Abstract

Displacement Talbot lithography (DTL) is a new technique for patterning large areas with sub-micron periodic features with low cost. It has applications in fields that cannot justify the cost of deep-UV photolithography, such as plasmonics, photonic crystals, and metamaterials and competes with techniques, such as nanoimprint and laser interference lithography. It is based on the interference of coherent light through a periodically patterned photomask. However, the factors affecting the technique’s resolution limit are unknown. Through computer simulations, we show the mask parameter’s impact on the features’ size that can be achieved and describe the separate figures of merit that should be optimized for successful patterning. Both amplitude and phase masks are considered for hexagonal and square arrays of mask openings. For large pitches, amplitude masks are shown to give the best resolution; whereas, for small pitches, phase masks are superior because the required exposure time is shorter. We also show how small changes in the mask pitch can dramatically affect the resolution achievable. As a result, this study provides important information for choosing new masks for DTL for targeted applications.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Displacement Talbot lithography: a new method for high-resolution patterning of large areas

Harun H. Solak, Christian Dais, and Francis Clube
Opt. Express 19(11) 10686-10691 (2011)

Extreme ultraviolet Talbot interference lithography

Wei Li and Mario C. Marconi
Opt. Express 23(20) 25532-25538 (2015)

Fractional Talbot lithography with extreme ultraviolet light

Hyun-su Kim, Wei Li, Serhiy Danylyuk, William S. Brocklesby, Mario C. Marconi, and Larissa Juschkin
Opt. Lett. 39(24) 6969-6972 (2014)

References

  • View by:
  • |
  • |
  • |

  1. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
    [Crossref] [PubMed]
  2. W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. 23(6), 2700–2704 (2005).
    [Crossref]
  3. E. D. Le Boulbar, P. J. P. Chausse, S. Lis, and P. A. Shields, “Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials,” Proc. SPIE 10248, 254–256 (2017).
  4. C. Wagner and N. Harned, “Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
    [Crossref]
  5. G. Tallents, E. Wagenaars, and G. Pert, “Lithography at EUV wavelengths,” Nat. Photonics 4(12), 809–811 (2010).
    [Crossref]
  6. C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
    [Crossref]
  7. M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
    [Crossref] [PubMed]
  8. S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi, and M. Ichikawa, “Periodical nanostructure fabrication using electron interference fringes produced by scanning interference electron microscope,” Appl. Phys. Lett. 66(20), 2754–2756 (1995).
    [Crossref]
  9. C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
    [Crossref]
  10. H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
    [Crossref] [PubMed]
  11. A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
    [Crossref]
  12. H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
    [Crossref]
  13. L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
    [Crossref]
  14. P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).
  15. P. M. Coulon, J. R. Pugh, M. Athanasiou, G. Kusch, E. D. Le Boulbar, A. Sarua, R. Smith, R. W. Martin, T. Wang, M. Cryan, D. W. E. Allsopp, and P. A. Shields, “Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities,” Opt. Express 25(23), 28246–28257 (2017).
    [Crossref]
  16. S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
    [Crossref]
  17. C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
    [Crossref]
  18. H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
    [Crossref]
  19. L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
    [Crossref]
  20. J. Maaß, O. Sandfuchs, D. Thomae, A. Gatoo and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask”, Journal of the European Optical Society 8 (2013).
  21. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  22. T. Ishi, J. Fujikata and K. Ohashi, “Large Optical transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating”44(1L), 170–172 (2005).
  23. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
    [Crossref] [PubMed]
  24. F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” Transaction on electron devices 22(7), 445–452 (1975).
    [Crossref]
  25. G. Arthur, C. A. Mack, and B. Martin, “A new development model for lithography simulation,”. Olin Microlithography Seminar 97(4), 55–56 (1997).
  26. C. Mack, Fundamental Principles of Optical Lithography (Wiley, 2012).
  27. C. S. Guo, X. Yin, L.-W. Zhu, and Z.-P. Hong, “Analytical expression for phase distribution of a hexagonal array at fractional Talbot planes,” Opt. Lett. 32(15), 2079–2081 (2007).
    [Crossref] [PubMed]

2017 (3)

E. D. Le Boulbar, P. J. P. Chausse, S. Lis, and P. A. Shields, “Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials,” Proc. SPIE 10248, 254–256 (2017).

H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
[Crossref]

P. M. Coulon, J. R. Pugh, M. Athanasiou, G. Kusch, E. D. Le Boulbar, A. Sarua, R. Smith, R. W. Martin, T. Wang, M. Cryan, D. W. E. Allsopp, and P. A. Shields, “Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities,” Opt. Express 25(23), 28246–28257 (2017).
[Crossref]

2016 (5)

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
[Crossref]

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

2015 (1)

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

2011 (1)

2010 (3)

C. Wagner and N. Harned, “Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

G. Tallents, E. Wagenaars, and G. Pert, “Lithography at EUV wavelengths,” Nat. Photonics 4(12), 809–811 (2010).
[Crossref]

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

2009 (1)

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

2007 (2)

2005 (2)

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. 23(6), 2700–2704 (2005).
[Crossref]

2001 (1)

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[Crossref] [PubMed]

2000 (1)

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

1995 (1)

S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi, and M. Ichikawa, “Periodical nanostructure fabrication using electron interference fringes produced by scanning interference electron microscope,” Appl. Phys. Lett. 66(20), 2754–2756 (1995).
[Crossref]

1975 (1)

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” Transaction on electron devices 22(7), 445–452 (1975).
[Crossref]

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Allsopp, D. W. E.

Athanasiou, M.

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Baumberg, J. J.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Berenschot, E.

H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
[Crossref]

Berenschot, E. J. W.

S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
[Crossref]

Bischofberger, R.

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

Brueck, S. R. J.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. 23(6), 2700–2704 (2005).
[Crossref]

Bryce, C.

P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).

Carcenac, F.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Cerrina, F.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

Chausse, P.

P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).

Chausse, P. J. P.

E. D. Le Boulbar, P. J. P. Chausse, S. Lis, and P. A. Shields, “Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials,” Proc. SPIE 10248, 254–256 (2017).

Chen, Y.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Cheng, Y. C.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

Chong, K. S. L.

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Clube, F.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

Coulon, P. M.

P. M. Coulon, J. R. Pugh, M. Athanasiou, G. Kusch, E. D. Le Boulbar, A. Sarua, R. Smith, R. W. Martin, T. Wang, M. Cryan, D. W. E. Allsopp, and P. A. Shields, “Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities,” Opt. Express 25(23), 28246–28257 (2017).
[Crossref]

P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).

Couraud, L.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Cryan, M.

Dais, C.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

David, C.

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

de Fornel, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[Crossref] [PubMed]

Dill, F. H.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” Transaction on electron devices 22(7), 445–452 (1975).
[Crossref]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Eijkel, J. C. T.

H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
[Crossref]

Fan, W.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. 23(6), 2700–2704 (2005).
[Crossref]

Fujita, S.

S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi, and M. Ichikawa, “Periodical nanostructure fabrication using electron interference fringes produced by scanning interference electron microscope,” Appl. Phys. Lett. 66(20), 2754–2756 (1995).
[Crossref]

Gardeniers, H. J. G. E.

S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Gobrecht, J.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

Grillot, F.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[Crossref] [PubMed]

Guo, C. S.

Harned, N.

C. Wagner and N. Harned, “Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

Hauge, P. S.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” Transaction on electron devices 22(7), 445–452 (1975).
[Crossref]

Hong, Z.-P.

Hornberger, W. P.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” Transaction on electron devices 22(7), 445–452 (1975).
[Crossref]

Ichikawa, M.

S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi, and M. Ichikawa, “Periodical nanostructure fabrication using electron interference fringes produced by scanning interference electron microscope,” Appl. Phys. Lett. 66(20), 2754–2756 (1995).
[Crossref]

Isoyan, A.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

Jiang, F.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Kusch, G.

P. M. Coulon, J. R. Pugh, M. Athanasiou, G. Kusch, E. D. Le Boulbar, A. Sarua, R. Smith, R. W. Martin, T. Wang, M. Cryan, D. W. E. Allsopp, and P. A. Shields, “Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities,” Opt. Express 25(23), 28246–28257 (2017).
[Crossref]

P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).

Kusumi, Y.

S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi, and M. Ichikawa, “Periodical nanostructure fabrication using electron interference fringes produced by scanning interference electron microscope,” Appl. Phys. Lett. 66(20), 2754–2756 (1995).
[Crossref]

Launois, H.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Le Boulbar, E. D.

E. D. Le Boulbar, P. J. P. Chausse, S. Lis, and P. A. Shields, “Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials,” Proc. SPIE 10248, 254–256 (2017).

P. M. Coulon, J. R. Pugh, M. Athanasiou, G. Kusch, E. D. Le Boulbar, A. Sarua, R. Smith, R. W. Martin, T. Wang, M. Cryan, D. W. E. Allsopp, and P. A. Shields, “Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities,” Opt. Express 25(23), 28246–28257 (2017).
[Crossref]

P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).

Lebib, A.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Lee, C. S.

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

Lee, Y. Y.

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

Le-The, H.

H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
[Crossref]

Lipson, R. H.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

Lis, S.

E. D. Le Boulbar, P. J. P. Chausse, S. Lis, and P. A. Shields, “Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials,” Proc. SPIE 10248, 254–256 (2017).

Longsine, W.

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

Lu, C.

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

Luttge, R.

S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
[Crossref]

Malloy, K. J.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. 23(6), 2700–2704 (2005).
[Crossref]

Manin-Ferlazzo, L.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Marconi, M.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

Martin, R. W.

P. M. Coulon, J. R. Pugh, M. Athanasiou, G. Kusch, E. D. Le Boulbar, A. Sarua, R. Smith, R. W. Martin, T. Wang, M. Cryan, D. W. E. Allsopp, and P. A. Shields, “Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities,” Opt. Express 25(23), 28246–28257 (2017).
[Crossref]

P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).

Maruno, S.

S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi, and M. Ichikawa, “Periodical nanostructure fabrication using electron interference fringes produced by scanning interference electron microscope,” Appl. Phys. Lett. 66(20), 2754–2756 (1995).
[Crossref]

Mejias, M.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Menoni, C.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

Mohacsi, I.

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

Pépin, A.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Pert, G.

G. Tallents, E. Wagenaars, and G. Pert, “Lithography at EUV wavelengths,” Nat. Photonics 4(12), 809–811 (2010).
[Crossref]

Pugh, J. R.

Rocca, J.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Salomon, L.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[Crossref] [PubMed]

Sarua, A.

Schurink, B.

S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
[Crossref]

Shaw, J. M.

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” Transaction on electron devices 22(7), 445–452 (1975).
[Crossref]

Shields, P. A.

P. M. Coulon, J. R. Pugh, M. Athanasiou, G. Kusch, E. D. Le Boulbar, A. Sarua, R. Smith, R. W. Martin, T. Wang, M. Cryan, D. W. E. Allsopp, and P. A. Shields, “Optical properties and resonant cavity modes in axial InGaN/GaN nanotube microcavities,” Opt. Express 25(23), 28246–28257 (2017).
[Crossref]

E. D. Le Boulbar, P. J. P. Chausse, S. Lis, and P. A. Shields, “Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials,” Proc. SPIE 10248, 254–256 (2017).

P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).

Smith, R.

Solak, H. H.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

H. H. Solak, C. Dais, and F. Clube, “Displacement Talbot lithography: a new method for high-resolution patterning of large areas,” Opt. Express 19(11), 10686–10691 (2011).
[Crossref] [PubMed]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Tallents, G.

G. Tallents, E. Wagenaars, and G. Pert, “Lithography at EUV wavelengths,” Nat. Photonics 4(12), 809–811 (2010).
[Crossref]

Tas, N. R.

H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
[Crossref]

Tiggelaar, R. M.

H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
[Crossref]

S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
[Crossref]

Traub, M. C.

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

Truskett, V. N.

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

Urbanski, L.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

van den Berg, A.

H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
[Crossref]

Vieu, C.

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

Wachulak, P.

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

Wagenaars, E.

G. Tallents, E. Wagenaars, and G. Pert, “Lithography at EUV wavelengths,” Nat. Photonics 4(12), 809–811 (2010).
[Crossref]

Wagner, C.

C. Wagner and N. Harned, “Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

Wang, L.

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

Wang, T.

Watanabe, H.

S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi, and M. Ichikawa, “Periodical nanostructure fabrication using electron interference fringes produced by scanning interference electron microscope,” Appl. Phys. Lett. 66(20), 2754–2756 (1995).
[Crossref]

Xie, S.

S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
[Crossref]

Yin, X.

Zayats, A. V.

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[Crossref] [PubMed]

Zhang, S.

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. 23(6), 2700–2704 (2005).
[Crossref]

Zhu, L.-W.

Advance Mater Technology (1)

H. Le-The, E. Berenschot, R. M. Tiggelaar, N. R. Tas, A. van den Berg, and J. C. T. Eijkel, “Shrinkage Control of Photoresist for Large-Area Fabrication of Sub-30 nm Periodic Nanocolumns,” Advance Mater Technology 2(3), 1600238 (2017).
[Crossref]

Annu. Rev. Chem. Biomol. Eng. (1)

M. C. Traub, W. Longsine, and V. N. Truskett, “Advances in Nanoimprint Lithography,” Annu. Rev. Chem. Biomol. Eng. 7(1), 583–604 (2016).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

S. Fujita, S. Maruno, H. Watanabe, Y. Kusumi, and M. Ichikawa, “Periodical nanostructure fabrication using electron interference fringes produced by scanning interference electron microscope,” Appl. Phys. Lett. 66(20), 2754–2756 (1995).
[Crossref]

Appl. Surf. Sci. (1)

C. Vieu, F. Carcenac, A. Pépin, Y. Chen, M. Mejias, A. Lebib, L. Manin-Ferlazzo, L. Couraud, and H. Launois, “Electron beam lithography: resolution limits and applications,” Appl. Surf. Sci. 164(1–4), 111–117 (2000).
[Crossref]

J. Vac. Sci. Technol. (2)

A. Isoyan, F. Jiang, Y. C. Cheng, F. Cerrina, P. Wachulak, L. Urbanski, J. Rocca, C. Menoni, and M. Marconi, “Talbot lithography: Self-imaging of complex structures,” J. Vac. Sci. Technol. 27(6), 2931–2937 (2009).
[Crossref]

W. Fan, S. Zhang, K. J. Malloy, and S. R. J. Brueck, “Large-area, infrared nanophotonic materials fabricated using interferometric lithography,” J. Vac. Sci. Technol. 23(6), 2700–2704 (2005).
[Crossref]

J. Vac. Sci. Technol. B (1)

S. Xie, B. Schurink, E. J. W. Berenschot, R. M. Tiggelaar, H. J. G. E. Gardeniers, and R. Luttge, “Displacement Talbot lithography nanopatterned microsieve array for directional neuronal network formation in brain-on-chip,” J. Vac. Sci. Technol. B 34(6), 06KI02 (2016).
[Crossref]

Journal of Vacuum Science (1)

C. S. Lee, Y. Y. Lee, K. S. L. Chong, L. Wang, C. Dais, F. Clube, H. H. Solak, I. Mohacsi, C. David, and R. Bischofberger, “High-resolution, high-aspect-ratio iridium-nickel composite nanoimprint molds,” Journal of Vacuum Science 34(6), 061804 (2016).
[Crossref]

Laser Photonics Rev. (1)

C. Lu and R. H. Lipson, “Interference lithography: a powerful tool for fabricating periodic structures,” Laser Photonics Rev. 4(4), 568–580 (2010).
[Crossref]

Microelectron. Eng. (3)

H. H. Solak, C. Dais, F. Clube, and L. Wang, “Phase shifting masks in Displacement Talbot Lithography for printing nano-grids and periodic motifs,” Microelectron. Eng. 143, 74–80 (2015).
[Crossref]

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

L. Wang, F. Clube, C. Dais, H. H. Solak, and J. Gobrecht, “Sub-wavelength printing in the deep ultra-violet region using Displacement Talbot Lithography,” Microelectron. Eng. 161, 104–108 (2016).
[Crossref]

Nano Lett. (1)

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-Resolved Surface-Enhanced Raman Scattering on Metallic Nanostructured Plasmonic Crystals,” Nano Lett. 5(11), 2262–2267 (2005).
[Crossref] [PubMed]

Nat. Photonics (2)

C. Wagner and N. Harned, “Lithography gets extreme,” Nat. Photonics 4(1), 24–26 (2010).
[Crossref]

G. Tallents, E. Wagenaars, and G. Pert, “Lithography at EUV wavelengths,” Nat. Photonics 4(12), 809–811 (2010).
[Crossref]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film,” Phys. Rev. Lett. 86(6), 1110–1113 (2001).
[Crossref] [PubMed]

Proc. SPIE (1)

E. D. Le Boulbar, P. J. P. Chausse, S. Lis, and P. A. Shields, “Displacement Talbot lithography: an alternative technique to fabricate nanostructured metamaterials,” Proc. SPIE 10248, 254–256 (2017).

Transaction on electron devices (1)

F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” Transaction on electron devices 22(7), 445–452 (1975).
[Crossref]

Other (5)

G. Arthur, C. A. Mack, and B. Martin, “A new development model for lithography simulation,”. Olin Microlithography Seminar 97(4), 55–56 (1997).

C. Mack, Fundamental Principles of Optical Lithography (Wiley, 2012).

T. Ishi, J. Fujikata and K. Ohashi, “Large Optical transmission through a Single Subwavelength Hole Associated with a Sharp-Apex Grating”44(1L), 170–172 (2005).

J. Maaß, O. Sandfuchs, D. Thomae, A. Gatoo and R. Brunner, “Effective and flexible modeling approach to investigate various 3D Talbot carpets from a spatial finite mask”, Journal of the European Optical Society 8 (2013).

P. M. Coulon, G. Kusch, E. D. Le Boulbar, P. Chausse, C. Bryce, R. W. Martin, and P. A. Shields, “Hybrid top-down/bottom-up fabrication of regular arrays of AlN nanorods for deep-UV core-Shell LEDs,” Phys. Status Solidi, 1700445 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Modelling of a 600 nm grating amplitude mask with 200 nm openings. Normalized figures of a) the Talbot carpet, b) the Talbot carpet after integration over the Talbot length, and c) the aerial image.
Fig. 2
Fig. 2 a) Hexagonal 1.5 μm pitch amplitude mask with 800 nm openings, b) simulated normalized aerial image, and c) cross section corresponding of the black line.
Fig. 3
Fig. 3 Openings in photoresist obtained for a 1.5 μm mask at a) 70 mJ/cm2 b) 80 mJ/cm2 and c) the size distribution as a function the illumination dose. Openings in photoresist obtained for a 1 μm mask at a) 130 mJ/cm2 b) 140 mJ/cm2 and c) the size distribution as a function of the illumination dose. The dashed lines represent the theoretical width for 80% and 90% thresholds.
Fig. 4
Fig. 4 Theoretical a) width of the pattern achievable, b) relative intensity of the background and c) relative intensity of maximum of secondary patterns for hexagonal amplitude mask.
Fig. 5
Fig. 5 a) Theoretical diameter of the pattern achievable and b) relative intensity of maximum of secondary patterns as a function of pitch for a mask opening of 400 nm.
Fig. 6
Fig. 6 Theoretical a) width of the pattern achievable, b) relative intensity of the background and c) relative intensity of maximum of secondary patterns for a hexagonal phase mask.
Fig. 7
Fig. 7 Reduction of pitch for a 1 μm square array. a) Mask and b) aerial image.
Fig. 8
Fig. 8 Theoretical a) width of the pattern achievable, b) relative intensity of the background, c) relative intensity of maximum of secondary patterns and d) Ratio of maximum intensity between neighbouring features as a function of the pitch and the hole diameter.
Fig. 9
Fig. 9 Theoretical a) width of the pattern achievable, b) relative intensity of the background, c) relative intensity of maximum of secondary patterns and d) Ratio between neighboring patterns.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L T = λ 1 1 λ 2 .4 p 2 .3

Metrics