetime and hyperfine splitting measurements on the 7S and 6P levels in rubidium,” J. Opt. Soc. Am. B 21, 2058–2067 (2004).
[Crossref]

Gorini, G.

E. Campani, G. Degan, G. Gorini, and E. Polacco, “Measurement of the 8S hyperfine splitting in cesium,” Opt. Commun. 24, 203–206 (1978).
[Crossref]

Grosche, G.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Grynberg, G.

G. Grynberg, F. Biraben, E. Giacobino, and B. Cagnac, “Doppler-free two-photon spectroscopy of neon. ii. line intensities,” J. Phys. France 38, 629–640 (1977).
[Crossref]

G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791 (1977).
[Crossref]

F. Biraben, B. Cagnac, and G. Grynberg, “Observation of the 3S−5S two-photon transition in sodium vapor without Doppler broadening, using a CW dye laser,” Phys. Lett. A 49, 71 – 72 (1974).
[Crossref]

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet Doppler,” J. Phys. (Paris) 34, 845–858 (1973).
[Crossref]

Guéna, J.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Gulde, S.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Häffner, H.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Hänsch, T. W.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, “Doppler-free two-photon spectroscopy of hydrogen 1s−2s,” Phys. Rev. Lett. 34, 307–309 (1975).
[Crossref]

Hendrickson, S. M.

H. You, S. M. Hendrickson, and J. D. Franson, “Analysis of enhanced two-photon absorption in tapered optical fibers,” Phys. Rev. A 78, 053803 (2008).
[Crossref]

Hessmo, B.

Holzwarth, R.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Jacquier, P.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Jahier, E.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Jenkins, S. D.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Johnathan, Y. J.

Kennedy, T. A. B.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Ko, M.-S.

Kolachevsky, N.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Kuzmich, A.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Lancaster, G.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Lange, A. D.

E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, “Lifetime measurement of the 6S level of rubidium,” Phys. Rev. A 72, 012502 (2005).
[Crossref]

Laurent, P.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Lee, S. A.

T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, “Doppler-free two-photon spectroscopy of hydrogen 1s−2s,” Phys. Rev. Lett. 34, 307–309 (1975).
[Crossref]

Lee, Y.-C.

Y.-C. Lee, Y.-H. Chang, Y.-Y. Chen, C.-C. Tsai, and H.-C. Chui, “Polarization and pressure effects in cæsium 6S-8S two-photon spectroscopy,” J. Phys. B: At. Mol. Opt. Phys. 43, 235003 (2010).
[Crossref]

Legero, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Levenson, M. D.

N. Bloembergen, M. D. Levenson, and M. M. Salour, “Zeeman effect in the two-photon 3S−5S transition in sodium vapor,” Phys. Rev. Lett. 32, 867–869 (1974).
[Crossref]

Lintz, M.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Liu, Y.-W.

Maslowski, P.

Matsukevich, D. N.

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

Matveev, A.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

McIlrath, T. J.

Morzynski, P.

Nagórny, B.

Nic Chormaic, S.

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

Nieddu, T.

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

Nörtershäuser, W.

B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of  6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
[Crossref]

Orozco, L. A.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82, 053842 (2010).
[Crossref]

E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, “Lifetime measurement of the 6S level of rubidium,” Phys. Rev. A 72, 012502 (2005).
[Crossref]

E. Gomez, S. Aubin, L. A. Orozco, and G. D. Sprouse, “Lifetime and hyperfine splitting measurements on the 7S and 6P levels in rubidium,” J. Opt. Soc. Am. B 21, 2058–2067 (2004).
[Crossref]

Ozimek, F.

Papoyan, A. V.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Parthey, C. G.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Pérez Galv, A.

A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
[Crossref]

Polacco, E.

E. Campani, G. Degan, G. Gorini, and E. Polacco, “Measurement of the 8S hyperfine splitting in cesium,” Opt. Commun. 24, 203–206 (1978).
[Crossref]

Predehl, K.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Radzewicz, C.

Riebe, M.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Roberts, D.

D. Roberts and E. Fortson, “Rubidium isotope shifts and hyperfine structure by two-photon spectroscopy with a multi-mode laser,” Opt. Commun. 14, 332 – 335 (1975).
[Crossref]

Roberts, J. L.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[Crossref]

Rolston, S. L.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82, 053842 (2010).
[Crossref]

Rovera, D.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Roy, R.

Salomon, C.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Salour, M. M.

N. Bloembergen, M. D. Levenson, and M. M. Salour, “Zeeman effect in the two-photon 3S−5S transition in sodium vapor,” Phys. Rev. Lett. 32, 867–869 (1974).
[Crossref]

Sanguinetti, S.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Sarkisyan, D.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Schmidt-Kaler, F.

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Schnatz, H.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Shimoda, K.

K. Shimoda, High-Resolution Laser Spectroscopy, Topics in Applied Physics (SpringerBerlin, 2014).

Shishaev, A. V.

L. S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” JETP Lett. 12, 113–115 (1970).

Sprouse, G. D.

E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, “Lifetime measurement of the 6S level of rubidium,” Phys. Rev. A 72, 012502 (2005).
[Crossref]

E. Gomez, S. Aubin, L. A. Orozco, and G. D. Sprouse, “Lifetime and hyperfine splitting measurements on the 7S and 6P levels in rubidium,” J. Opt. Soc. Am. B 21, 2058–2067 (2004).
[Crossref]

Terra, O.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Tsai, C.-C.

Y.-C. Lee, Y.-H. Chang, Y.-Y. Chen, C.-C. Tsai, and H.-C. Chui, “Polarization and pressure effects in cæsium 6S-8S two-photon spectroscopy,” J. Phys. B: At. Mol. Opt. Phys. 43, 235003 (2010).
[Crossref]

Udem, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Vasilenko, L. S.

L. S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” JETP Lett. 12, 113–115 (1970).

Wallenstein, R.

T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, “Doppler-free two-photon spectroscopy of hydrogen 1s−2s,” Phys. Rev. Lett. 34, 307–309 (1975).
[Crossref]

Wasan, A.

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

Wcislo, P.

Weyers, S.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Wieman, C.

T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, “Doppler-free two-photon spectroscopy of hydrogen 1s−2s,” Phys. Rev. Lett. 34, 307–309 (1975).
[Crossref]

Wieman, C. E.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[Crossref]

Wilken, T.

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

Willis, R. T.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82, 053842 (2010).
[Crossref]

Witkowski, M.

Wood, C. S.

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[Crossref]

You, H.

H. You, S. M. Hendrickson, and J. D. Franson, “Analysis of enhanced two-photon absorption in tapered optical fibers,” Phys. Rev. A 78, 053803 (2008).
[Crossref]

Zawada, M.

Can. J. Phys. (1)

C. S. Wood, S. C. Bennett, J. L. Roberts, D. Cho, and C. E. Wieman, “Precision measurement of parity nonconservation in cesium,” Can. J. Phys. 77, 7–75 (1999).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. (Paris) (1)

B. Cagnac, G. Grynberg, and F. Biraben, “Spectroscopie d’absorption multiphotonique sans effet Doppler,” J. Phys. (Paris) 34, 845–858 (1973).
[Crossref]

J. Phys. B: At. Mol. Opt. Phys. (1)

Y.-C. Lee, Y.-H. Chang, Y.-Y. Chen, C.-C. Tsai, and H.-C. Chui, “Polarization and pressure effects in cæsium 6S-8S two-photon spectroscopy,” J. Phys. B: At. Mol. Opt. Phys. 43, 235003 (2010).
[Crossref]

J. Phys. France (1)

G. Grynberg, F. Biraben, E. Giacobino, and B. Cagnac, “Doppler-free two-photon spectroscopy of neon. ii. line intensities,” J. Phys. France 38, 629–640 (1977).
[Crossref]

JETP Lett. (1)

L. S. Vasilenko, V. P. Chebotaev, and A. V. Shishaev, “Line shape of two-photon absorption in a standing-wave field in a gas,” JETP Lett. 12, 113–115 (1970).

Journal of Optics (1)

T. Nieddu, V. Gokhroo, and S. Nic Chormaic, “Optical nanofibres and neutral atoms,” Journal of Optics 18, 053001 (2016).
[Crossref]

Meas. Sci. Technol. (1)

Y.-W. Liu and P. E. G. Baird, “Two-photon spectroscopy in potassium,” Meas. Sci. Technol. 12, 740 (2001).
[Crossref]

Opt. Commun. (2)

D. Roberts and E. Fortson, “Rubidium isotope shifts and hyperfine structure by two-photon spectroscopy with a multi-mode laser,” Opt. Commun. 14, 332 – 335 (1975).
[Crossref]

E. Campani, G. Degan, G. Gorini, and E. Polacco, “Measurement of the 8S hyperfine splitting in cesium,” Opt. Commun. 24, 203–206 (1978).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. (1)

S. Gulde, H. Häffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I. L. Chuang, and R. Blatt, “Quantum information processing with trapped Ca + ions,” Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 361, 1363–1374 (2003).
[Crossref]

Phys. Lett. A (1)

F. Biraben, B. Cagnac, and G. Grynberg, “Observation of the 3S−5S two-photon transition in sodium vapor without Doppler broadening, using a CW dye laser,” Phys. Lett. A 49, 71 – 72 (1974).
[Crossref]

Phys. Rev. A (4)

A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
[Crossref]

E. Gomez, F. Baumer, A. D. Lange, G. D. Sprouse, and L. A. Orozco, “Lifetime measurement of the 6S level of rubidium,” Phys. Rev. A 72, 012502 (2005).
[Crossref]

H. You, S. M. Hendrickson, and J. D. Franson, “Analysis of enhanced two-photon absorption in tapered optical fibers,” Phys. Rev. A 78, 053803 (2008).
[Crossref]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Correlated photon pairs generated from a warm atomic ensemble,” Phys. Rev. A 82, 053842 (2010).
[Crossref]

Phys. Rev. Lett. (7)

J. Guéna, D. Chauvat, P. Jacquier, E. Jahier, M. Lintz, S. Sanguinetti, A. Wasan, M. A. Bouchiat, A. V. Papoyan, and D. Sarkisyan, “New manifestation of atomic parity violation in cesium: A chiral optical gain induced by linearly polarized 6S−7S excitation,” Phys. Rev. Lett. 90, 143001 (2003).
[Crossref]

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich, “Quantum telecommunication based on atomic cascade transitions,” Phys. Rev. Lett. 96, 093604 (2006).
[Crossref] [PubMed]

T. W. Hänsch, S. A. Lee, R. Wallenstein, and C. Wieman, “Doppler-free two-photon spectroscopy of hydrogen 1s−2s,” Phys. Rev. Lett. 34, 307–309 (1975).
[Crossref]

A. Matveev, C. G. Parthey, K. Predehl, J. Alnis, A. Beyer, R. Holzwarth, T. Udem, T. Wilken, N. Kolachevsky, M. Abgrall, D. Rovera, C. Salomon, P. Laurent, G. Grosche, O. Terra, T. Legero, H. Schnatz, S. Weyers, B. Altschul, and T. W. Hänsch, “Precision measurement of the hydrogen 1S−2S frequency via a 920-km fiber link,” Phys. Rev. Lett. 110, 230801 (2013).
[Crossref]

B. A. Bushaw, W. Nörtershäuser, G. Ewald, A. Dax, and G. W. F. Drake, “Hyperfine splitting, isotope shift, and level energy of the 3S states of  6,7Li,” Phys. Rev. Lett. 91, 043004 (2003).
[Crossref]

I. D. Abella, “Optical double-photon absorption in cesium vapor,” Phys. Rev. Lett. 9, 453–455 (1962).
[Crossref]

N. Bloembergen, M. D. Levenson, and M. M. Salour, “Zeeman effect in the two-photon 3S−5S transition in sodium vapor,” Phys. Rev. Lett. 32, 867–869 (1974).
[Crossref]

Rep. Prog. Phys. (1)

G. Grynberg and B. Cagnac, “Doppler-free multiphotonic spectroscopy,” Rep. Prog. Phys. 40, 791 (1977).
[Crossref]

Rev. Mod. Phys. (1)

T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297–1309 (2006).
[Crossref]

Other (1)

K. Shimoda, High-Resolution Laser Spectroscopy, Topics in Applied Physics (SpringerBerlin, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Energy level diagram for Rb. A beam at 993 nm excites atoms from 5 S 1 / 2 to 6 S 1 / 2 via single-color two-photon excitation. The intermediate virtual state is represented as a dashed line. The atoms decay back to the 5 S 1 / 2 level via the 5 P 1 / 2 or 5 P 3 / 2 levels, with photons emitted at 795 nm and 780 nm (orange arrows); (b) Hyperfine level diagrams for the two Rb isotopes. Two-photon transitions allowed by the selection rule, Δ F = 0, Δ m F = 0, are shown, along with the frequencies of the hyperfine splittings.
Fig. 2
Fig. 2 Schematic of the experimental setup. Light from a tunable 993 nm laser is used for two-photon excitation in a Rb vapor cell using a retro-reflected configuration. The resulting atomic fluorescence is detected by a PMT. The polarizations of the forward and retro-reflected beams are controlled using QWPs. A small amount (i.e. <10%) of the 993 nm beam is coupled to a Fabry-Pérot cavity and a wavemeter to monitor the laser frequency. M1-M5: Mirrors, L1-L3 Plano-convex lens, HWP: Half-wave plate, QWP: Quarter-wave plate, PBS: Polarizing beam splitter, CM: Concave mirror, PMT: Photomultiplier tube, FL: Short-pass optical filter, PD: Photodiode.
Fig. 3
Fig. 3 (a) Typical spectroscopic signal obtained by scanning the frequency of the 993 nm pump beam and recording the signal on the PMT. Each peak indicates a hyperfine transition as labeled. (b) Comparison of the individual peak intensities and linewidths from (a). (c) Linear dependence of the peak height as a function of the total pump power (P) squared. (d) Modulated signals and the generated error signals for each peak to which the laser can be locked. For clarity, a 1 V offset is added to the modulated signal.
Fig. 4
Fig. 4 Effect of beam polarization on the two-photon excitation as recorded by the PMT. As in Fig. 3(a), the relative frequency is obtained by setting the frequency of the 5 S 1 / 2 , F = 2 - 6 S 1 / 2 , F = 2 peak to zero. The power of the 993 nm beam is fixed at 250 mW and its frequency is scanned. The polarization of the beam is changed using QWPs. (a) Doppler-broadened spectrum with a single, linearly polarized beam. (b) Linearly polarized counter-propagating beams reveal the Doppler-free peaks and a small Doppler-broadened base. (c) Counter-propagating beams with orthogonal linear polarizations yield a Doppler-broadened spectrum of twice the amplitude of that in (a). (d) A single, circularly polarized beam does not yield a signal. This configuration is forbidden, according to the selection rules. (e) Counter-propagating beams with identical circular polarizations do not yield a signal for the same reason as in (d). (f) Counter-propagating beams with orthogonal circular polarizations yield a background-less Doppler-free spectrum. Here, the total angular momentum for the transition is zero.

Metrics