Abstract

We demonstrate an 8-branch Er:fiber frequency comb with seven application ports, which can be individually optimized for applications with different wavelengths. The beat between the comb and a cw laser has a signal-to-noise ratio exceeding 30 dB at a resolution bandwidth of 300 kHz. The 8-branch frequency comb is used to perform frequency locking for four repumping and lattice lasers, and the frequency measurement of two clock lasers of strontium and ytterbium optical lattice clocks. We have achieved reliable optical lattice clock operation, thanks to the stable frequency locking and measurement obtained by using the 8-branch frequency comb. The developed frequency comb is a powerful experimental tool for various applications, including not only optical lattice clocks, but also research on quantum optics that use many frequency-stabilized lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator

Yoshiaki Nakajima, Hajime Inaba, Kazumoto Hosaka, Kaoru Minoshima, Atsushi Onae, Masami Yasuda, Takuya Kohno, Sakae Kawato, Takao Kobayashi, Toshio Katsuyama, and Feng-Lei Hong
Opt. Express 18(2) 1667-1676 (2010)

Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb

Hajime Inaba, Kazumoto Hosaka, Masami Yasuda, Yoshiaki Nakajima, Kana Iwakuni, Daisuke Akamatsu, Sho Okubo, Takuya Kohno, Atsushi Onae, and Feng-Lei Hong
Opt. Express 21(7) 7891-7896 (2013)

Offset-free broadband Yb:fiber optical frequency comb for optical clocks

Takuma Nakamura, Isao Ito, and Yohei Kobayashi
Opt. Express 23(15) 19376-19381 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  2. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
    [Crossref]
  3. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [Crossref] [PubMed]
  4. F.-L. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28(1), 012002 (2017).
    [Crossref]
  5. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
    [Crossref] [PubMed]
  6. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
    [Crossref] [PubMed]
  7. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
    [Crossref]
  8. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
    [Crossref] [PubMed]
  9. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
    [Crossref] [PubMed]
  10. F. Riehle, “Towards a redefinition of the second based on optical atomic clocks,” C. R. Phys. 16(5), 506–515 (2015).
    [Crossref]
  11. P. Gill, “When should we change the definition of the second?” Philos Trans A Math Phys Eng Sci 369(1953), 4109–4130 (2011).
    [Crossref] [PubMed]
  12. A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
    [Crossref]
  13. T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
    [Crossref]
  14. J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
    [Crossref]
  15. F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
    [Crossref]
  16. R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
    [Crossref] [PubMed]
  17. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
    [Crossref] [PubMed]
  18. A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10(12), 933–936 (2014).
    [Crossref]
  19. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
    [Crossref] [PubMed]
  20. D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
    [Crossref] [PubMed]
  21. N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
    [Crossref]
  22. M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
    [Crossref] [PubMed]
  23. K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
    [Crossref] [PubMed]
  24. R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
    [Crossref]
  25. K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
    [Crossref] [PubMed]
  26. D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
    [Crossref] [PubMed]
  27. K. Tamura, J. Jacobson, E. P. Ippen, H. A. Haus, and J. G. Fujimoto, “Unidirectional ring resonators for self-starting passively mode-locked lasers,” Opt. Lett. 18(3), 220–222 (1993).
    [Crossref] [PubMed]
  28. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
    [Crossref] [PubMed]
  29. H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
    [Crossref]
  30. Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
    [Crossref]
  31. U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
    [Crossref]
  32. Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).
    [Crossref] [PubMed]
  33. T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
    [Crossref] [PubMed]
  34. S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
    [Crossref]
  35. T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
    [Crossref] [PubMed]
  36. D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
    [Crossref]
  37. M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
    [Crossref]
  38. K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
    [Crossref]
  39. K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
    [Crossref] [PubMed]
  40. L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
    [Crossref] [PubMed]
  41. H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
    [Crossref] [PubMed]
  42. D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
    [Crossref] [PubMed]
  43. H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, and T. M. Fortier, “Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability,” Optica 4(8), 879–885 (2017).
    [Crossref]
  44. A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, and M. E. Fermann, “Ultra-broadband dual-branch optical frequency comb with 10 −18 instability,” Optica 5(9), 1070–1077 (2018).
    [Crossref]
  45. K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, “Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation,” Opt. Express 26(7), 8831–8840 (2018).
    [Crossref] [PubMed]

2018 (8)

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, “Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation,” Opt. Express 26(7), 8831–8840 (2018).
[Crossref] [PubMed]

Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).
[Crossref] [PubMed]

A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, and M. E. Fermann, “Ultra-broadband dual-branch optical frequency comb with 10 −18 instability,” Optica 5(9), 1070–1077 (2018).
[Crossref]

2017 (2)

2016 (6)

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref] [PubMed]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref] [PubMed]

K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref] [PubMed]

2015 (5)

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref] [PubMed]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

F. Riehle, “Towards a redefinition of the second based on optical atomic clocks,” C. R. Phys. 16(5), 506–515 (2015).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

2014 (6)

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref] [PubMed]

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10(12), 933–936 (2014).
[Crossref]

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

2011 (3)

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

P. Gill, “When should we change the definition of the second?” Philos Trans A Math Phys Eng Sci 369(1953), 4109–4130 (2011).
[Crossref] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

2010 (1)

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

2009 (1)

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

2008 (2)

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (1)

H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

1999 (2)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

1993 (1)

Abgrall, M.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Akamatsu, D.

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref] [PubMed]

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref] [PubMed]

Akatsuka, T.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Amemiya, M.

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

Arias, F.

F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]

Barbieri, P.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Barrett, M. D.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Baumann, E.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Baynes, F. N.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Bergquist, J. C.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Bilicki, S.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Bishof, M.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Bize, S.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Bloom, B. J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Bongs, K.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Bookjans, E.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Bregolin, F.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Bromley, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Brusch, A.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Calonico, D.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Campbell, S. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Cassinerio, M.

Chou, C. W.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Clivati, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Coddington, I.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Coq, Y. L.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Costanzo, G. A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Daimon, Y.

Das, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Davila-Rodriguez, J.

Denker, H.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Derevianko, A.

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10(12), 933–936 (2014).
[Crossref]

Deschênes, J.-D.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Diddams, S. A.

H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, and T. M. Fortier, “Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability,” Optica 4(8), 879–885 (2017).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Drullinger, R. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Engler, H.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Falke, S.

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Favier, M.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Fermann, M. E.

Fortier, T. M.

H. Leopardi, J. Davila-Rodriguez, F. Quinlan, J. Olson, J. A. Sherman, S. A. Diddams, and T. M. Fortier, “Single-branch Er:fiber frequency comb for precision optical metrology with 10−18 fractional instability,” Optica 4(8), 879–885 (2017).
[Crossref]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Fujieda, M.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Fujimoto, J. G.

Gerginov, V.

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref] [PubMed]

Gill, P.

F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

P. Gill, “When should we change the definition of the second?” Philos Trans A Math Phys Eng Sci 369(1953), 4109–4130 (2011).
[Crossref] [PubMed]

Godun, R. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Gotoh, T.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Grimm, R.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Grosche, G.

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Grotti, J.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Guéna, J.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Hachisu, H.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Häfner, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Haus, H. A.

Hayasaka, K.

Heo, M.-S.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Hirano, M.

Hisai, Y.

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).
[Crossref] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Hong, F. L.

Hong, F.-L.

Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).
[Crossref] [PubMed]

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

F.-L. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28(1), 012002 (2017).
[Crossref]

K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref] [PubMed]

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref] [PubMed]

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref] [PubMed]

H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]

Horikiri, T.

Hosaka, K.

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref] [PubMed]

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref] [PubMed]

Hosokawa, M.

Hume, D. B.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Huntemann, N.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref] [PubMed]

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref] [PubMed]

Hutson, R. B.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Hwang, S.-W.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Ido, T.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Ikeda, K.

Inaba, H.

K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, “Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation,” Opt. Express 26(7), 8831–8840 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref] [PubMed]

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref] [PubMed]

H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]

Ippen, E. P.

Itano, W. M.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Iwakuni, K.

Jacobson, J.

Jiang, J.

Johnson, L. A. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Jones, J. M.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Kajita, M.

Kashiwagi, K.

Katori, H.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Khader, I. H.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Kim, H.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

King, S. A.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Kobayashi, T.

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

Y. Hisai, K. Ikeda, H. Sakagami, T. Horikiri, T. Kobayashi, K. Yoshii, and F.-L. Hong, “Evaluation of laser frequency offset locking using an electrical delay line,” Appl. Opt. 57(20), 5628–5634 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref] [PubMed]

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

Koelemeij, J. C. J.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

Koga, Y.

H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]

Kohno, T.

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

Koller, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Kumagai, M.

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Kuroishi, Y.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Kuse, N.

Langrock, C.

Lea, S. N.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Lee, W.-K.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Lee, Y. K.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Leopardi, H.

Levi, F.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Li, P.

Li, Y.

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Lipphardt, B.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref] [PubMed]

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref] [PubMed]

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Lisdat, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Locke, C.

Lodewyck, J.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Lorini, L.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Margolis, H. S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Marti, G. E.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Matsubara, K.

Matsumoto, H.

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref] [PubMed]

H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]

McNally, R. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Middelmann, T.

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Minoshima, K.

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref] [PubMed]

Miyahara, B.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Munekane, H.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

Nagano, S.

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Nakajima, Y.

K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, “Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation,” Opt. Express 26(7), 8831–8840 (2018).
[Crossref] [PubMed]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

Nakazawa, M.

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref] [PubMed]

Nemitz, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Newbury, N. R.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Nicholson, T. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Nicolodi, D.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Nisbet-Jones, P. B. R.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Nishida, Y.

Nogami, A.

Ohkubo, T.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Ohmae, N.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref] [PubMed]

Okubo, S.

Okuno, T.

Olson, J.

Onae, A.

K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref] [PubMed]

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref] [PubMed]

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref] [PubMed]

H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]

Onishi, M.

Oskay, W. H.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Park, C. Y.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Peik, E.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref] [PubMed]

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref] [PubMed]

Petit, G.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Pizzocaro, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Pospelov, M.

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10(12), 933–936 (2014).
[Crossref]

Quinlan, F.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Rauf, B.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Riehle, F.

F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]

F. Riehle, “Towards a redefinition of the second based on optical atomic clocks,” C. R. Phys. 16(5), 506–515 (2015).
[Crossref]

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Robertsson, L.

F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]

Rolland, A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

A. Rolland, P. Li, N. Kuse, J. Jiang, M. Cassinerio, C. Langrock, and M. E. Fermann, “Ultra-broadband dual-branch optical frequency comb with 10 −18 instability,” Optica 5(9), 1070–1077 (2018).
[Crossref]

Rosenband, T.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Safronova, M. S.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Sakagami, H.

Sanner, C.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref] [PubMed]

Sarlo, L. D.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Sasada, H.

K. Iwakuni, S. Okubo, O. Tadanaga, H. Inaba, A. Onae, F.-L. Hong, and H. Sasada, “Generation of a frequency comb spanning more than 3.6 octaves from ultraviolet to mid infrared,” Opt. Lett. 41(17), 3980–3983 (2016).
[Crossref] [PubMed]

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Schibli, T. R.

Schmidt, P. O.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Schnatz, H.

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Schünemann, U.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Sherman, J. A.

Sinclair, L. C.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Sonderhouse, L.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Stalnaker, J. E.

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Sterr, U.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Strouse, G. F.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Suzuyama, T.

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

Swann, W. C.

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Szymaniec, K.

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

Tabuchi, R.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Tadanaga, O.

Takahata, K.

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Takamoto, M.

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref] [PubMed]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Takano, T.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Tamm, C.

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref] [PubMed]

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref] [PubMed]

Tampellini, A.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Tamura, K.

Tanabe, T.

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

Targat, R. L.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Tew, W. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Thoumany, P.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Timmen, L.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Tyumenev, R.

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Udem, Th.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

Ushijima, I.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref] [PubMed]

Vogt, S.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Voigt, C.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Wada, M.

Weidemüller, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Weyers, S.

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref] [PubMed]

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Williams, J. R.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

Wineland, D. J.

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Winfred, J. S. R. V.

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Yamaguchi, A.

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

Yamanaka, K.

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref] [PubMed]

Yanagimachi, S.

H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]

Yang, S.-H.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Yasuda, M.

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref] [PubMed]

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref] [PubMed]

Ye, J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Yoshii, K.

Yu, D.-H.

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

Zampaolo, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Zhang, W.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Zhang, X.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Zielonkowski, M.

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

Zucco, M.

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (3)

D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014).
[Crossref]

M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, and F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012).
[Crossref]

A. Yamaguchi, M. Fujieda, M. Kumagai, H. Hachisu, S. Nagano, Y. Li, T. Ido, T. Takano, M. Takamoto, and H. Katori, “Direct comparison of distant optical lattice clocks at the 10−16 Uncertainty,” Appl. Phys. Express 4(8), 082203 (2011).
[Crossref]

C. R. Phys. (1)

F. Riehle, “Towards a redefinition of the second based on optical atomic clocks,” C. R. Phys. 16(5), 506–515 (2015).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

H. Inaba, S. Yanagimachi, F.-L. Hong, A. Onae, Y. Koga, and H. Matsumoto, “Stability degradation factors evaluated by phase noise measurement in an optical-microwave frequency link using an optical frequency comb,” IEEE Trans. Instrum. Meas. 54(2), 763–766 (2005).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (3)

M. Fujieda, S.-H. Yang, T. Gotoh, S.-W. Hwang, H. Hachisu, H. Kim, Y. K. Lee, R. Tabuchi, T. Ido, W.-K. Lee, M.-S. Heo, C. Y. Park, D.-H. Yu, and G. Petit, “Advanced satellite-based frequency transfer at the 10−16 level,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 973–978 (2018).
[Crossref] [PubMed]

D. Akamatsu, T. Kobayashi, Y. Hisai, T. Tanabe, K. Hosaka, M. Yasuda, and F.-L. Hong, “Dual-mode operation of an optical lattice clock using strontium and ytterbium atoms,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(6), 1069–1075 (2018).
[Crossref] [PubMed]

T. Kobayashi, D. Akamatsu, Y. Hisai, T. Tanabe, H. Inaba, T. Suzuyama, F.-L. Hong, K. Hosaka, and M. Yasuda, “Uncertainty evaluation of an 171Yb optical lattice clock at NMIJ,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(12), 2449–2458 (2018).
[Crossref] [PubMed]

Meas. Sci. Technol. (1)

F.-L. Hong, “Optical frequency standards for time and length applications,” Meas. Sci. Technol. 28(1), 012002 (2017).
[Crossref]

Metrologia (2)

F. Riehle, P. Gill, F. Arias, and L. Robertsson, “The CIPM list of recommended frequency standard values: guidelines and procedures,” Metrologia 55(2), 188–200 (2018).
[Crossref]

S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, and C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011).
[Crossref]

Nat. Commun. (1)

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Nat. Photonics (3)

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

T. Takano, M. Takamoto, I. Ushijima, N. Ohmae, T. Akatsuka, A. Yamaguchi, Y. Kuroishi, H. Munekane, B. Miyahara, and H. Katori, “Geopotential measurements with synchronously linked optical lattice clocks,” Nat. Photonics 10(10), 662–666 (2016).
[Crossref]

N. Nemitz, T. Ohkubo, M. Takamoto, I. Ushijima, M. Das, N. Ohmae, and H. Katori, “Frequency ratio of Yb and Sr clocks with 5 × 10−17 uncertainty at 150 seconds averaging time,” Nat. Photonics 10(4), 258–261 (2016).
[Crossref]

Nat. Phys. (2)

J. Grotti, S. Koller, S. Vogt, S. Häfner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F. N. Baynes, H. S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G. A. Costanzo, C. Clivati, F. Levi, and D. Calonico, “Geodesy and metrology with a transportable optical clock,” Nat. Phys. 14(5), 437–441 (2018).
[Crossref]

A. Derevianko and M. Pospelov, “Hunting for topological dark matter with atomic clocks,” Nat. Phys. 10(12), 933–936 (2014).
[Crossref]

Nature (2)

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

New J. Phys. (1)

R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. L. Targat, J. Lodewyck, D. Nicolodi, Y. L. Coq, M. Abgrall, J. Guéna, L. D. Sarlo, and S. Bize, “Comparing a mercury optical lattice clock with microwave and optical frequency standards,” New J. Phys. 18(11), 113002 (2016).
[Crossref]

Opt. Commun. (1)

Y. Nakajima, H. Inaba, F.-L. Hong, A. Onae, K. Minoshima, T. Kobayashi, M. Nakazawa, and H. Matsumoto, “Optimized amplification of femtosecond optical pulses by dispersion management for octave-spanning optical frequency comb generation,” Opt. Commun. 281(17), 4484–4487 (2008).
[Crossref]

Opt. Express (7)

T. Kobayashi, D. Akamatsu, Y. Nishida, T. Tanabe, M. Yasuda, F.-L. Hong, and K. Hosaka, “Second harmonic generation at 399 nm resonant on the 1S0-1P1 transition of ytterbium using a periodically poled LiNbO3 waveguide,” Opt. Express 24(11), 12142–12150 (2016).
[Crossref] [PubMed]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006).
[Crossref] [PubMed]

K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, and M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012).
[Crossref] [PubMed]

D. Akamatsu, M. Yasuda, H. Inaba, K. Hosaka, T. Tanabe, A. Onae, and F. L. Hong, “Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks,” Opt. Express 22(7), 7898–7905 (2014).
[Crossref] [PubMed]

K. Kashiwagi, Y. Nakajima, M. Wada, S. Okubo, and H. Inaba, “Multi-branch fiber comb with relative frequency uncertainty at 10-20 using fiber noise difference cancellation,” Opt. Express 26(7), 8831–8840 (2018).
[Crossref] [PubMed]

H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, and F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013).
[Crossref] [PubMed]

D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, and F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012).
[Crossref] [PubMed]

Opt. Lett. (2)

Optica (2)

Philos Trans A Math Phys Eng Sci (1)

P. Gill, “When should we change the definition of the second?” Philos Trans A Math Phys Eng Sci 369(1953), 4109–4130 (2011).
[Crossref] [PubMed]

Phys. Rev. A (1)

K. Takahata, T. Kobayashi, H. Sasada, Y. Nakajima, H. Inaba, and F.-L. Hong, “Absolute frequency measurement of sub-Doppler molecular lines using a 3.4-μm difference-frequency-generation spectrometer and a fiber-based frequency comb,” Phys. Rev. A 80(3), 032518 (2009).
[Crossref]

Phys. Rev. Lett. (6)

K. Yamanaka, N. Ohmae, I. Ushijima, M. Takamoto, and H. Katori, “Frequency ratio of 199Hg and 87Sr optical lattice clocks beyond the SI limit,” Phys. Rev. Lett. 114(23), 230801 (2015).
[Crossref] [PubMed]

R. M. Godun, P. B. R. Nisbet-Jones, J. M. Jones, S. A. King, L. A. M. Johnson, H. S. Margolis, K. Szymaniec, S. N. Lea, K. Bongs, and P. Gill, “Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants,” Phys. Rev. Lett. 113(21), 210801 (2014).
[Crossref] [PubMed]

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks,” Phys. Rev. Lett. 113(21), 210802 (2014).
[Crossref] [PubMed]

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[Crossref]

C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010).
[Crossref] [PubMed]

N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, and E. Peik, “Single-ion atomic clock with 3 × 10−18 systematic uncertainty,” Phys. Rev. Lett. 116, 063001 (2016).
[Crossref] [PubMed]

Rev. Sci. Instrum. (2)

U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and M. Zielonkowski, “Simple scheme for tunable frequency offset locking of two lasers,” Rev. Sci. Instrum. 70(1), 242–243 (1999).
[Crossref]

L. C. Sinclair, J.-D. Deschênes, L. Sonderhouse, W. C. Swann, I. H. Khader, E. Baumann, N. R. Newbury, and I. Coddington, “Invited Article: A compact optically coherent fiber frequency comb,” Rev. Sci. Instrum. 86(8), 081301 (2015).
[Crossref] [PubMed]

Science (2)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[Crossref] [PubMed]

T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Energy diagram for Sr and Yb optical lattice clocks. Wavelengths are indicated for the relevant cooling, repumping and clock transitions, and also lattice lasers. For those transitions highlighted with squared boxes, the light sources are locked or measured using an 8-branch frequency comb.
Fig. 2
Fig. 2 (a) Schematic diagram of an 8-branch Er:fiber frequency comb and its application for Sr and Yb optical lattice clocks. LD: laser diode, EDF: Er-doped fiber, H: half-wavelength plate, Q: quarter-wavelength plate, P: polarizer, PZT: piezoelectric transducer, ISO: isolator, FSC: free-space coupler, HNLF: highly nonlinear fiber, f-2f: f-2f interferometer, PPLN: periodically poled lithium niobate. (b) Photograph of 8-branch fiber comb.
Fig. 3
Fig. 3 Recorded frequency value of the phase-locked fCEO as a function of time. The inset shows the observed fCEO signals at a resolution bandwidth of 300 kHz. frep is the repetition rate of the fiber comb. (frep-fbeat) is the beat frequency between the laser and the second-nearest comb mode.
Fig. 4
Fig. 4 Observed frequency comb spectra of the output from seven branches for different applications. The spectra are offset from each other for clarity. Each color corresponds to one branch. The black lines and dots indicate the wavelengths of the CW lasers or the fundamental lights for Sr and Yb optical lattice clocks. The inset shows the RF spectrum of the beat signal between the 813-nm Ti:sapphire laser and the comb modes (fbeat) observed with a spectrum analyzer. The resolution bandwidth was 300 kHz.
Fig. 5
Fig. 5 Variations in the measured beat frequency (fbeat) between the laser and the nearest comb mode when the laser was frequency locked. The inset shows the Allan standard deviations calculated from the measured fbeat. The red line shows a typical frequency stability for UTC(NMIJ).
Fig. 6
Fig. 6 Allan standard deviation calculated from the measured frequencies of (a) the 698-nm Sr and (b) the 578-nm Yb clock transitions using the comb referenced to UTC(NMIJ). The inset shows the measured frequency with an averaging time of 8 s.
Fig. 7
Fig. 7 Absolute frequency measurements of the 1S0-3P0 clock transition in 87Sr and 171Yb relative to the CIPM recommended values.

Metrics