Abstract

Freeform optical components enable significant advances for optical systems. A major challenge for freeform optics is the current lack of metrology methods with measurement uncertainty on the order of tens of nanometers or less. Towards addressing this challenge, optical coherence tomography (OCT) is a viable technique. In the context of low uncertainty metrology, the design requirements pertaining to the sample arm of an OCT metrology system are explicitly addressed in this paper. Two telecentric, broadband, diffraction limited, custom objective lens designs are presented with their design strategies. One objective lens was fabricated and experimentally tested for wavefront performance and telecentricity. This lens demonstrates near diffraction limited performance and a maximum deviation from telecentricity of 8.7 arcseconds across the full field of view, correlating to measurement uncertainty of less than 12 nm in simulation. The telecentricity test method developed completes the loop with respect to the design requirements and strategies presented and provides further intuition for telecentric lens designs in general.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of intermediary scan-lens and tube-lens mechanisms for optical coherence tomography

Farid Atry and Ramin Pashaie
Appl. Opt. 55(4) 646-653 (2016)

Optimal lens design and use in laser-scanning microscopy

Adrian Negrean and Huibert D. Mansvelder
Biomed. Opt. Express 5(5) 1588-1609 (2014)

Point-cloud noncontact metrology of freeform optical surfaces

Jianing Yao, Alexander Anderson, and Jannick P. Rolland
Opt. Express 26(8) 10242-10265 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. P. Thompson and J. P. Rolland, “Freeform optical surfaces: a revolution in imaging optical design,” Opt. Photonics News 23(6), 30–35 (2012).
    [Crossref]
  2. J. D. Nelson, K. Medicus, and M. Brophy, “Fabricating and Testing Freeform Optics: Current Capabilities, Lessons Learned and Future Opportunities,” in Optical Fabrication and Testing (Optical Society of America, 2014), pp. OW3B–2.
  3. J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
    [Crossref] [PubMed]
  4. S. Sorgato, R. Mohedano, J. Chaves, M. Hernández, J. Blen, D. Grabovičkić, P. Benítez, J. C. Miñano, H. Thienpont, and F. Duerr, “Compact illumination optic with three freeform surfaces for improved beam control,” Opt. Express 25(24), 29627–29641 (2017).
    [Crossref] [PubMed]
  5. R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, 1997).
  6. D. Xu, J. Yao, N. Zhao, and J. P. Rolland, “Scanning Customized Swept-source Optical Coherence Tomography (SS-OCT) for the Metrology of Freeform Optical Surfaces,” in Frontiers in Optics (Optical Society of America, 2016), pp. FW5H–6.
  7. J. Yao, A. Anderson, and J. P. Rolland, “Point-cloud noncontact metrology of freeform optical surfaces,” Opt. Express 26(8), 10242–10265 (2018).
    [Crossref] [PubMed]
  8. J. Huang, Q. Yuan, B. Zhang, K. Xu, P. Tankam, E. Clarkson, M. A. Kupinski, H. B. Hindman, J. V. Aquavella, T. J. Suleski, and J. P. Rolland, “Measurement of a multi-layered tear film phantom using optical coherence tomography and statistical decision theory,” Biomed. Opt. Express 5(12), 4374–4386 (2014).
    [Crossref] [PubMed]
  9. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer, 2008).
  10. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. Electron. 5(4), 1205–1215 (1999).
    [Crossref]
  11. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [Crossref]
  12. W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
    [Crossref] [PubMed]
  13. S. Defisher, “Metrology for Manufacturing of Freeform Optical Surfaces with UltraSurf,” in Computational Optical Sensing and Imaging (Optical Society of America, 2015), pp. JT5A–6.
  14. M. A. Echter, C. D. Roll, A. D. Keene, and J. D. Ellis, “Carrier fringe analysis algorithms for three degree of freedom optical probing,” Precis. Eng. 38(4), 893–902 (2014).
    [Crossref]
  15. K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors,” Opt. Lett. 39(10), 2896–2899 (2014).
    [Crossref] [PubMed]
  16. A. Bauer and J. P. Rolland, “Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics,” Opt. Express 23(22), 28141–28153 (2015).
    [Crossref] [PubMed]
  17. A. M. Bauer, “Optical Design with Freeform Surfaces, with Applications in Head-Worn Display Design,” Ph.D. dissertation, University of Rochester (2016).

2018 (1)

2017 (2)

2015 (1)

2014 (4)

2012 (1)

K. P. Thompson and J. P. Rolland, “Freeform optical surfaces: a revolution in imaging optical design,” Opt. Photonics News 23(6), 30–35 (2012).
[Crossref]

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

1999 (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. Electron. 5(4), 1205–1215 (1999).
[Crossref]

Anderson, A.

Aquavella, J. V.

Bauer, A.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

A. Bauer and J. P. Rolland, “Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics,” Opt. Express 23(22), 28141–28153 (2015).
[Crossref] [PubMed]

Benítez, P.

Blen, J.

Chaves, J.

Clarkson, E.

Davis, G. E.

Drexler, W.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Duerr, F.

Echter, M. A.

M. A. Echter, C. D. Roll, A. D. Keene, and J. D. Ellis, “Carrier fringe analysis algorithms for three degree of freedom optical probing,” Precis. Eng. 38(4), 893–902 (2014).
[Crossref]

Ellis, J. D.

M. A. Echter, C. D. Roll, A. D. Keene, and J. D. Ellis, “Carrier fringe analysis algorithms for three degree of freedom optical probing,” Precis. Eng. 38(4), 893–902 (2014).
[Crossref]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Fuerschbach, K.

Grabovickic, D.

Hernández, M.

Hindman, H. B.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Huang, J.

Kamali, T.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Keene, A. D.

M. A. Echter, C. D. Roll, A. D. Keene, and J. D. Ellis, “Carrier fringe analysis algorithms for three degree of freedom optical probing,” Precis. Eng. 38(4), 893–902 (2014).
[Crossref]

Kumar, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Kupinski, M. A.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Leitgeb, R. A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Liu, M.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Miñano, J. C.

Mohedano, R.

Reimers, J.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

Roll, C. D.

M. A. Echter, C. D. Roll, A. D. Keene, and J. D. Ellis, “Carrier fringe analysis algorithms for three degree of freedom optical probing,” Precis. Eng. 38(4), 893–902 (2014).
[Crossref]

Rolland, J. P.

Schmitt, J. M.

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. Electron. 5(4), 1205–1215 (1999).
[Crossref]

Sorgato, S.

Suleski, T. J.

Tankam, P.

Thienpont, H.

Thompson, K. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

K. Fuerschbach, G. E. Davis, K. P. Thompson, and J. P. Rolland, “Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors,” Opt. Lett. 39(10), 2896–2899 (2014).
[Crossref] [PubMed]

K. P. Thompson and J. P. Rolland, “Freeform optical surfaces: a revolution in imaging optical design,” Opt. Photonics News 23(6), 30–35 (2012).
[Crossref]

Unterhuber, A.

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Xu, K.

Yao, J.

Yuan, Q.

Zhang, B.

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quant. Electron. (1)

J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quant. Electron. 5(4), 1205–1215 (1999).
[Crossref]

J. Biomed. Opt. (1)

W. Drexler, M. Liu, A. Kumar, T. Kamali, A. Unterhuber, and R. A. Leitgeb, “Optical coherence tomography today: speed, contrast, and multimodality,” J. Biomed. Opt. 19(7), 071412 (2014).
[Crossref] [PubMed]

Light Sci. Appl. (1)

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7), e17026 (2017).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Photonics News (1)

K. P. Thompson and J. P. Rolland, “Freeform optical surfaces: a revolution in imaging optical design,” Opt. Photonics News 23(6), 30–35 (2012).
[Crossref]

Precis. Eng. (1)

M. A. Echter, C. D. Roll, A. D. Keene, and J. D. Ellis, “Carrier fringe analysis algorithms for three degree of freedom optical probing,” Precis. Eng. 38(4), 893–902 (2014).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[Crossref]

Other (6)

S. Defisher, “Metrology for Manufacturing of Freeform Optical Surfaces with UltraSurf,” in Computational Optical Sensing and Imaging (Optical Society of America, 2015), pp. JT5A–6.

A. M. Bauer, “Optical Design with Freeform Surfaces, with Applications in Head-Worn Display Design,” Ph.D. dissertation, University of Rochester (2016).

J. D. Nelson, K. Medicus, and M. Brophy, “Fabricating and Testing Freeform Optics: Current Capabilities, Lessons Learned and Future Opportunities,” in Optical Fabrication and Testing (Optical Society of America, 2014), pp. OW3B–2.

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography Technology and Applications (Springer, 2008).

R. R. Shannon, The Art and Science of Optical Design (Cambridge University Press, 1997).

D. Xu, J. Yao, N. Zhao, and J. P. Rolland, “Scanning Customized Swept-source Optical Coherence Tomography (SS-OCT) for the Metrology of Freeform Optical Surfaces,” in Frontiers in Optics (Optical Society of America, 2016), pp. FW5H–6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic showing beam centroid location variations through focus at a single point in a lateral scan for possible telecentricity and distortion characteristics of an objective lens.
Fig. 2
Fig. 2 (a) Part of a 1D slice through a parabolic sample surface, showing the effects of non-telecentricity on beam-location mapping (exaggerated). For a parabola with R = 56.25 mm and a maximum non-telecentricity of 0.02°, the measured surface is plotted against the ideal in (b) with the measurement errors shown in (c), where the green dotted lines bound ± 30 nm.
Fig. 3
Fig. 3 Illustration of field curvature for a sample arm setup optimized for high telecentricity with an off-the-shelf achromatic doublet. Surface I indicates schematically the surface at which the central rays from each ray bundle across scans achieve equal optical path lengths (not to scale). Surface I′ is an arbitrarily selected performance evaluation surface.
Fig. 4
Fig. 4 Schematic of the pseudo-bistatic scanning configuration showing the incoming probing beam (red) and the collected specular reflection (green), both within the collection aperture NAc for which the objective lens was designed.
Fig. 5
Fig. 5 Layout drawing of (a) the large FOV and (b) the large NA objective lens design.
Fig. 6
Fig. 6 Full field display of the nominal achieved RMSWE for (a) the large FOV and (b) the large NA objective lens, both showing diffraction limited performance. Achieved nominal telecentricity for (c) the large FOV and (d) the large NA objective lens.
Fig. 7
Fig. 7 Simulated measurement uncertainty on the parabolic sample surface of Section 2.1 with the achieved nominal telecentricity of (a) the large FOV and (b) the large NA objective lens across their respective scanning FOVs up to the sample boundary. The green dotted lines bound ± 30 nm for ease of comparison with Fig. 2(c).
Fig. 8
Fig. 8 Tolerancing analysis for the large FOV objective lens under the tolerances given in Table 4 for (a) polychromatic RMS and (b) telecentricity. The field points used are shown in the legend that applies to both plots. Larger than 90% yield is achieved for diffraction limited RMSWE and for 0.02° maximum non-telecentricity.
Fig. 9
Fig. 9 (a) Wavefront testing setup for the objective lens assembly. (b) Results of the wavefront testing shown in (a) across FOV, showing near diffraction limited performance. (c) Plot showing the decrease in light intensity across the FOV, which was found to be caused by the camera lens used and not by the objective lens’ opto-mechanical housing. The results indicate that the objective lens has been manufactured and assembled to specifications.
Fig. 10
Fig. 10 Principle of the telecentricity test method demonstrated with the large FOV objective lens design shown in Fig. 5(a), reproduced here in (a). The reverse configuration is shown in (b) with the dashed lines indicating the relationship between the planes. Telecentricity may be quantified by taking the gradient of the aberrations measured in the (b) configuration.
Fig. 11
Fig. 11 (a) Re-tolerancing of the objective lens at the He-Ne testing wavelength shows larger than 90% yield at 0.02° telecentricity. (b) The experimental setup for the telecentricity testing.
Fig. 12
Fig. 12 (a) Image obtained with a caliper set to 30.00 mm inserted in the collimated space between the objective lens and the auto-reflecting mirror. The sharp edges of the caliper are clearly discernable and are used to extract the pixel length dimension. (b) The obtained pixel length dimension across a range of caliper widths. Using all data points, the length dimension was calculated to be 147.60 ± 0.40 µm/pixel.
Fig. 13
Fig. 13 (a) Interferogram of one of the telecentricity measurements, showing dominant spherical aberration as expected from simulation in optical design software. The shadow of the thin wire used to block unwanted back reflections may also be seen. (b) The mean of the 50 telecentricity measurements with maximum of 8.7″ and RMS of 0.8″. (c) The standard deviation of the 50 telecentricity measurements with maximum of 2.1″ and RMS of 0.2″.

Tables (4)

Tables Icon

Table 1 Specifications and achieved nominal performance for the two objective lens designs.

Tables Icon

Table 2 Prescription for the large FOV objective lens design.

Tables Icon

Table 3 Prescription for the large NA objective lens design.

Tables Icon

Table 4 Tolerance table for the large FOV objective lens.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

tan(θ)= y'y z max /2 sag(y')
sag(y')=y ' 2 /(2R)
y'(θ)= 1+ { 1+2[y+( z max /2)tan(θ)]tan(θ)/R } 1/2 tan(θ)/R
Δ=sag(y')sag(y)
N A c =sin( θ p +2 α max ),

Metrics