Abstract

InGaN-based nanowires (NWs) have been investigated as efficient photoelectrochemical (PEC) water splitting devices. In this work, the InGaN/GaN NWs were grown by molecular beam epitaxy (MBE) having InGaN segments on top of GaN seeds. Three axial heterojunction structures were constructed with different doping types and levels, namely n-InGaN/n-GaN NWs, undoped (u)-InGaN/p-GaN NWs, and p-InGaN/p-GaN NWs. With the carrier concentrations estimated by Mott–Schottky measurements, a PC1D simulation further confirmed the band structures of the three heterojunctions. The u-InGaN/p-GaN and p-InGaN/p-GaN NWs exhibited optimized stability in pH 0 electrolytes for over 10 h with a photocurrent density of about –4.0 and –9.4 mA/cm2, respectively. However, the hydrogen and oxygen evolution rates of the Pt-treated u-InGaN/p-GaN NWs exhibited a less favorable stoichiometric ratio. On the other hand, the Pt-decorated p-InGaN/p-GaN NWs showed the best PEC performance, generating approximately 1000 µmol/cm2 hydrogen and 550 µmol/cm2 oxygen in 10 h. The band-engineered p-InGaN/p-GaN axial NWs-heterojunction demonstrated a great potential for highly efficient and durable photocathodes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silicon based photoelectrodes for photoelectrochemical water splitting

Ronglei Fan, Zetian Mi, and Mingrong Shen
Opt. Express 27(4) A51-A80 (2019)

Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation

Shu-Yen Liu, J. K. Sheu, M. L. Lee, Yu-Chuan Lin, S. J. Tu, F. W. Huang, and W. C. Lai
Opt. Express 20(S2) A190-A196 (2012)

Hydrogen gas generation using n-GaN photoelectrodes with immersed Indium Tin Oxide ohmic contacts

Shu-Yen Liu, Yu-Chuan Lin, Jhao-Cheng Ye, S. J. Tu, F. W. Huang, M. L. Lee, W. C. Lai, and J. K. Sheu
Opt. Express 19(S6) A1196-A1201 (2011)

References

  • View by:
  • |
  • |
  • |

  1. M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
    [Crossref]
  2. M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
    [Crossref] [PubMed]
  3. M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
    [Crossref]
  4. M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
    [Crossref]
  5. G.-L. Su, T. Frost, P. Bhattacharya, and J. M. Dallesasse, “Physical model for high indium content InGaN/GaN self-assembled quantum dot ridge-waveguide lasers emitting at red wavelengths (λ ~ 630 nm),” Opt. Express 23(10), 12850–12865 (2015).
    [Crossref] [PubMed]
  6. B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
    [Crossref] [PubMed]
  7. N. U. H. Alvi, P. E. D. S. Rodriguez, P. Aseev, and V. J. Gómez, “A. u. H. Alvi, W. u. Hassan, M. Willander, and R. Nötzel, "InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
    [Crossref]
  8. J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
    [Crossref]
  9. K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
    [Crossref]
  10. M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
    [Crossref]
  11. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
    [Crossref] [PubMed]
  12. J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
    [Crossref] [PubMed]
  13. H. Zhang, M. Ebaid, J.-W. Min, T. K. Ng, and B. S. Ooi, “Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration,” J. Appl. Phys. 124(8), 083105 (2018).
    [Crossref]
  14. M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
    [Crossref] [PubMed]
  15. K. Fujii and K. Ohkawa, “Photoelectrochemical properties of p-type GaN in comparison with n-type GaN,” Jpn. J. Appl. Phys. 44(28), L909–L911 (2005).
    [Crossref]
  16. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
    [Crossref]
  17. J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
    [Crossref] [PubMed]
  18. Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
    [Crossref] [PubMed]
  19. T. Stoica and R. Calarco, “Doping of III-nitride nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 859–868 (2011).
    [Crossref]
  20. C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
    [Crossref] [PubMed]
  21. E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
    [Crossref]
  22. R. T. ElAfandy, M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, and B. S. Ooi, “Flexible InGaN nanowire membranes for enhanced solar water splitting,” Opt. Express 26(14), A640–A650 (2018).
    [Crossref] [PubMed]
  23. M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
    [Crossref] [PubMed]
  24. F. A. Chowdhury, Z. Mi, M. G. Kibria, and M. L. Trudeau, “Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation,” APL Mater. 3(10), 104408 (2015).
    [Crossref]
  25. M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
    [Crossref]
  26. D. A. Clugston and P. A. Basore, "PC1D version 5: 32-bit solar cell modeling on personal computers," in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997 (IEEE, 1997), pp. 207–210.
    [Crossref]
  27. F. Schwierz, “An electron mobility model for wurtzite GaN,” Solid-State Electron. 49(6), 889–895 (2005).
    [Crossref]
  28. M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
    [Crossref]
  29. O. K. Jani, "Development of wide-band gap indium gallium nitride solar cells for high-efficiency photovoltaics," Ph.D. Thesis (Georgia Institute of Technology, 2008).
  30. F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
    [Crossref]
  31. A. S. Kushwaha, P. Mahala, and C. Dhanavantri, “Optimization of p-GaN/InGaN/n-GaN double heterojunction p-i-n solar cell for high efficiency: simulation approach,” Int. J. Photoenergy 2014, 819637 (2014).
    [Crossref]
  32. A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and simulation of InGaN p-n junction solar cell,” Int. J. Photoenergy 2015, 594858 (2015).
    [Crossref]
  33. S. O. S. Hamady, A. Adaine, and N. Fressengeas, “Numerical simulation of InGaN Schottky solar cell,” Mater. Sci. Semicond. Process. 41, 219–225 (2016).
    [Crossref]
  34. J. Kamimura, M. Ramsteiner, L. Geelhaar, and H. Riechert, “Si doping effects on (In,Ga)N nanowires,” J. Appl. Phys. 116(24), 244310 (2014).
    [Crossref]
  35. F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
    [Crossref]
  36. I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
    [Crossref]
  37. P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
    [Crossref] [PubMed]
  38. Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical water splitting (Springer, New York, 2013), Chap. 2.
  39. C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
    [Crossref]
  40. C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
    [Crossref] [PubMed]
  41. L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
    [Crossref] [PubMed]
  42. S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
    [Crossref] [PubMed]
  43. A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
    [Crossref]
  44. B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
    [Crossref] [PubMed]
  45. L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
    [Crossref] [PubMed]
  46. S. H. Kim, M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst,” Appl. Surf. Sci. 305, 638–641 (2014).
    [Crossref]
  47. S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, “Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions,” IEEE J. Photovolt. 8(1), 118–124 (2018).
    [Crossref]

2018 (6)

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

H. Zhang, M. Ebaid, J.-W. Min, T. K. Ng, and B. S. Ooi, “Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration,” J. Appl. Phys. 124(8), 083105 (2018).
[Crossref]

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

R. T. ElAfandy, M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, and B. S. Ooi, “Flexible InGaN nanowire membranes for enhanced solar water splitting,” Opt. Express 26(14), A640–A650 (2018).
[Crossref] [PubMed]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, “Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions,” IEEE J. Photovolt. 8(1), 118–124 (2018).
[Crossref]

2017 (6)

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

2016 (4)

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

S. O. S. Hamady, A. Adaine, and N. Fressengeas, “Numerical simulation of InGaN Schottky solar cell,” Mater. Sci. Semicond. Process. 41, 219–225 (2016).
[Crossref]

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

2015 (9)

F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
[Crossref]

A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and simulation of InGaN p-n junction solar cell,” Int. J. Photoenergy 2015, 594858 (2015).
[Crossref]

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
[Crossref] [PubMed]

F. A. Chowdhury, Z. Mi, M. G. Kibria, and M. L. Trudeau, “Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation,” APL Mater. 3(10), 104408 (2015).
[Crossref]

G.-L. Su, T. Frost, P. Bhattacharya, and J. M. Dallesasse, “Physical model for high indium content InGaN/GaN self-assembled quantum dot ridge-waveguide lasers emitting at red wavelengths (λ ~ 630 nm),” Opt. Express 23(10), 12850–12865 (2015).
[Crossref] [PubMed]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

N. U. H. Alvi, P. E. D. S. Rodriguez, P. Aseev, and V. J. Gómez, “A. u. H. Alvi, W. u. Hassan, M. Willander, and R. Nötzel, "InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

2014 (6)

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

J. Kamimura, M. Ramsteiner, L. Geelhaar, and H. Riechert, “Si doping effects on (In,Ga)N nanowires,” J. Appl. Phys. 116(24), 244310 (2014).
[Crossref]

A. S. Kushwaha, P. Mahala, and C. Dhanavantri, “Optimization of p-GaN/InGaN/n-GaN double heterojunction p-i-n solar cell for high efficiency: simulation approach,” Int. J. Photoenergy 2014, 819637 (2014).
[Crossref]

S. H. Kim, M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst,” Appl. Surf. Sci. 305, 638–641 (2014).
[Crossref]

2013 (4)

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
[Crossref]

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

2011 (2)

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

T. Stoica and R. Calarco, “Doping of III-nitride nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 859–868 (2011).
[Crossref]

2010 (2)

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

2007 (1)

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
[Crossref]

2006 (2)

E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
[Crossref]

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

2005 (2)

F. Schwierz, “An electron mobility model for wurtzite GaN,” Solid-State Electron. 49(6), 889–895 (2005).
[Crossref]

K. Fujii and K. Ohkawa, “Photoelectrochemical properties of p-type GaN in comparison with n-type GaN,” Jpn. J. Appl. Phys. 44(28), L909–L911 (2005).
[Crossref]

Abdelfatah, M.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Abid, H.

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
[Crossref]

Adaine, A.

S. O. S. Hamady, A. Adaine, and N. Fressengeas, “Numerical simulation of InGaN Schottky solar cell,” Mater. Sci. Semicond. Process. 41, 219–225 (2016).
[Crossref]

Ajia, I.

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Alhamoud, A. A.

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

Alias, M. S.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

AlOtaibi, B.

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

Alvi, N. U. H.

N. U. H. Alvi, P. E. D. S. Rodriguez, P. Aseev, and V. J. Gómez, “A. u. H. Alvi, W. u. Hassan, M. Willander, and R. Nötzel, "InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Anani, M.

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
[Crossref]

Andrews, M. P.

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

Aryal, K.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Aseev, P.

N. U. H. Alvi, P. E. D. S. Rodriguez, P. Aseev, and V. J. Gómez, “A. u. H. Alvi, W. u. Hassan, M. Willander, and R. Nötzel, "InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Bard, A. J.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Basore, P. A.

D. A. Clugston and P. A. Basore, "PC1D version 5: 32-bit solar cell modeling on personal computers," in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997 (IEEE, 1997), pp. 207–210.
[Crossref]

Berhe, T. A.

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

Bhattacharya, P.

Bisquert, J.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

Boettcher, S. W.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Bogdanoff, P.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

Botton, G. A.

S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
[Crossref] [PubMed]

Boukahil, I.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

Bremers, H.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Buttner, U.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Caccamo, L.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Calarco, R.

T. Stoica and R. Calarco, “Doping of III-nitride nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 859–868 (2011).
[Crossref]

Chama, Z.

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
[Crossref]

Chang, J.-Y.

F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
[Crossref]

Chang, Y.-A.

F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
[Crossref]

Chen, F.-M.

F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
[Crossref]

Chen, H.-M.

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

Cheng, G.

E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
[Crossref]

Cho, Y.-H.

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Chowdhury, F. A.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

F. A. Chowdhury, Z. Mi, M. G. Kibria, and M. L. Trudeau, “Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation,” APL Mater. 3(10), 104408 (2015).
[Crossref]

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

Cimpoiasu, E.

E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
[Crossref]

Clugston, D. A.

D. A. Clugston and P. A. Basore, "PC1D version 5: 32-bit solar cell modeling on personal computers," in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997 (IEEE, 1997), pp. 207–210.
[Crossref]

Cocco, G.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Corfdir, P.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Dallesasse, J. M.

Daum, W.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Demkov, A. A.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Denier, B.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

Dhanavantri, C.

A. S. Kushwaha, P. Mahala, and C. Dhanavantri, “Optimization of p-GaN/InGaN/n-GaN double heterojunction p-i-n solar cell for high efficiency: simulation approach,” Int. J. Photoenergy 2014, 819637 (2014).
[Crossref]

Dubale, A. A.

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

Dunwei, W.

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Dziony, W.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Ebaid, M.

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

H. Zhang, M. Ebaid, J.-W. Min, T. K. Ng, and B. S. Ooi, “Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration,” J. Appl. Phys. 124(8), 083105 (2018).
[Crossref]

R. T. ElAfandy, M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, and B. S. Ooi, “Flexible InGaN nanowire membranes for enhanced solar water splitting,” Opt. Express 26(14), A640–A650 (2018).
[Crossref] [PubMed]

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

S. H. Kim, M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst,” Appl. Surf. Sci. 305, 638–641 (2014).
[Crossref]

Ekerdt, J. G.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

ElAfandy, R. T.

Elias, J.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

Estradé, S.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Fabregat-Santiago, F.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

Fan, S.

S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

Feix, F.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Fiechter, S.

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

Fressengeas, N.

S. O. S. Hamady, A. Adaine, and N. Fressengeas, “Numerical simulation of InGaN Schottky solar cell,” Mater. Sci. Semicond. Process. 41, 219–225 (2016).
[Crossref]

Frost, T.

Fu, H.-C.

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Fujii, K.

K. Fujii and K. Ohkawa, “Photoelectrochemical properties of p-type GaN in comparison with n-type GaN,” Jpn. J. Appl. Phys. 44(28), L909–L911 (2005).
[Crossref]

Fundling, S.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Gad, A.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Garrido, J. A.

F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
[Crossref]

Geelhaar, L.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

J. Kamimura, M. Ramsteiner, L. Geelhaar, and H. Riechert, “Si doping effects on (In,Ga)N nanowires,” J. Appl. Phys. 116(24), 244310 (2014).
[Crossref]

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

Gómez, V. J.

N. U. H. Alvi, P. E. D. S. Rodriguez, P. Aseev, and V. J. Gómez, “A. u. H. Alvi, W. u. Hassan, M. Willander, and R. Nötzel, "InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Gonzalez, T.

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

Goodman, K. D.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Grinys, T.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Guo, H.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

Ha, J.-S.

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Hamady, S. O. S.

S. O. S. Hamady, A. Adaine, and N. Fressengeas, “Numerical simulation of InGaN Schottky solar cell,” Mater. Sci. Semicond. Process. 41, 219–225 (2016).
[Crossref]

Hangleiter, A.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Harati, M.

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

Hauswald, C.

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

He, J.-H.

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Hetzl, M.

F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
[Crossref]

Himpsel, F. J.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

Huang, H.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Hwang, B.-J.

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

Idriss, H.

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Iliopoulos, E.

S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, “Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions,” IEEE J. Photovolt. 8(1), 118–124 (2018).
[Crossref]

Ishiang, S.

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Isimjan, T. T.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Janjua, B.

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

Jelmakas, E.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Jena, D.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Ji, L.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Ji, W.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

Jiang, C.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Jiang, H. X.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Juodkazis, K.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Juodkazis, S.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Juodkazyte, J.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Kadys, A.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Kamimura, J.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

J. Kamimura, M. Ramsteiner, L. Geelhaar, and H. Riechert, “Si doping effects on (In,Ga)N nanowires,” J. Appl. Phys. 116(24), 244310 (2014).
[Crossref]

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

Kang, J.-H.

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

S. H. Kim, M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst,” Appl. Surf. Sci. 305, 638–641 (2014).
[Crossref]

Kazazis, S. A.

S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, “Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions,” IEEE J. Photovolt. 8(1), 118–124 (2018).
[Crossref]

Khelifa, B.

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
[Crossref]

Kibria, M. G.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

F. A. Chowdhury, Z. Mi, M. G. Kibria, and M. L. Trudeau, “Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation,” APL Mater. 3(10), 104408 (2015).
[Crossref]

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Kim, S. H.

S. H. Kim, M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst,” Appl. Surf. Sci. 305, 638–641 (2014).
[Crossref]

Klie, R.

E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
[Crossref]

Kong, X.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

Kosel, T. H.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Kuo, Y.-K.

F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
[Crossref]

Kuo, Y.-T.

F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
[Crossref]

Kushwaha, A. S.

A. S. Kushwaha, P. Mahala, and C. Dhanavantri, “Optimization of p-GaN/InGaN/n-GaN double heterojunction p-i-n solar cell for high efficiency: simulation approach,” Int. J. Photoenergy 2014, 819637 (2014).
[Crossref]

Lähnemann, J.

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

Lee, J. C.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Lee, J. K.

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Lévy-Clément, C.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

Lewis, N. S.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Li, J.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Li, K. H.

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

Li, X.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Lilienkamp, G.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Lim, S.-H.

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Lin, J. Y.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Liou, B.-T.

F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
[Crossref]

Liu, G.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Liu, X.

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

Mahala, P.

A. S. Kushwaha, P. Mahala, and C. Dhanavantri, “Optimization of p-GaN/InGaN/n-GaN double heterojunction p-i-n solar cell for high efficiency: simulation approach,” Int. J. Photoenergy 2014, 819637 (2014).
[Crossref]

Mahrane, A.

A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and simulation of InGaN p-n junction solar cell,” Int. J. Photoenergy 2015, 594858 (2015).
[Crossref]

Malinauskas, T.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Martín, G.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Mathieu, C.

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
[Crossref]

Mayrhofer, L.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

McDaniel, M. D.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

McKone, J. R.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mesrane, A.

A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and simulation of InGaN p-n junction solar cell,” Int. J. Photoenergy 2015, 594858 (2015).
[Crossref]

Mi, Q.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mi, Z.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

F. A. Chowdhury, Z. Mi, M. G. Kibria, and M. L. Trudeau, “Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation,” APL Mater. 3(10), 104408 (2015).
[Crossref]

S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
[Crossref] [PubMed]

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Min, J.-W.

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

R. T. ElAfandy, M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, and B. S. Ooi, “Flexible InGaN nanowire membranes for enhanced solar water splitting,” Opt. Express 26(14), A640–A650 (2018).
[Crossref] [PubMed]

H. Zhang, M. Ebaid, J.-W. Min, T. K. Ng, and B. S. Ooi, “Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration,” J. Appl. Phys. 124(8), 083105 (2018).
[Crossref]

Mitra, S.

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Mohajerani, M. S.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Moniz, S. J. A.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Mora-Seró, I.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

Moseler, M.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Munden, R. A.

E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
[Crossref]

Ng, T. K.

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

H. Zhang, M. Ebaid, J.-W. Min, T. K. Ng, and B. S. Ooi, “Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration,” J. Appl. Phys. 124(8), 083105 (2018).
[Crossref]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

R. T. ElAfandy, M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, and B. S. Ooi, “Flexible InGaN nanowire membranes for enhanced solar water splitting,” Opt. Express 26(14), A640–A650 (2018).
[Crossref] [PubMed]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Nguyen, H. P. T.

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

Ohkawa, K.

K. Fujii and K. Ohkawa, “Photoelectrochemical properties of p-type GaN in comparison with n-type GaN,” Jpn. J. Appl. Phys. 44(28), L909–L911 (2005).
[Crossref]

Ooi, B. S.

H. Zhang, M. Ebaid, J.-W. Min, T. K. Ng, and B. S. Ooi, “Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration,” J. Appl. Phys. 124(8), 083105 (2018).
[Crossref]

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

R. T. ElAfandy, M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, and B. S. Ooi, “Flexible InGaN nanowire membranes for enhanced solar water splitting,” Opt. Express 26(14), A640–A650 (2018).
[Crossref] [PubMed]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Oulebsir, A.

A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and simulation of InGaN p-n junction solar cell,” Int. J. Photoenergy 2015, 594858 (2015).
[Crossref]

Pan, C.-J.

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

Pantha, B. N.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Papadomanolaki, E.

S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, “Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions,” IEEE J. Photovolt. 8(1), 118–124 (2018).
[Crossref]

Peiró, F.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Posadas, A. B.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Priante, D.

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Protasenko, V. V.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Qiao, R.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

Rahmoune, F.

A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and simulation of InGaN p-n junction solar cell,” Int. J. Photoenergy 2015, 594858 (2015).
[Crossref]

Ramsteiner, M.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

J. Kamimura, M. Ramsteiner, L. Geelhaar, and H. Riechert, “Si doping effects on (In,Ga)N nanowires,” J. Appl. Phys. 116(24), 244310 (2014).
[Crossref]

Reed, M. A.

E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
[Crossref]

Retamal, J. R. D.

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Riechert, H.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

J. Kamimura, M. Ramsteiner, L. Geelhaar, and H. Riechert, “Si doping effects on (In,Ga)N nanowires,” J. Appl. Phys. 116(24), 244310 (2014).
[Crossref]

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

Rodriguez, P. E. D. S.

N. U. H. Alvi, P. E. D. S. Rodriguez, P. Aseev, and V. J. Gómez, “A. u. H. Alvi, W. u. Hassan, M. Willander, and R. Nötzel, "InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

Roqan, I. S.

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Ryu, S.-W.

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

S. H. Kim, M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst,” Appl. Surf. Sci. 305, 638–641 (2014).
[Crossref]

Santori, E. A.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Savickaja, I.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Sayede, A.

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
[Crossref]

Schuster, F.

F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
[Crossref]

Schwierz, F.

F. Schwierz, “An electron mobility model for wurtzite GaN,” Solid-State Electron. 49(6), 889–895 (2005).
[Crossref]

Šebeka, B.

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Shakfa, M. K.

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

Sheng, C.

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Stern, E.

E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
[Crossref]

Stoica, T.

T. Stoica and R. Calarco, “Doping of III-nitride nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 859–868 (2011).
[Crossref]

Stutzmann, M.

F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
[Crossref]

Su, G.-L.

Su, W.-N.

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

Tamirat, A. G.

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

Tang, J.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Tena-Zaera, R.

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

Thomas, H.

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Trudeau, M. L.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

F. A. Chowdhury, Z. Mi, M. G. Kibria, and M. L. Trudeau, “Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation,” APL Mater. 3(10), 104408 (2015).
[Crossref]

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

Varadhan, P.

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Vayssieres, L.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

Verma, J.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Waag, A.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Walter, M. G.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Wang, A.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Wang, Q.

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

Wang, S.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Wang, Y.

S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
[Crossref] [PubMed]

Warren, E. L.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Wei, L.

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Wei, N.

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

Weiszer, S.

F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
[Crossref]

Winnerl, A.

F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
[Crossref]

Woo, S. Y.

S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
[Crossref] [PubMed]

Xing, H. G.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Yanfa, Y.

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Yang, W.

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

Yu, E. T.

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Zetian, M.

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Zhang, D.

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

Zhang, H.

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

H. Zhang, M. Ebaid, J.-W. Min, T. K. Ng, and B. S. Ooi, “Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration,” J. Appl. Phys. 124(8), 083105 (2018).
[Crossref]

Zhang, T.

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

Zhao, C.

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

R. T. ElAfandy, M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, and B. S. Ooi, “Flexible InGaN nanowire membranes for enhanced solar water splitting,” Opt. Express 26(14), A640–A650 (2018).
[Crossref] [PubMed]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Zhao, S.

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

Zhou, H.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of In(x)Ga(1-x)N (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Adv. Mater. (1)

M. G. Kibria, R. Qiao, W. Yang, I. Boukahil, X. Kong, F. A. Chowdhury, M. L. Trudeau, W. Ji, H. Guo, F. J. Himpsel, L. Vayssieres, and Z. Mi, “Atomic-scale origin of long-term stability and high performance of p-GaN nanowire arrays for photocatalytic overall pure water splitting,” Adv. Mater. 28(38), 8388–8397 (2016).
[Crossref] [PubMed]

APL Mater. (1)

F. A. Chowdhury, Z. Mi, M. G. Kibria, and M. L. Trudeau, “Group III-nitride nanowire structures for photocatalytic hydrogen evolution under visible light irradiation,” APL Mater. 3(10), 104408 (2015).
[Crossref]

Appl. Phys. Lett. (2)

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006).
[Crossref]

Appl. Surf. Sci. (1)

S. H. Kim, M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst,” Appl. Surf. Sci. 305, 638–641 (2014).
[Crossref]

Chem. Rev. (1)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

C. Jiang, S. J. A. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting - materials and challenges,” Chem. Soc. Rev. 46(15), 4645–4660 (2017).
[Crossref] [PubMed]

IEEE J. Photovolt. (1)

S. A. Kazazis, E. Papadomanolaki, and E. Iliopoulos, “Polarization-engineered InGaN/GaN solar cells: realistic expectations for single heterojunctions,” IEEE J. Photovolt. 8(1), 118–124 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Stoica and R. Calarco, “Doping of III-nitride nanowires grown by molecular beam epitaxy,” IEEE J. Sel. Top. Quantum Electron. 17(4), 859–868 (2011).
[Crossref]

Int. J. Photoenergy (2)

A. S. Kushwaha, P. Mahala, and C. Dhanavantri, “Optimization of p-GaN/InGaN/n-GaN double heterojunction p-i-n solar cell for high efficiency: simulation approach,” Int. J. Photoenergy 2014, 819637 (2014).
[Crossref]

A. Mesrane, F. Rahmoune, A. Mahrane, and A. Oulebsir, “Design and simulation of InGaN p-n junction solar cell,” Int. J. Photoenergy 2015, 594858 (2015).
[Crossref]

J. Am. Chem. Soc. (1)

J. Kamimura, P. Bogdanoff, J. Lähnemann, C. Hauswald, L. Geelhaar, S. Fiechter, and H. Riechert, “Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy,” J. Am. Chem. Soc. 135(28), 10242–10245 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (4)

H. Zhang, M. Ebaid, J.-W. Min, T. K. Ng, and B. S. Ooi, “Enhanced photoelectrochemical performance of InGaN-based nanowire photoanodes by optimizing the ionized dopant concentration,” J. Appl. Phys. 124(8), 083105 (2018).
[Crossref]

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

J. Kamimura, M. Ramsteiner, L. Geelhaar, and H. Riechert, “Si doping effects on (In,Ga)N nanowires,” J. Appl. Phys. 116(24), 244310 (2014).
[Crossref]

F. Schuster, A. Winnerl, S. Weiszer, M. Hetzl, J. A. Garrido, and M. Stutzmann, “Doped GaN nanowires on diamond: structural properties and charge carrier distribution,” J. Appl. Phys. 117(4), 044307 (2015).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (3)

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

M. Ebaid, J.-W. Min, C. Zhao, T. K. Ng, H. Idriss, and B. S. Ooi, “Water splitting to hydrogen over epitaxially grown InGaN nanowires on a metallic titanium/silicon template: reduced interfacial transfer resistance and improved stability to hydrogen,” J. Mater. Chem. A Mater. Energy Sustain. 6(16), 6922–6930 (2018).
[Crossref]

A. A. Dubale, A. G. Tamirat, H.-M. Chen, T. A. Berhe, C.-J. Pan, W.-N. Su, and B.-J. Hwang, “A highly stable CuS and CuS–Pt modified Cu2O/CuO heterostructure as an efficient photocathode for the hydrogen evolution reaction,” J. Mater. Chem. A Mater. Energy Sustain. 4(6), 2205–2216 (2016).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Fujii and K. Ohkawa, “Photoelectrochemical properties of p-type GaN in comparison with n-type GaN,” Jpn. J. Appl. Phys. 44(28), L909–L911 (2005).
[Crossref]

Mater. Sci. Semicond. Process. (1)

S. O. S. Hamady, A. Adaine, and N. Fressengeas, “Numerical simulation of InGaN Schottky solar cell,” Mater. Sci. Semicond. Process. 41, 219–225 (2016).
[Crossref]

Microelectronics J. (1)

M. Anani, H. Abid, Z. Chama, C. Mathieu, A. Sayede, and B. Khelifa, “InxGa1−xN refractive index calculations,” Microelectronics J. 38(2), 262–266 (2007).
[Crossref]

Nano Energy (3)

N. U. H. Alvi, P. E. D. S. Rodriguez, P. Aseev, and V. J. Gómez, “A. u. H. Alvi, W. u. Hassan, M. Willander, and R. Nötzel, "InN/InGaN quantum dot photoelectrode: Efficient hydrogen generation by water splitting at zero voltage,” Nano Energy 13, 291–297 (2015).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. S. Alias, U. Buttner, T. K. Ng, T. T. Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Nano Futures (1)

C. Sheng, L. Wei, Y. Yanfa, H. Thomas, S. Ishiang, W. Dunwei, and M. Zetian, “Roadmap on solar water splitting: current status and future prospects,” Nano Futures 1(2), 022001 (2017).
[Crossref]

Nano Lett. (4)

S. Fan, B. AlOtaibi, S. Y. Woo, Y. Wang, G. A. Botton, and Z. Mi, “High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode,” Nano Lett. 15(4), 2721–2726 (2015).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type doping of GaN nanowires characterized by photoelectrochemical measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

P. Varadhan, H.-C. Fu, D. Priante, J. R. D. Retamal, C. Zhao, M. Ebaid, T. K. Ng, I. Ajia, S. Mitra, I. S. Roqan, B. S. Ooi, and J.-H. He, “Surface passivation of GaN nanowires for enhanced photoelectrochemical water-splitting,” Nano Lett. 17(3), 1520–1528 (2017).
[Crossref] [PubMed]

Nanoscale (2)

Q. Wang, X. Liu, M. G. Kibria, S. Zhao, H. P. T. Nguyen, K. H. Li, Z. Mi, T. Gonzalez, and M. P. Andrews, “p-Type dopant incorporation and surface charge properties of catalyst-free GaN nanowires revealed by micro-Raman scattering and X-ray photoelectron spectroscopy,” Nanoscale 6(17), 9970–9976 (2014).
[Crossref] [PubMed]

C. Zhao, M. Ebaid, H. Zhang, D. Priante, B. Janjua, D. Zhang, N. Wei, A. A. Alhamoud, M. K. Shakfa, T. K. Ng, and B. S. Ooi, “Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters,” Nanoscale 10(34), 15980–15988 (2018).
[Crossref] [PubMed]

Nanotechnology (2)

E. Cimpoiasu, E. Stern, R. Klie, R. A. Munden, G. Cheng, and M. A. Reed, “The effect of Mg doping on GaN nanowires,” Nanotechnology 17(23), 5735–5739 (2006).
[Crossref]

B. AlOtaibi, M. Harati, S. Fan, S. Zhao, H. P. T. Nguyen, M. G. Kibria, and Z. Mi, “High efficiency photoelectrochemical water splitting and hydrogen generation using GaN nanowire photoelectrode,” Nanotechnology 24(17), 175401 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

M. G. Kibria, S. Zhao, F. A. Chowdhury, Q. Wang, H. P. T. Nguyen, M. L. Trudeau, H. Guo, and Z. Mi, “Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting,” Nat. Commun. 5(1), 3825 (2014).
[Crossref] [PubMed]

M. G. Kibria, F. A. Chowdhury, S. Zhao, B. AlOtaibi, M. L. Trudeau, H. Guo, and Z. Mi, “Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays,” Nat. Commun. 6(1), 6797 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. Ji, M. D. McDaniel, S. Wang, A. B. Posadas, X. Li, H. Huang, J. C. Lee, A. A. Demkov, A. J. Bard, J. G. Ekerdt, and E. T. Yu, “A silicon-based photocathode for water reduction with an epitaxial SrTiO3 protection layer and a nanostructured catalyst,” Nat. Nanotechnol. 10(1), 84–90 (2015).
[Crossref] [PubMed]

Opt. Express (2)

Proc. SPIE (1)

F.-M. Chen, B.-T. Liou, Y.-A. Chang, J.-Y. Chang, Y.-T. Kuo, and Y.-K. Kuo, “Numerical analysis of using superlattice-AlGaN/InGaN as electron blocking layer in green InGaN light-emitting diodes,” Proc. SPIE 8625, 862526 (2013).
[Crossref]

Semicond. Sci. Technol. (1)

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

J. Juodkazytė, B. Šebeka, I. Savickaja, A. Kadys, E. Jelmakas, T. Grinys, S. Juodkazis, K. Juodkazis, and T. Malinauskas, “InxGa1−xN performance as a band-gap-tunable photo-electrode in acidic and basic solutions,” Sol. Energy Mater. Sol. Cells 130, 36–41 (2014).
[Crossref]

Solid-State Electron. (1)

F. Schwierz, “An electron mobility model for wurtzite GaN,” Solid-State Electron. 49(6), 889–895 (2005).
[Crossref]

Other (3)

Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical water splitting (Springer, New York, 2013), Chap. 2.

O. K. Jani, "Development of wide-band gap indium gallium nitride solar cells for high-efficiency photovoltaics," Ph.D. Thesis (Georgia Institute of Technology, 2008).

D. A. Clugston and P. A. Basore, "PC1D version 5: 32-bit solar cell modeling on personal computers," in Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997 (IEEE, 1997), pp. 207–210.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 General structure and band diagram of InGaN/GaN NWs. (a) Schematic of the InGaN/GaN NW photoelectrode with longer InGaN segments grown directly on GaN seeds. SEM images of: (b) n-InGaN/n-GaN, (c) u-InGaN/p-GaN, and (d) p-InGaN/p-GaN NWs; the insets are the corresponding top-view images at same scales; (e) room-temperature PL spectra.
Fig. 2
Fig. 2 Mott–Schottky quantification of carrier concentrations. (a) n-InGaN/n-GaN, (b) u-InGaN/p-GaN, and (c) p- InGaN/p-GaN NWs.
Fig. 3
Fig. 3 (a) OCP measurements, (b) LSV, and (c) the corresponding ABPE for the different InGaN/GaN NW photoelectrode designs (The photoanodes and photocathodes were tested in pH 7 and pH 0 electrolytes, respectively, under 6 suns AM 1.5G illumination).
Fig. 4
Fig. 4 Stability and gas evolution measurements of InGaN/GaN NWs. (a) Chronoamperometry measurements, (photoanodes and photocathodes were tested in pH 7 and pH 0 electrolytes, respectively, under 6 suns AM 1.5G illumination) (b) leak-tight glass reactor used for gas evolution measurements (the inset figure shows the top view of the reactor), and (c) hydrogen and oxygen evolution for the u-InGaN/p-GaN and p-InGaN/p-GaN samples.
Fig. 5
Fig. 5 Energy band diagram of InGaN/GaN NWs. Energy band configuration as simulated by PC1D software for: (a) n-InGaN/n-GaN, (b) u-InGaN/p-GaN, and (c) p-InGaN/p-GaN. Schematic of the InGaN/GaN NW photoelectrodes in direct contact with the electrolyte under light illumination conditions: (d) n-InGaN/n-GaN, (e) u-InGaN/p-GaN, and (f) p-InGaN/p-GaN.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ABPE(%)= [| J ph |(mA/c m 2 )×[1.23-| E app |(V)]×η] P light (mW/c m 2 ) ×100

Metrics