Abstract

Noise-immune cavity enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is extremely sensitive in detecting weak absorption. However, the use of NICE-OHMS for metrology study was also hindered by its sensitivity to influence from various experimental conditions such as the residual amplitude modulation. Here we demonstrate to use NICE-OHMS for precision measurements of Lamb-dip spectra of molecules. After a dedicated investigation of the systematic uncertainties in the NICE-OHMS measurement, the transition frequency of a ro-vibrational line of C2H2 near 789 nm was determined to be 379 639 280 915.3±1.2 kHz (fractional uncertainty 3.2 × 10−12), agreeing well with, but more accurate than, the value determined from previous cavity ring-down spectroscopy measurements. The study indicates the possibility to implement the very sensitive NICE-OHMS method for frequency metrology of molecules, or a molecular clock, in the near-infrared.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high-finesse NICE-OHMS spectroscopy at 1532  nm for calibrated online ammonia detection

E. A. Curtis, G. P. Barwood, G. Huang, C. S. Edwards, B. Gieseking, and P. J. Brewer
J. Opt. Soc. Am. B 34(5) 950-958 (2017)

Distributed-feedback-laser-based NICE-OHMS in the pressure-broadened regime

Aleksandra Foltynowicz, Junyang Wang, Patrick Ehlers, and Ove Axner
Opt. Express 18(18) 18580-18591 (2010)

External cavity diode laser-based detection of trace gases with NICE-OHMS using current modulation

R. Centeno, J. Mandon, S. M. Cristescu, O. Axner, and F. J. M. Harren
Opt. Express 23(5) 6277-6282 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Saraf, P. Berceau, A. Stochino, R. Byer, and J. Lipa, “Molecular frequency reference at 1.56μm using a 12C16O overtone transition with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method,” Opt. Lett. 41, 2189–2192 (2016).
    [Crossref] [PubMed]
  2. T. Oka, “Spectroscopy and astronomy: H3+ from the laboratory to the galactic center,” Faraday Discuss. 150, 9–22 (2011).
    [Crossref]
  3. C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
    [Crossref]
  4. M. Reichenbächer and J. Popp, Challenges in Molecular Structure Determination (Springer-VerlagBerlin Heidelberg, 2012).
    [Crossref]
  5. Y. Tan, J. Wang, X.-Q. Zhao, A.-W. Liu, and S.-M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transf. 187, 274–279 (2017).
    [Crossref]
  6. E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, “QED effects in molecules: Test on rotational quantum states of H2,” Phys. Rev. Lett. 107, 043005 (2011).
    [Crossref]
  7. V. I. Korobov, L. Hilico, and J.-P. Karr, “Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty,” Phys. Rev. Lett. 118, 233001 (2017).
    [Crossref] [PubMed]
  8. F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E. Eikema, and W. Ubachs, “Sub-doppler frequency metrology in HD for tests of fundamental physics,” Phys. Rev. Lett. 120, 153002 (2018).
    [Crossref] [PubMed]
  9. L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
    [Crossref] [PubMed]
  10. C. Chin, V. V. Flambaum, and M. G. Kozlov, “Ultracold molecules: new probes on the variation of fundamental constants,” New J. Phys. 11, 055048 (2009).
    [Crossref]
  11. D. Hanneke, R. A. Carollo, and D. A. Lane, “High sensitivity to variation in the proton-to-electron mass ratio in O2+,” Phys. Rev. A 94, 050101 (2016).
    [Crossref]
  12. N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
    [Crossref]
  13. M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
    [Crossref]
  14. G. Tranter, “Parity-violating energy differences of chiral minerals and the origin of biomolecular homochirality,” Nature 318, 172–173 (1985).
    [Crossref]
  15. M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
    [Crossref] [PubMed]
  16. S. M. Foreman, A. Marian, J. Ye, E. A. Petrukhin, M. A. Gubin, O. D. Mucke, F. N. C. Wong, E. P. Ippen, and F. X. Kartner, “Demonstration of a HeNe/CH4-based optical molecular clock,” Opt. Lett. 30, 570–572 (2005).
    [Crossref] [PubMed]
  17. M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
    [Crossref] [PubMed]
  18. H. S. Moon, “Frequency stabilization of a 1.3 μm laser diode using double resonance optical pumping in the 5p3/2–6s1/2 transition of Rb atoms,” Appl. Opt. 47, 1097–1102 (2008).
    [Crossref] [PubMed]
  19. K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Comm. 107, 369–372 (1994).
    [Crossref]
  20. A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
    [Crossref]
  21. A. O’Keefe and D. A. G. Deacon, “Cavity ring down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
    [Crossref]
  22. B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
    [Crossref]
  23. S. Kassi and A. Campargue, “Cavity ring down spectroscopy with 5×10−13 cm−1 sensitivity,” J. Chem. Phys. 137, 234201 (2012).
    [Crossref]
  24. J. Ye, L.-S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
    [Crossref]
  25. L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
    [Crossref]
  26. H. Dinesan, E. Fasci, A. D’Addio, A. Castrillo, and L. Gianfrani, “Characterization of the frequency stability of an optical frequency standard at 1.39 μm based upon noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” Opt. Express 23, 1757–1766 (2015).
    [Crossref] [PubMed]
  27. C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
    [Crossref]
  28. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-doppler nice-ohms for quantitative trace gas detection,” Opt. Express 16, 14689–14702 (2008).
    [Crossref] [PubMed]
  29. R. Centeno, J. Mandon, S. M. Cristescu, O. Axner, and F. J. M. Harren, “External cavity diode laser-based detection of trace gases with nice-ohms using current modulation,” Opt. Express 23, 6277–6282 (2015).
    [Crossref] [PubMed]
  30. G. Zhao, T. Hausmaninger, W. Ma, and O. Axner, “Shot-noise-limited doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry,” Opt. Lett. 43, 715–718 (2018).
    [Crossref] [PubMed]
  31. G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
    [Crossref] [PubMed]
  32. J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, and S.-M. Hu, “Communication: Molecular near-infrared transitions determined with sub-khz accuracy,” J. Chem. Phys. 147, 091103 (2017).
    [Crossref] [PubMed]
  33. J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
    [Crossref] [PubMed]
  34. L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
    [Crossref]
  35. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  36. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
    [Crossref]
  37. R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
    [Crossref]
  38. F. Herregodts, E. Kerrinckx, T. R. Huet, and J. V. Auwera, “Absolute line intensities in the ν1 + 3ν3 band of 12C2H2 by laser photoacoustic spectroscopy and fourier transform spectroscopy,” Mol. Phys. 101, 3427–3438 (2003).
    [Crossref]
  39. P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
    [Crossref]
  40. T.-L. Chen and Y.-W. Liu, “Sub-doppler resolution near-infrared spectroscopy at 1.28um with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method,” Opt. Lett. 42, 2447–2450 (2017).
    [Crossref] [PubMed]
  41. M. Gehrtz, G. C. Bjorklund, and E. A. Whittaker, “Quantum-limited laser frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 2, 1510–1526 (1985).
    [Crossref]
  42. L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
    [Crossref] [PubMed]
  43. F. Herregodts, M. Hepp, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. ii. self-collisional lineshift measurements,” J. Chem. Phys. 111, 7961–7965 (1999).
    [Crossref]
  44. J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
    [Crossref]
  45. F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. i. pressure broadening and absolute line intensity measurements,” J. Chem. Phys. 111, 7954–7960 (1999).
    [Crossref]
  46. S. Twagirayezu, G. E. Hall, and T. J. Sears, “Frequency measurements and self-broadening of sub-doppler transitions in the ν1 + ν3 band of 12C2H2,” J. Chem. Phys. 149, 154308 (2018).
    [Crossref]

2018 (7)

F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E. Eikema, and W. Ubachs, “Sub-doppler frequency metrology in HD for tests of fundamental physics,” Phys. Rev. Lett. 120, 153002 (2018).
[Crossref] [PubMed]

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
[Crossref]

G. Zhao, T. Hausmaninger, W. Ma, and O. Axner, “Shot-noise-limited doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry,” Opt. Lett. 43, 715–718 (2018).
[Crossref] [PubMed]

L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
[Crossref]

J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
[Crossref]

S. Twagirayezu, G. E. Hall, and T. J. Sears, “Frequency measurements and self-broadening of sub-doppler transitions in the ν1 + ν3 band of 12C2H2,” J. Chem. Phys. 149, 154308 (2018).
[Crossref]

2017 (6)

T.-L. Chen and Y.-W. Liu, “Sub-doppler resolution near-infrared spectroscopy at 1.28um with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method,” Opt. Lett. 42, 2447–2450 (2017).
[Crossref] [PubMed]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, and S.-M. Hu, “Communication: Molecular near-infrared transitions determined with sub-khz accuracy,” J. Chem. Phys. 147, 091103 (2017).
[Crossref] [PubMed]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

V. I. Korobov, L. Hilico, and J.-P. Karr, “Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty,” Phys. Rev. Lett. 118, 233001 (2017).
[Crossref] [PubMed]

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Y. Tan, J. Wang, X.-Q. Zhao, A.-W. Liu, and S.-M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transf. 187, 274–279 (2017).
[Crossref]

2016 (3)

S. Saraf, P. Berceau, A. Stochino, R. Byer, and J. Lipa, “Molecular frequency reference at 1.56μm using a 12C16O overtone transition with the noise-immune cavity-enhanced optical heterodyne molecular spectroscopy method,” Opt. Lett. 41, 2189–2192 (2016).
[Crossref] [PubMed]

D. Hanneke, R. A. Carollo, and D. A. Lane, “High sensitivity to variation in the proton-to-electron mass ratio in O2+,” Phys. Rev. A 94, 050101 (2016).
[Crossref]

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
[Crossref]

2015 (2)

2014 (2)

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
[Crossref]

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

2012 (2)

S. Kassi and A. Campargue, “Cavity ring down spectroscopy with 5×10−13 cm−1 sensitivity,” J. Chem. Phys. 137, 234201 (2012).
[Crossref]

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

2011 (2)

T. Oka, “Spectroscopy and astronomy: H3+ from the laboratory to the galactic center,” Faraday Discuss. 150, 9–22 (2011).
[Crossref]

E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, “QED effects in molecules: Test on rotational quantum states of H2,” Phys. Rev. Lett. 107, 043005 (2011).
[Crossref]

2010 (1)

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

2009 (1)

C. Chin, V. V. Flambaum, and M. G. Kozlov, “Ultracold molecules: new probes on the variation of fundamental constants,” New J. Phys. 11, 055048 (2009).
[Crossref]

2008 (3)

2005 (2)

2003 (1)

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. V. Auwera, “Absolute line intensities in the ν1 + 3ν3 band of 12C2H2 by laser photoacoustic spectroscopy and fourier transform spectroscopy,” Mol. Phys. 101, 3427–3438 (2003).
[Crossref]

2001 (1)

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[Crossref]

1999 (3)

F. Herregodts, M. Hepp, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. ii. self-collisional lineshift measurements,” J. Chem. Phys. 111, 7961–7965 (1999).
[Crossref]

F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. i. pressure broadening and absolute line intensity measurements,” J. Chem. Phys. 111, 7954–7960 (1999).
[Crossref]

L.-S. Ma, J. Ye, P. Dubé, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
[Crossref]

1998 (1)

1994 (2)

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[Crossref] [PubMed]

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Comm. 107, 369–372 (1994).
[Crossref]

1988 (1)

A. O’Keefe and D. A. G. Deacon, “Cavity ring down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

1985 (3)

1984 (1)

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[Crossref]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Auwera, J. V.

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. V. Auwera, “Absolute line intensities in the ν1 + 3ν3 band of 12C2H2 by laser photoacoustic spectroscopy and fourier transform spectroscopy,” Mol. Phys. 101, 3427–3438 (2003).
[Crossref]

Axner, O.

Bagnulo, S.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Bartalini, S.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Berceau, P.

Bjorklund, G. C.

Borri, S.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Brewer, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[Crossref]

Budker, D.

M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
[Crossref]

Byer, R.

Campargue, A.

S. Kassi and A. Campargue, “Cavity ring down spectroscopy with 5×10−13 cm−1 sensitivity,” J. Chem. Phys. 137, 234201 (2012).
[Crossref]

Cancio, P.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Carollo, R. A.

D. Hanneke, R. A. Carollo, and D. A. Lane, “High sensitivity to variation in the proton-to-electron mass ratio in O2+,” Phys. Rev. A 94, 050101 (2016).
[Crossref]

Castrillo, A.

Centeno, R.

Chen, J.

J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
[Crossref]

Chen, L.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Chen, T.-L.

Chin, C.

C. Chin, V. V. Flambaum, and M. G. Kozlov, “Ultracold molecules: new probes on the variation of fundamental constants,” New J. Phys. 11, 055048 (2009).
[Crossref]

Ciurylo, R.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

Clark, C. W.

M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
[Crossref]

Cozijn, F. M. J.

F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E. Eikema, and W. Ubachs, “Sub-doppler frequency metrology in HD for tests of fundamental physics,” Phys. Rev. Lett. 120, 153002 (2018).
[Crossref] [PubMed]

Cristescu, S. M.

Cygan, A.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

D’Addio, A.

de Labachelerie, M.

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[Crossref] [PubMed]

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Comm. 107, 369–372 (1994).
[Crossref]

De Natale, P.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Deacon, D. A. G.

A. O’Keefe and D. A. G. Deacon, “Cavity ring down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

DeMille, D.

M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
[Crossref]

Derevianko, A.

M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
[Crossref]

DeVoe, R. G.

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[Crossref]

Dickenson, G. D.

E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, “QED effects in molecules: Test on rotational quantum states of H2,” Phys. Rev. Lett. 107, 043005 (2011).
[Crossref]

Dinesan, H.

Domyslawska, J.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Dubé, P.

Dupré, P.

F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E. Eikema, and W. Ubachs, “Sub-doppler frequency metrology in HD for tests of fundamental physics,” Phys. Rev. Lett. 120, 153002 (2018).
[Crossref] [PubMed]

Eikema, K. S. E.

F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E. Eikema, and W. Ubachs, “Sub-doppler frequency metrology in HD for tests of fundamental physics,” Phys. Rev. Lett. 120, 153002 (2018).
[Crossref] [PubMed]

Fasci, E.

Flambaum, V. V.

C. Chin, V. V. Flambaum, and M. G. Kozlov, “Ultracold molecules: new probes on the variation of fundamental constants,” New J. Phys. 11, 055048 (2009).
[Crossref]

Foltynowicz, A.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Foreman, S. M.

Galli, I.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Gehrtz, M.

Gerginov, V.

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
[Crossref]

Gianfrani, L.

Giusfredi, G.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Gubin, M. A.

Gustafsson, J.

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[Crossref]

Hall, G. E.

S. Twagirayezu, G. E. Hall, and T. J. Sears, “Frequency measurements and self-broadening of sub-doppler transitions in the ν1 + ν3 band of 12C2H2,” J. Chem. Phys. 149, 154308 (2018).
[Crossref]

Hall, J. L.

Hanneke, D.

D. Hanneke, R. A. Carollo, and D. A. Lane, “High sensitivity to variation in the proton-to-electron mass ratio in O2+,” Phys. Rev. A 94, 050101 (2016).
[Crossref]

Harren, F. J. M.

Hartman, H.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Hausmaninger, T.

Hepp, M.

F. Herregodts, M. Hepp, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. ii. self-collisional lineshift measurements,” J. Chem. Phys. 111, 7961–7965 (1999).
[Crossref]

Herman, M.

F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. i. pressure broadening and absolute line intensity measurements,” J. Chem. Phys. 111, 7954–7960 (1999).
[Crossref]

F. Herregodts, M. Hepp, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. ii. self-collisional lineshift measurements,” J. Chem. Phys. 111, 7961–7965 (1999).
[Crossref]

Herregodts, F.

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. V. Auwera, “Absolute line intensities in the ν1 + 3ν3 band of 12C2H2 by laser photoacoustic spectroscopy and fourier transform spectroscopy,” Mol. Phys. 101, 3427–3438 (2003).
[Crossref]

F. Herregodts, M. Hepp, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. ii. self-collisional lineshift measurements,” J. Chem. Phys. 111, 7961–7965 (1999).
[Crossref]

F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. i. pressure broadening and absolute line intensity measurements,” J. Chem. Phys. 111, 7954–7960 (1999).
[Crossref]

Hilico, L.

V. I. Korobov, L. Hilico, and J.-P. Karr, “Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty,” Phys. Rev. Lett. 118, 233001 (2017).
[Crossref] [PubMed]

Hodges, J. N.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
[Crossref]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hu, S.-M.

L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
[Crossref]

J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
[Crossref]

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

Y. Tan, J. Wang, X.-Q. Zhao, A.-W. Liu, and S.-M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transf. 187, 274–279 (2017).
[Crossref]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, and S.-M. Hu, “Communication: Molecular near-infrared transitions determined with sub-khz accuracy,” J. Chem. Phys. 147, 091103 (2017).
[Crossref] [PubMed]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

Hua, T.-P.

J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
[Crossref]

L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
[Crossref]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

Huet, T. R.

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. V. Auwera, “Absolute line intensities in the ν1 + 3ν3 band of 12C2H2 by laser photoacoustic spectroscopy and fourier transform spectroscopy,” Mol. Phys. 101, 3427–3438 (2003).
[Crossref]

Huntemann, N.

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
[Crossref]

Hurtmans, D.

F. Herregodts, M. Hepp, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. ii. self-collisional lineshift measurements,” J. Chem. Phys. 111, 7961–7965 (1999).
[Crossref]

F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. i. pressure broadening and absolute line intensity measurements,” J. Chem. Phys. 111, 7954–7960 (1999).
[Crossref]

Hussain, G. A. J.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Ippen, E. P.

Ivanov, T. I.

E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, “QED effects in molecules: Test on rotational quantum states of H2,” Phys. Rev. Lett. 107, 043005 (2011).
[Crossref]

Kachanov, A. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[Crossref]

Karr, J.-P.

V. I. Korobov, L. Hilico, and J.-P. Karr, “Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty,” Phys. Rev. Lett. 118, 233001 (2017).
[Crossref] [PubMed]

Kartner, F. X.

Kassi, S.

S. Kassi and A. Campargue, “Cavity ring down spectroscopy with 5×10−13 cm−1 sensitivity,” J. Chem. Phys. 137, 234201 (2012).
[Crossref]

Katsuda, T.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Comm. 107, 369–372 (1994).
[Crossref]

Käufl, H.-U.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Kerrinckx, E.

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. V. Auwera, “Absolute line intensities in the ν1 + 3ν3 band of 12C2H2 by laser photoacoustic spectroscopy and fourier transform spectroscopy,” Mol. Phys. 101, 3427–3438 (2003).
[Crossref]

Kimball, D. F. J.

M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
[Crossref]

Kluczynski, P.

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[Crossref]

Kocheril, G. S.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
[Crossref]

Komasa, J.

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

Korobov, V. I.

V. I. Korobov, L. Hilico, and J.-P. Karr, “Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty,” Phys. Rev. Lett. 118, 233001 (2017).
[Crossref] [PubMed]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Kozlov, M. G.

C. Chin, V. V. Flambaum, and M. G. Kozlov, “Ultracold molecules: new probes on the variation of fundamental constants,” New J. Phys. 11, 055048 (2009).
[Crossref]

Lane, D. A.

D. Hanneke, R. A. Carollo, and D. A. Lane, “High sensitivity to variation in the proton-to-electron mass ratio in O2+,” Phys. Rev. A 94, 050101 (2016).
[Crossref]

Lebzelter, T.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Li, L.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Lindberg, Å. M.

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[Crossref]

Lipa, J.

Lipphardt, B.

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
[Crossref]

Lisak, D.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

Liu, A.-W.

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
[Crossref]

J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
[Crossref]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

Y. Tan, J. Wang, X.-Q. Zhao, A.-W. Liu, and S.-M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transf. 187, 274–279 (2017).
[Crossref]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, and S.-M. Hu, “Communication: Molecular near-infrared transitions determined with sub-khz accuracy,” J. Chem. Phys. 147, 091103 (2017).
[Crossref] [PubMed]

Liu, F.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Liu, Y.-W.

Ma, L.-S.

Ma, W.

Mandon, J.

Marian, A.

Markus, C. R.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
[Crossref]

Maslowski, P.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

Mazzotti, D.

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

McCall, B. J.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
[Crossref]

Meng, F.

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

Moon, H. S.

Mucke, O. D.

Müller, H. S. P.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Nakagawa, K.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Comm. 107, 369–372 (1994).
[Crossref]

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[Crossref] [PubMed]

Nicholls, C. P.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Nieva, M.-F.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

O’Keefe, A.

A. O’Keefe and D. A. G. Deacon, “Cavity ring down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Ohtsu, M.

M. de Labachelerie, K. Nakagawa, and M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[Crossref] [PubMed]

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Comm. 107, 369–372 (1994).
[Crossref]

Oka, T.

T. Oka, “Spectroscopy and astronomy: H3+ from the laboratory to the galactic center,” Faraday Discuss. 150, 9–22 (2011).
[Crossref]

Pachucki, K.

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

Paldus, B. A.

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[Crossref]

Peik, E.

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
[Crossref]

Perry, A. J.

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
[Crossref]

Petrukhin, E. A.

Popp, J.

M. Reichenbächer and J. Popp, Challenges in Molecular Structure Determination (Springer-VerlagBerlin Heidelberg, 2012).
[Crossref]

Przybilla, N.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Quack, M.

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

Ramsay, S.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Reichenbächer, M.

M. Reichenbächer and J. Popp, Challenges in Molecular Structure Determination (Springer-VerlagBerlin Heidelberg, 2012).
[Crossref]

Safronova, M. S.

M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
[Crossref]

Salumbides, E. J.

F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E. Eikema, and W. Ubachs, “Sub-doppler frequency metrology in HD for tests of fundamental physics,” Phys. Rev. Lett. 120, 153002 (2018).
[Crossref] [PubMed]

E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, “QED effects in molecules: Test on rotational quantum states of H2,” Phys. Rev. Lett. 107, 043005 (2011).
[Crossref]

Saraf, S.

Sears, T. J.

S. Twagirayezu, G. E. Hall, and T. J. Sears, “Frequency measurements and self-broadening of sub-doppler transitions in the ν1 + ν3 band of 12C2H2,” J. Chem. Phys. 149, 154308 (2018).
[Crossref]

Seemann, U.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Seifahrt, A.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Shelkovnikov, A.

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Comm. 107, 369–372 (1994).
[Crossref]

Smette, A.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Stochino, A.

Stohner, J.

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

Sun, Y.

J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
[Crossref]

Sun, Y. R.

L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
[Crossref]

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, and S.-M. Hu, “Communication: Molecular near-infrared transitions determined with sub-khz accuracy,” J. Chem. Phys. 147, 091103 (2017).
[Crossref] [PubMed]

Tamm, C.

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
[Crossref]

Tan, Y.

Y. Tan, J. Wang, X.-Q. Zhao, A.-W. Liu, and S.-M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transf. 187, 274–279 (2017).
[Crossref]

Tao, L.-G.

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
[Crossref]

J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
[Crossref]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, and S.-M. Hu, “Communication: Molecular near-infrared transitions determined with sub-khz accuracy,” J. Chem. Phys. 147, 091103 (2017).
[Crossref] [PubMed]

Tranter, G.

G. Tranter, “Parity-violating energy differences of chiral minerals and the origin of biomolecular homochirality,” Nature 318, 172–173 (1985).
[Crossref]

Trawinski, R. S.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

Twagirayezu, S.

S. Twagirayezu, G. E. Hall, and T. J. Sears, “Frequency measurements and self-broadening of sub-doppler transitions in the ν1 + ν3 band of 12C2H2,” J. Chem. Phys. 149, 154308 (2018).
[Crossref]

Ubachs, W.

F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E. Eikema, and W. Ubachs, “Sub-doppler frequency metrology in HD for tests of fundamental physics,” Phys. Rev. Lett. 120, 153002 (2018).
[Crossref] [PubMed]

E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, “QED effects in molecules: Test on rotational quantum states of H2,” Phys. Rev. Lett. 107, 043005 (2011).
[Crossref]

Uttenthaler, S.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Vander Auwera, J.

F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. i. pressure broadening and absolute line intensity measurements,” J. Chem. Phys. 111, 7954–7960 (1999).
[Crossref]

F. Herregodts, M. Hepp, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. ii. self-collisional lineshift measurements,” J. Chem. Phys. 111, 7961–7965 (1999).
[Crossref]

Wahlgren, G. M.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Wang, C.

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Wang, J.

L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
[Crossref]

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

Y. Tan, J. Wang, X.-Q. Zhao, A.-W. Liu, and S.-M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transf. 187, 274–279 (2017).
[Crossref]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, and S.-M. Hu, “Communication: Molecular near-infrared transitions determined with sub-khz accuracy,” J. Chem. Phys. 147, 091103 (2017).
[Crossref] [PubMed]

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Wcislo, P.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

Weyers, S.

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
[Crossref]

Whittaker, E. A.

Willeke, M.

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

Wójtewicz, S.

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

Wolff, B.

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Wong, F. N. C.

Wong, N. C.

Ye, J.

Zhao, G.

Zhao, X.-Q.

Y. Tan, J. Wang, X.-Q. Zhao, A.-W. Liu, and S.-M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transf. 187, 274–279 (2017).
[Crossref]

Annu. Rev. Phys. Chem. (1)

M. Quack, J. Stohner, and M. Willeke, “High-resolution spectroscopic studies and theory of parity violation in chiral molecules,” Annu. Rev. Phys. Chem. 59, 741–769 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Astron. & Astrophys. (1)

C. P. Nicholls, T. Lebzelter, A. Smette, B. Wolff, H. Hartman, H.-U. Käufl, N. Przybilla, S. Ramsay, S. Uttenthaler, G. M. Wahlgren, S. Bagnulo, G. A. J. Hussain, M.-F. Nieva, U. Seemann, and A. Seifahrt, “Crires-pop: a library of high resolution spectra in the near-infrared II. data reduction and the spectrum of the K giant 10 leonis,” Astron. & Astrophys. 598, A79 (2017).
[Crossref]

Astrophys. J. (1)

C. R. Markus, J. N. Hodges, A. J. Perry, G. S. Kocheril, H. S. P. Müller, and B. J. McCall, “High precision rovibrational spectroscopy of OH+,” Astrophys. J. 817, 138 (2016).
[Crossref]

Can. J. Phys. (1)

B. A. Paldus and A. A. Kachanov, “An historical overview of cavity-enhanced methods,” Can. J. Phys. 83, 975–999 (2005).
[Crossref]

Faraday Discuss. (1)

T. Oka, “Spectroscopy and astronomy: H3+ from the laboratory to the galactic center,” Faraday Discuss. 150, 9–22 (2011).
[Crossref]

J. Chem. Phys. (5)

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, and S.-M. Hu, “Communication: Molecular near-infrared transitions determined with sub-khz accuracy,” J. Chem. Phys. 147, 091103 (2017).
[Crossref] [PubMed]

S. Kassi and A. Campargue, “Cavity ring down spectroscopy with 5×10−13 cm−1 sensitivity,” J. Chem. Phys. 137, 234201 (2012).
[Crossref]

F. Herregodts, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. i. pressure broadening and absolute line intensity measurements,” J. Chem. Phys. 111, 7954–7960 (1999).
[Crossref]

S. Twagirayezu, G. E. Hall, and T. J. Sears, “Frequency measurements and self-broadening of sub-doppler transitions in the ν1 + ν3 band of 12C2H2,” J. Chem. Phys. 149, 154308 (2018).
[Crossref]

F. Herregodts, M. Hepp, D. Hurtmans, J. Vander Auwera, and M. Herman, “Laser spectroscopy of the ν1 + 3ν3 absorption band in 12C2H2. ii. self-collisional lineshift measurements,” J. Chem. Phys. 111, 7961–7965 (1999).
[Crossref]

J. Opt. Soc. Am. B (4)

J. Phys. Confer. Ser. (1)

A. Cygan, P. Wcisło, S. Wójtewicz, P. Masłowski, J. Domysławska, R. S. Trawiński, R. Ciuryło, and D. Lisak, “Precise cavity enhanced absorption spectroscopy,” J. Phys. Confer. Ser. 548, 012015 (2014).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (3)

J. Chen, T.-P. Hua, L.-G. Tao, Y. Sun, A.-W. Liu, and S.-M. Hu, “Absolute frequencies of water lines near 790 nm with 10−11 accuracy,” J. Quant. Spectrosc. Radiat. Transf. 205, 91–95 (2018).
[Crossref]

L.-G. Tao, T.-P. Hua, Y. R. Sun, J. Wang, A.-W. Liu, and S.-M. Hu, “Frequency metrology of the acetylene lines near 789nm from lamb-dip measurements,” J. Quant. Spectrosc. Radiat. Transf. 210, 111–115 (2018).
[Crossref]

Y. Tan, J. Wang, X.-Q. Zhao, A.-W. Liu, and S.-M. Hu, “Cavity ring-down spectroscopy of the fifth overtone of CO,” J. Quant. Spectrosc. Radiat. Transf. 187, 274–279 (2017).
[Crossref]

Mol. Phys. (1)

F. Herregodts, E. Kerrinckx, T. R. Huet, and J. V. Auwera, “Absolute line intensities in the ν1 + 3ν3 band of 12C2H2 by laser photoacoustic spectroscopy and fourier transform spectroscopy,” Mol. Phys. 101, 3427–3438 (2003).
[Crossref]

Nature (1)

G. Tranter, “Parity-violating energy differences of chiral minerals and the origin of biomolecular homochirality,” Nature 318, 172–173 (1985).
[Crossref]

New J. Phys. (1)

C. Chin, V. V. Flambaum, and M. G. Kozlov, “Ultracold molecules: new probes on the variation of fundamental constants,” New J. Phys. 11, 055048 (2009).
[Crossref]

Opt. Comm. (1)

K. Nakagawa, T. Katsuda, A. Shelkovnikov, M. de Labachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Comm. 107, 369–372 (1994).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Phys. Rev. A (2)

R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Phys. Rev. A 30, 2827–2829 (1984).
[Crossref]

D. Hanneke, R. A. Carollo, and D. A. Lane, “High sensitivity to variation in the proton-to-electron mass ratio in O2+,” Phys. Rev. A 94, 050101 (2016).
[Crossref]

Phys. Rev. Lett. (6)

N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, and E. Peik, “Improved limit on a temporal variation of mp/me from comparisons of Yb+ and cs atomic clocks,” Phys. Rev. Lett. 113, 210802 (2014).
[Crossref]

E. J. Salumbides, G. D. Dickenson, T. I. Ivanov, and W. Ubachs, “QED effects in molecules: Test on rotational quantum states of H2,” Phys. Rev. Lett. 107, 043005 (2011).
[Crossref]

V. I. Korobov, L. Hilico, and J.-P. Karr, “Fundamental transitions and ionization energies of the hydrogen molecular ions with few ppt uncertainty,” Phys. Rev. Lett. 118, 233001 (2017).
[Crossref] [PubMed]

F. M. J. Cozijn, P. Dupré, E. J. Salumbides, K. S. E. Eikema, and W. Ubachs, “Sub-doppler frequency metrology in HD for tests of fundamental physics,” Phys. Rev. Lett. 120, 153002 (2018).
[Crossref] [PubMed]

L.-G. Tao, A.-W. Liu, K. Pachucki, J. Komasa, Y. R. Sun, J. Wang, and S.-M. Hu, “Toward a determination of the proton-electron mass ratio from the lamb-dip measurement of HD,” Phys. Rev. Lett. 120, 153001 (2018).
[Crossref] [PubMed]

G. Giusfredi, S. Bartalini, S. Borri, P. Cancio, I. Galli, D. Mazzotti, and P. De Natale, “Saturated-absorption cavity ring-down spectroscopy,” Phys. Rev. Lett. 104, 110801 (2010).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

M. S. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for new physics with atoms and molecules,” Rev. Mod. Phys. 90, 025008 (2018).
[Crossref]

Rev. Sci. Instrum. (3)

J. Wang, Y. R. Sun, L.-G. Tao, A.-W. Liu, T.-P. Hua, F. Meng, and S.-M. Hu, “Comb-locked cavity ring-down saturation spectroscopy,” Rev. Sci. Instrum. 88, 043108 (2017).
[Crossref] [PubMed]

L. Li, F. Liu, C. Wang, and L. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

A. O’Keefe and D. A. G. Deacon, “Cavity ring down optical spectrometer for absorption measurements using pulsed laser sources,” Rev. Sci. Instrum. 59, 2544–2551 (1988).
[Crossref]

Spectrochim. Acta Part B (1)

P. Kluczynski, J. Gustafsson, Å. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals,” Spectrochim. Acta Part B 56, 1277–1354 (2001).
[Crossref]

Other (1)

M. Reichenbächer and J. Popp, Challenges in Molecular Structure Determination (Springer-VerlagBerlin Heidelberg, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Configuration of the NICE-OHMS experimental setup. An external-cavity diode laser (ECDL) is locked to the optical cavity using the PDH method, and sent through an EOM to impose both frequencies fPDH and fFSR. The laser power fluctuation is monitored by PD1 and controlled by the AOM modulator. Extra Residual amplitude modulation is recorded by PD2 and controlled by the RAM servo. The signal of the beam reflected from the cavity is recorded by a photo-diode PD3, used for both PDH servo and DVB servo. An addition cavity-length dither modulation with a frequency of fdith is applied for lock-in detection. The beat signal between the probe laser and an optical frequency comb is used to lock the laser frequency through the feedback sent to the piezoelectric actuator attached on a cavity mirror.
Fig. 2
Fig. 2 Lamb-dip spectrum of P(5) line in the ν1 + 3ν3 band of 12C2H2 recorded by different methods (b). Acetylene sample pressure was 1.5 Pa. As for amplitude of the absorption signal, the Lamb dip obtained from CRDS has a depth of 4 × 10−9 cm−1. Fitting residuals (all multiplied by a factor of 100) of the CRDS and 1 f wm-NICE-OHMS spectra are shown in (a) and (c), respectively.
Fig. 3
Fig. 3 Systematic shifts in the 1 f wm-NICE-OHMS measurements. Influence of choosing different frequencies and amplitudes in the wavelength modulation are given in (a) and (b), respectively. The effect of the residual amplitude modulation (RAM) is shown in (c). The shaded region represents 1σ standard deviation of the final result.
Fig. 4
Fig. 4 Line position (a) and line-width (b) of the P(5) line obtained at different sample pressures. The red area was 95% fitting confident interval of the linear fitting. The violet area was 95% fitting confident interval of the 0-slope linear fitting. Both the linear fit and the weighted average of the line positions are shown in panel (a).
Fig. 5
Fig. 5 Allan deviations of the laser locked on the C2H2 line using the NICE-OHMS method. Triangles are the beat-note between the NICE-OHMS stabilized laser and a frequency comb. Squares are for the rubidium clock, given by the manufacture.

Tables (1)

Tables Icon

Table 1 Uncertainty budget of the position of the P(5) line in the ν1 + 3ν3 band of 12C2H2, in kHz.

Metrics