Abstract

Haze in optically transparent aerogels severely degrades the visual experience, which has prevented their adoption in windows despite their outstanding thermal insulation property. Previous studies have primarily relied on experiments to characterize haze in aerogels, however, a theoretical framework to systematically investigate haze in porous media is lacking. In this work, we present a radiative transfer model that can predict haze in aerogels based on their physical properties. The model is validated using optical characterization of custom-fabricated, highly-transparent monolithic silica aerogels. The fundamental relationships between the aerogel structure and haze highlighted in this study could lead to a better understanding of light-matter interaction in a wide range of transparent porous materials and assist in the development of low-haze silica aerogels for high-performance glazing units to reduce building energy consumption.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Scattering and absorption coefficients of silica-doped alumina aerogels

Tairan Fu, Jiaqi Tang, Kai Chen, and Fan Zhang
Appl. Opt. 55(4) 705-711 (2016)

Fast fabrication of a novel transparent PMMA light scattering materials with high haze by doping with ordinary polymer

Xiao Liu, Ying Xiong, Jiabin Shen, and Shaoyun Guo
Opt. Express 23(14) 17793-17804 (2015)

Experimental measurement of corneal haze after excimer laser keratectomy

Juan A. del Val, Sonia Barrero, Bety Yáñez, Jesús Merayo, Juan A. Aparicio, Víctor R. González, José C. Pastor, and Santiago Mar
Appl. Opt. 40(10) 1727-1734 (2001)

References

  • View by:
  • |
  • |
  • |

  1. L. W. Hrubesh, “Aerogel applications,” J. Non-Cryst. Solids 225, 335–342 (1998).
    [Crossref]
  2. M. A. Aegerter, N. Leventis, and M. M. Koebel, Aerogels Handbook (Springer, 2011).
  3. G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225, 307–314 (1998).
    [Crossref]
  4. K. McEnaney, L. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, “Aerogel-based solar thermal receivers,” Nano Energy 40, 180–186 (2017).
    [Crossref]
  5. S. Svendsen, “Solar collector with monolithic silica aerogel,” J. Non-Cryst. Solids 145, 240–243 (1992).
    [Crossref]
  6. L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
    [Crossref]
  7. H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
    [Crossref] [PubMed]
  8. E. Strobach, B. Bhatia, S. Yang, L. Zhao, and E. N. Wang, “High Temperature Annealing for Structural Optimization of Silica Aerogels in Solar Thermal Applications,” J. Non-Cryst. Solids 462, 72–77 (2017).
    [Crossref]
  9. M. Rubin and C. M. Lampert, “Transparent silica aerogels for window insulation,” Sol. Energy Mater. 7(4), 393–400 (1983).
    [Crossref]
  10. K. Duer and S. Svendsen, “Monolithic silica aerogel in superinsulating glazings,” Sol. Energy 63(4), 259–267 (1998).
    [Crossref]
  11. J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
    [Crossref]
  12. U. Berardi, “The development of a monolithic aerogel glazed window for an energy retrofitting project,” Appl. Energy 154, 603–615 (2015).
    [Crossref]
  13. C. Buratti and E. Moretti, “Experimental performance evaluation of aerogel glazing systems,” Appl. Energy 97, 430–437 (2012).
    [Crossref]
  14. “ASTM D1003-13 Standard test method for haze and luminous transmittance of transparent plastics,” ASTM International, West Conshohocken, PA (2013).
  15. ARPA-E SHIELD program, “Single-Pane Highly Insulating Efficient Lucid Designs,” (U.S. DOE, 2015). https://arpa-e.energy.gov/?q=arpa-e-programs/shield .
  16. C. Buratti and E. Moretti, “Glazing systems with silica aerogel for energy savings in buildings,” Appl. Energy 98, 396–403 (2012).
    [Crossref]
  17. T. Gao, B. P. Jelle, T. Ihara, and A. Gustavsen, “Insulating glazing units with silica aerogel granules: The impact of particle size,” Appl. Energy 128, 27–34 (2014).
    [Crossref]
  18. G. M. Pajonk, E. Elaloui, B. Chevalier, and R. Begag, “Optical transmission properties of silica aerogels prepared from polyethoxidisiloxanes,” J. Non-Cryst. Solids 210(2-3), 224–231 (1997).
    [Crossref]
  19. A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
    [Crossref]
  20. C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
    [Crossref]
  21. Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
    [Crossref]
  22. J. S. Q. Zeng, R. Greif, P. Stevens, M. Ayers, and A. Hunt, “Effective optical constants n and κ and extinction coefficient of silica aerogel,” J. Mater. Res. 11(03), 687–693 (1996).
    [Crossref]
  23. S. Chandrasekhar, Radiative Transfer (Dover Publications, 1960).
  24. A. Ishimaru, Wave Propagation and Scattering in Random Media (Oxford University, 1997).
  25. L. Tsang, J. Kong, and K. Ding, Scattering of Electromagnetic Waves (Wiley, 2000).
  26. M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
    [Crossref]
  27. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(Suppl 5), A1148–A1154 (2011).
    [Crossref] [PubMed]
  28. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [Crossref] [PubMed]
  29. F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
    [Crossref] [PubMed]
  30. F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
    [Crossref] [PubMed]
  31. H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
    [Crossref] [PubMed]
  32. G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
    [Crossref]
  33. X. Liu, Y. Xiong, J. Shen, and S. Guo, “Fast fabrication of a novel transparent PMMA light scattering materials with high haze by doping with ordinary polymer,” Opt. Express 23(14), 17793–17804 (2015).
    [Crossref] [PubMed]
  34. M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
    [Crossref] [PubMed]
  35. M. Sever, J. Krč, A. Čampa, and M. Topič, “Rigorous modelling of light scattering in solar cells based on finite element method and Huygens’ expansion,” Opt. Express 23(24), A1549–A1563 (2015).
    [Crossref] [PubMed]
  36. N. Sahraei, K. Forberich, S. Venkataraj, A. G. Aberle, and M. Peters, “Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells,” Opt. Express 22(Suppl 1), A53–A67 (2014).
    [Crossref] [PubMed]
  37. K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27(12), 2502–2509 (1988).
    [Crossref] [PubMed]
  38. S. Lallich, F. Enguehard, and D. Baillis, “Experimental Determination and Modeling of the Radiative Properties of Silica Nanoporous Matrices,” J. Heat Transfer 131(8), 082701 (2009).
    [Crossref]
  39. L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6(2), 025123 (2016).
    [Crossref]
  40. G. W. Kattawar, G. N. Plass, and S. J. Hitzfelder, “Multiple scattered radiation emerging from Rayleigh and continental haze layers. 1: Radiance, polarization, and neutral points,” Appl. Opt. 15(3), 632–647 (1976).
    [Crossref] [PubMed]
  41. H. T. Yu, D. Liu, Y. Y. Duan, and X. D. Wang, “Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures,” Int. J. Heat Mass Transf. 70, 478–485 (2014).
    [Crossref]
  42. B. X. Wang and C. Y. Zhao, “Structural correlations and dependent scattering mechanism on the radiative properties of random media,” J. Quant. Spectrosc. Radiat. Transf. 218, 72–85 (2018).
    [Crossref]
  43. A. Leroy, B. Bhatia, L. Zhao, and E. N. Wang, “Specular side reflectors for high efficiency thermal-to-optical energy conversion,” Opt. Express 26(10), A462–A479 (2018).
    [Crossref] [PubMed]

2018 (8)

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
[Crossref]

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

B. X. Wang and C. Y. Zhao, “Structural correlations and dependent scattering mechanism on the radiative properties of random media,” J. Quant. Spectrosc. Radiat. Transf. 218, 72–85 (2018).
[Crossref]

A. Leroy, B. Bhatia, L. Zhao, and E. N. Wang, “Specular side reflectors for high efficiency thermal-to-optical energy conversion,” Opt. Express 26(10), A462–A479 (2018).
[Crossref] [PubMed]

2017 (2)

E. Strobach, B. Bhatia, S. Yang, L. Zhao, and E. N. Wang, “High Temperature Annealing for Structural Optimization of Silica Aerogels in Solar Thermal Applications,” J. Non-Cryst. Solids 462, 72–77 (2017).
[Crossref]

K. McEnaney, L. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, “Aerogel-based solar thermal receivers,” Nano Energy 40, 180–186 (2017).
[Crossref]

2016 (2)

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6(2), 025123 (2016).
[Crossref]

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

2015 (4)

M. Sever, J. Krč, A. Čampa, and M. Topič, “Rigorous modelling of light scattering in solar cells based on finite element method and Huygens’ expansion,” Opt. Express 23(24), A1549–A1563 (2015).
[Crossref] [PubMed]

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

X. Liu, Y. Xiong, J. Shen, and S. Guo, “Fast fabrication of a novel transparent PMMA light scattering materials with high haze by doping with ordinary polymer,” Opt. Express 23(14), 17793–17804 (2015).
[Crossref] [PubMed]

U. Berardi, “The development of a monolithic aerogel glazed window for an energy retrofitting project,” Appl. Energy 154, 603–615 (2015).
[Crossref]

2014 (4)

T. Gao, B. P. Jelle, T. Ihara, and A. Gustavsen, “Insulating glazing units with silica aerogel granules: The impact of particle size,” Appl. Energy 128, 27–34 (2014).
[Crossref]

N. Sahraei, K. Forberich, S. Venkataraj, A. G. Aberle, and M. Peters, “Analytical solution for haze values of aluminium-induced texture (AIT) glass superstrates for a-Si:H solar cells,” Opt. Express 22(Suppl 1), A53–A67 (2014).
[Crossref] [PubMed]

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

H. T. Yu, D. Liu, Y. Y. Duan, and X. D. Wang, “Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures,” Int. J. Heat Mass Transf. 70, 478–485 (2014).
[Crossref]

2012 (3)

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

C. Buratti and E. Moretti, “Experimental performance evaluation of aerogel glazing systems,” Appl. Energy 97, 430–437 (2012).
[Crossref]

C. Buratti and E. Moretti, “Glazing systems with silica aerogel for energy savings in buildings,” Appl. Energy 98, 396–403 (2012).
[Crossref]

2011 (1)

2009 (2)

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[Crossref] [PubMed]

S. Lallich, F. Enguehard, and D. Baillis, “Experimental Determination and Modeling of the Radiative Properties of Silica Nanoporous Matrices,” J. Heat Transfer 131(8), 082701 (2009).
[Crossref]

2005 (1)

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

2001 (1)

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

1998 (3)

K. Duer and S. Svendsen, “Monolithic silica aerogel in superinsulating glazings,” Sol. Energy 63(4), 259–267 (1998).
[Crossref]

L. W. Hrubesh, “Aerogel applications,” J. Non-Cryst. Solids 225, 335–342 (1998).
[Crossref]

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225, 307–314 (1998).
[Crossref]

1997 (1)

G. M. Pajonk, E. Elaloui, B. Chevalier, and R. Begag, “Optical transmission properties of silica aerogels prepared from polyethoxidisiloxanes,” J. Non-Cryst. Solids 210(2-3), 224–231 (1997).
[Crossref]

1996 (1)

J. S. Q. Zeng, R. Greif, P. Stevens, M. Ayers, and A. Hunt, “Effective optical constants n and κ and extinction coefficient of silica aerogel,” J. Mater. Res. 11(03), 687–693 (1996).
[Crossref]

1992 (1)

S. Svendsen, “Solar collector with monolithic silica aerogel,” J. Non-Cryst. Solids 145, 240–243 (1992).
[Crossref]

1988 (1)

1983 (1)

M. Rubin and C. M. Lampert, “Transparent silica aerogels for window insulation,” Sol. Energy Mater. 7(4), 393–400 (1983).
[Crossref]

1976 (1)

Aberle, A. G.

Achard, P.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Alexander, M.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Ayers, M.

J. S. Q. Zeng, R. Greif, P. Stevens, M. Ayers, and A. Hunt, “Effective optical constants n and κ and extinction coefficient of silica aerogel,” J. Mater. Res. 11(03), 687–693 (1996).
[Crossref]

Baillis, D.

S. Lallich, F. Enguehard, and D. Baillis, “Experimental Determination and Modeling of the Radiative Properties of Silica Nanoporous Matrices,” J. Heat Transfer 131(8), 082701 (2009).
[Crossref]

Barbieri, O.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Begag, R.

G. M. Pajonk, E. Elaloui, B. Chevalier, and R. Begag, “Optical transmission properties of silica aerogels prepared from polyethoxidisiloxanes,” J. Non-Cryst. Solids 210(2-3), 224–231 (1997).
[Crossref]

Berardi, U.

U. Berardi, “The development of a monolithic aerogel glazed window for an energy retrofitting project,” Appl. Energy 154, 603–615 (2015).
[Crossref]

Berthon, S.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Bertino, M.

C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
[Crossref]

Bhatia, B.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

A. Leroy, B. Bhatia, L. Zhao, and E. N. Wang, “Specular side reflectors for high efficiency thermal-to-optical energy conversion,” Opt. Express 26(10), A462–A479 (2018).
[Crossref] [PubMed]

E. Strobach, B. Bhatia, S. Yang, L. Zhao, and E. N. Wang, “High Temperature Annealing for Structural Optimization of Silica Aerogels in Solar Thermal Applications,” J. Non-Cryst. Solids 462, 72–77 (2017).
[Crossref]

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6(2), 025123 (2016).
[Crossref]

Bley, F.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Boriskina, S. V.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Buratti, C.

C. Buratti and E. Moretti, “Experimental performance evaluation of aerogel glazing systems,” Appl. Energy 97, 430–437 (2012).
[Crossref]

C. Buratti and E. Moretti, “Glazing systems with silica aerogel for energy savings in buildings,” Appl. Energy 98, 396–403 (2012).
[Crossref]

Campa, A.

Cao, F.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

Chen, C.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Chen, G.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

K. McEnaney, L. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, “Aerogel-based solar thermal receivers,” Nano Energy 40, 180–186 (2017).
[Crossref]

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

Chevalier, B.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

G. M. Pajonk, E. Elaloui, B. Chevalier, and R. Begag, “Optical transmission properties of silica aerogels prepared from polyethoxidisiloxanes,” J. Non-Cryst. Solids 210(2-3), 224–231 (1997).
[Crossref]

Cui, L.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Dai, J.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

De La Cruz, J. A.

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

Donthula, S.

C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
[Crossref]

Duan, Y. Y.

H. T. Yu, D. Liu, Y. Y. Duan, and X. D. Wang, “Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures,” Int. J. Heat Mass Transf. 70, 478–485 (2014).
[Crossref]

Duer, K.

K. Duer and S. Svendsen, “Monolithic silica aerogel in superinsulating glazings,” Sol. Energy 63(4), 259–267 (1998).
[Crossref]

Ehrburger-Dolle, F.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Elaloui, E.

G. M. Pajonk, E. Elaloui, B. Chevalier, and R. Begag, “Optical transmission properties of silica aerogels prepared from polyethoxidisiloxanes,” J. Non-Cryst. Solids 210(2-3), 224–231 (1997).
[Crossref]

Enguehard, F.

S. Lallich, F. Enguehard, and D. Baillis, “Experimental Determination and Modeling of the Radiative Properties of Silica Nanoporous Matrices,” J. Heat Transfer 131(8), 082701 (2009).
[Crossref]

Forberich, K.

Frazier, A. W.

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

Gao, T.

T. Gao, B. P. Jelle, T. Ihara, and A. Gustavsen, “Insulating glazing units with silica aerogel granules: The impact of particle size,” Appl. Energy 128, 27–34 (2014).
[Crossref]

Geissler, E.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Ghasemi, H.

K. McEnaney, L. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, “Aerogel-based solar thermal receivers,” Nano Energy 40, 180–186 (2017).
[Crossref]

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

Gong, A.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

Greif, R.

J. S. Q. Zeng, R. Greif, P. Stevens, M. Ayers, and A. Hunt, “Effective optical constants n and κ and extinction coefficient of silica aerogel,” J. Mater. Res. 11(03), 687–693 (1996).
[Crossref]

Guo, S.

Gustavsen, A.

T. Gao, B. P. Jelle, T. Ihara, and A. Gustavsen, “Insulating glazing units with silica aerogel granules: The impact of particle size,” Appl. Energy 128, 27–34 (2014).
[Crossref]

Henderson, D.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

Hess, A. J.

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

Hitz, E.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Hitzfelder, S. J.

Hrubesh, L. W.

L. W. Hrubesh, “Aerogel applications,” J. Non-Cryst. Solids 225, 335–342 (1998).
[Crossref]

Hu, L.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

Huang, H.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Huang, X.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Huang, Y.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

Hunt, A.

J. S. Q. Zeng, R. Greif, P. Stevens, M. Ayers, and A. Hunt, “Effective optical constants n and κ and extinction coefficient of silica aerogel,” J. Mater. Res. 11(03), 687–693 (1996).
[Crossref]

Ihara, T.

T. Gao, B. P. Jelle, T. Ihara, and A. Gustavsen, “Insulating glazing units with silica aerogel granules: The impact of particle size,” Appl. Energy 128, 27–34 (2014).
[Crossref]

Isabella, O.

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

Jäger, K.

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

Jayaweera, K.

Jelle, B. P.

T. Gao, B. P. Jelle, T. Ihara, and A. Gustavsen, “Insulating glazing units with silica aerogel granules: The impact of particle size,” Appl. Energy 128, 27–34 (2014).
[Crossref]

Jensen, K. I.

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

Jia, C.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Jiang, F.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Kapustin, E. A.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Kattawar, G. W.

Kim, H.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Kraemer, D.

K. McEnaney, L. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, “Aerogel-based solar thermal receivers,” Nano Energy 40, 180–186 (2017).
[Crossref]

Krc, J.

M. Sever, J. Krč, A. Čampa, and M. Topič, “Rigorous modelling of light scattering in solar cells based on finite element method and Huygens’ expansion,” Opt. Express 23(24), A1549–A1563 (2015).
[Crossref] [PubMed]

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

Kristiansen, F. H.

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

Kuang, Y.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Lallich, S.

S. Lallich, F. Enguehard, and D. Baillis, “Experimental Determination and Modeling of the Radiative Properties of Silica Nanoporous Matrices,” J. Heat Transfer 131(8), 082701 (2009).
[Crossref]

Lampert, C. M.

M. Rubin and C. M. Lampert, “Transparent silica aerogels for window insulation,” Sol. Energy Mater. 7(4), 393–400 (1983).
[Crossref]

Leroy, A.

Leventis, N.

C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
[Crossref]

Li, T.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

Li, Y.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Lin, C.

Liu, D.

H. T. Yu, D. Liu, Y. Y. Duan, and X. D. Wang, “Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures,” Int. J. Heat Mass Transf. 70, 478–485 (2014).
[Crossref]

Liu, H.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Liu, Q.

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

Liu, X.

Livet, F.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Loomis, J.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

Luo, W.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

Mandal, C.

C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
[Crossref]

Marconnet, A. M.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

McEnaney, K.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

K. McEnaney, L. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, “Aerogel-based solar thermal receivers,” Nano Energy 40, 180–186 (2017).
[Crossref]

Mendez, S.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Miljkovic, N.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

Moretti, E.

C. Buratti and E. Moretti, “Experimental performance evaluation of aerogel glazing systems,” Appl. Energy 97, 430–437 (2012).
[Crossref]

C. Buratti and E. Moretti, “Glazing systems with silica aerogel for energy savings in buildings,” Appl. Energy 98, 396–403 (2012).
[Crossref]

Ni, G.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

Pajonk, G. M.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225, 307–314 (1998).
[Crossref]

G. M. Pajonk, E. Elaloui, B. Chevalier, and R. Begag, “Optical transmission properties of silica aerogels prepared from polyethoxidisiloxanes,” J. Non-Cryst. Solids 210(2-3), 224–231 (1997).
[Crossref]

Peters, M.

Pinto, N.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Plass, G. N.

Povinelli, M. L.

Qian, X.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Qu, L.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Rahman, M. M.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Rao, S. R.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Ren, Z.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

Rigacci, A.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Rochas, C.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Rubin, M.

M. Rubin and C. M. Lampert, “Transparent silica aerogels for window insulation,” Sol. Energy Mater. 7(4), 393–400 (1983).
[Crossref]

Sahraei, N.

Sallée, H.

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

Santbergen, R.

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

Schultz, J. M.

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

Sever, M.

Shen, J.

Shi, Y.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Smalyukh, I. I.

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

Solntsev, S.

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

Song, J.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

Soni, R.

C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
[Crossref]

Sotiriou-Leventis, C.

C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
[Crossref]

Stamnes, K.

Stevens, P.

J. S. Q. Zeng, R. Greif, P. Stevens, M. Ayers, and A. Hunt, “Effective optical constants n and κ and extinction coefficient of silica aerogel,” J. Mater. Res. 11(03), 687–693 (1996).
[Crossref]

Strobach, E.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

E. Strobach, B. Bhatia, S. Yang, L. Zhao, and E. N. Wang, “High Temperature Annealing for Structural Optimization of Silica Aerogels in Solar Thermal Applications,” J. Non-Cryst. Solids 462, 72–77 (2017).
[Crossref]

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6(2), 025123 (2016).
[Crossref]

Svendsen, S.

K. Duer and S. Svendsen, “Monolithic silica aerogel in superinsulating glazings,” Sol. Energy 63(4), 259–267 (1998).
[Crossref]

S. Svendsen, “Solar collector with monolithic silica aerogel,” J. Non-Cryst. Solids 145, 240–243 (1992).
[Crossref]

Te Lin, C.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Topic, M.

M. Sever, J. Krč, A. Čampa, and M. Topič, “Rigorous modelling of light scattering in solar cells based on finite element method and Huygens’ expansion,” Opt. Express 23(24), A1549–A1563 (2015).
[Crossref] [PubMed]

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

Tsay, S.-C.

Venkataraj, S.

Wang, B. X.

B. X. Wang and C. Y. Zhao, “Structural correlations and dependent scattering mechanism on the radiative properties of random media,” J. Quant. Spectrosc. Radiat. Transf. 218, 72–85 (2018).
[Crossref]

Wang, E. N.

A. Leroy, B. Bhatia, L. Zhao, and E. N. Wang, “Specular side reflectors for high efficiency thermal-to-optical energy conversion,” Opt. Express 26(10), A462–A479 (2018).
[Crossref] [PubMed]

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

E. Strobach, B. Bhatia, S. Yang, L. Zhao, and E. N. Wang, “High Temperature Annealing for Structural Optimization of Silica Aerogels in Solar Thermal Applications,” J. Non-Cryst. Solids 462, 72–77 (2017).
[Crossref]

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6(2), 025123 (2016).
[Crossref]

Wang, J.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Wang, X. D.

H. T. Yu, D. Liu, Y. Y. Duan, and X. D. Wang, “Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures,” Int. J. Heat Mass Transf. 70, 478–485 (2014).
[Crossref]

Wang, Y.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

Weinstein, L.

K. McEnaney, L. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, “Aerogel-based solar thermal receivers,” Nano Energy 40, 180–186 (2017).
[Crossref]

Weinstein, L. A.

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

Wiscombe, W.

Xiong, Y.

Xu, X.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Xu, Y.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Yaghi, O. M.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Yang, R.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

Yang, S.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

E. Strobach, B. Bhatia, S. Yang, L. Zhao, and E. N. Wang, “High Temperature Annealing for Structural Optimization of Silica Aerogels in Solar Thermal Applications,” J. Non-Cryst. Solids 462, 72–77 (2017).
[Crossref]

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6(2), 025123 (2016).
[Crossref]

Yao, Y.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

Yerci, S.

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

Yu, G.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Yu, H. T.

H. T. Yu, D. Liu, Y. Y. Duan, and X. D. Wang, “Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures,” Int. J. Heat Mass Transf. 70, 478–485 (2014).
[Crossref]

Zeman, M.

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

Zeng, J. S. Q.

J. S. Q. Zeng, R. Greif, P. Stevens, M. Ayers, and A. Hunt, “Effective optical constants n and κ and extinction coefficient of silica aerogel,” J. Mater. Res. 11(03), 687–693 (1996).
[Crossref]

Zhang, T. J.

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Zhao, C. Y.

B. X. Wang and C. Y. Zhao, “Structural correlations and dependent scattering mechanism on the radiative properties of random media,” J. Quant. Spectrosc. Radiat. Transf. 218, 72–85 (2018).
[Crossref]

Zhao, F.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Zhao, L.

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

A. Leroy, B. Bhatia, L. Zhao, and E. N. Wang, “Specular side reflectors for high efficiency thermal-to-optical energy conversion,” Opt. Express 26(10), A462–A479 (2018).
[Crossref] [PubMed]

E. Strobach, B. Bhatia, S. Yang, L. Zhao, and E. N. Wang, “High Temperature Annealing for Structural Optimization of Silica Aerogels in Solar Thermal Applications,” J. Non-Cryst. Solids 462, 72–77 (2017).
[Crossref]

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6(2), 025123 (2016).
[Crossref]

Zhao, X.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Zhou, X.

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Zhou, Y.

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Zhu, M.

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

F. Jiang, H. Liu, Y. Li, Y. Kuang, X. Xu, C. Chen, H. Huang, C. Jia, X. Zhao, E. Hitz, Y. Zhou, R. Yang, L. Cui, and L. Hu, “Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation,” ACS Appl. Mater. Interfaces 10(1), 1104–1112 (2018).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Zhu, J. Song, T. Li, A. Gong, Y. Wang, J. Dai, Y. Yao, W. Luo, D. Henderson, and L. Hu, “Highly Anisotropic, Highly Transparent Wood Composites,” Adv. Mater. 28(26), 5181–5187 (2016).
[Crossref] [PubMed]

AIP Adv. (1)

L. Zhao, S. Yang, B. Bhatia, E. Strobach, and E. N. Wang, “Modeling silica aerogel optical performance by determining its radiative properties,” AIP Adv. 6(2), 025123 (2016).
[Crossref]

Appl. Energy (4)

U. Berardi, “The development of a monolithic aerogel glazed window for an energy retrofitting project,” Appl. Energy 154, 603–615 (2015).
[Crossref]

C. Buratti and E. Moretti, “Experimental performance evaluation of aerogel glazing systems,” Appl. Energy 97, 430–437 (2012).
[Crossref]

C. Buratti and E. Moretti, “Glazing systems with silica aerogel for energy savings in buildings,” Appl. Energy 98, 396–403 (2012).
[Crossref]

T. Gao, B. P. Jelle, T. Ihara, and A. Gustavsen, “Insulating glazing units with silica aerogel granules: The impact of particle size,” Appl. Energy 128, 27–34 (2014).
[Crossref]

Appl. Opt. (2)

Energy Procedia (1)

M. Zeman, O. Isabella, K. Jäger, R. Santbergen, S. Solntsev, M. Topic, and J. Krc, “Advanced light management approaches for thin-film silicon solar cells,” Energy Procedia 15, 189–199 (2012).
[Crossref]

Int. J. Heat Mass Transf. (1)

H. T. Yu, D. Liu, Y. Y. Duan, and X. D. Wang, “Theoretical model of radiative transfer in opacified aerogel based on realistic microstructures,” Int. J. Heat Mass Transf. 70, 478–485 (2014).
[Crossref]

J. Heat Transfer (1)

S. Lallich, F. Enguehard, and D. Baillis, “Experimental Determination and Modeling of the Radiative Properties of Silica Nanoporous Matrices,” J. Heat Transfer 131(8), 082701 (2009).
[Crossref]

J. Mater. Res. (1)

J. S. Q. Zeng, R. Greif, P. Stevens, M. Ayers, and A. Hunt, “Effective optical constants n and κ and extinction coefficient of silica aerogel,” J. Mater. Res. 11(03), 687–693 (1996).
[Crossref]

J. Non-Cryst. Solids (6)

G. M. Pajonk, E. Elaloui, B. Chevalier, and R. Begag, “Optical transmission properties of silica aerogels prepared from polyethoxidisiloxanes,” J. Non-Cryst. Solids 210(2-3), 224–231 (1997).
[Crossref]

A. Rigacci, F. Ehrburger-Dolle, E. Geissler, B. Chevalier, H. Sallée, P. Achard, O. Barbieri, S. Berthon, F. Bley, F. Livet, G. M. Pajonk, N. Pinto, and C. Rochas, “Investigation of the multi-scale structure of silica aerogels by SAXS,” J. Non-Cryst. Solids 285(1-3), 187–193 (2001).
[Crossref]

L. W. Hrubesh, “Aerogel applications,” J. Non-Cryst. Solids 225, 335–342 (1998).
[Crossref]

G. M. Pajonk, “Transparent silica aerogels,” J. Non-Cryst. Solids 225, 307–314 (1998).
[Crossref]

S. Svendsen, “Solar collector with monolithic silica aerogel,” J. Non-Cryst. Solids 145, 240–243 (1992).
[Crossref]

E. Strobach, B. Bhatia, S. Yang, L. Zhao, and E. N. Wang, “High Temperature Annealing for Structural Optimization of Silica Aerogels in Solar Thermal Applications,” J. Non-Cryst. Solids 462, 72–77 (2017).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

B. X. Wang and C. Y. Zhao, “Structural correlations and dependent scattering mechanism on the radiative properties of random media,” J. Quant. Spectrosc. Radiat. Transf. 218, 72–85 (2018).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

C. Mandal, S. Donthula, R. Soni, M. Bertino, C. Sotiriou-Leventis, and N. Leventis, “Light scattering and haze in TMOS-co-APTES silica aerogels,” J. Sol-Gel Sci. Technol. 2018, 1–13 (2018).
[Crossref]

Joule (1)

L. A. Weinstein, K. McEnaney, E. Strobach, S. Yang, B. Bhatia, L. Zhao, Y. Huang, J. Loomis, F. Cao, S. V. Boriskina, Z. Ren, E. N. Wang, and G. Chen, “A Hybrid Electric and Thermal Solar Receiver,” Joule 2(5), 962–975 (2018).
[Crossref]

Nano Energy (3)

K. McEnaney, L. Weinstein, D. Kraemer, H. Ghasemi, and G. Chen, “Aerogel-based solar thermal receivers,” Nano Energy 40, 180–186 (2017).
[Crossref]

Q. Liu, A. W. Frazier, X. Zhao, J. A. De La Cruz, A. J. Hess, R. Yang, and I. I. Smalyukh, “Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence,” Nano Energy 48, 266–274 (2018).
[Crossref]

G. Ni, N. Miljkovic, H. Ghasemi, X. Huang, S. V. Boriskina, C. Te Lin, J. Wang, Y. Xu, M. M. Rahman, T. J. Zhang, and G. Chen, “Volumetric solar heating of nanofluids for direct vapor generation,” Nano Energy 17, 290–301 (2015).
[Crossref]

Nat. Commun. (2)

H. Ghasemi, G. Ni, A. M. Marconnet, J. Loomis, S. Yerci, N. Miljkovic, and G. Chen, “Solar steam generation by heat localization,” Nat. Commun. 5(1), 4449 (2014).
[Crossref] [PubMed]

H. Kim, S. R. Rao, E. A. Kapustin, L. Zhao, S. Yang, O. M. Yaghi, and E. N. Wang, “Adsorption-based atmospheric water harvesting device for arid climates,” Nat. Commun. 9(1), 1191 (2018).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Zhao, X. Zhou, Y. Shi, X. Qian, M. Alexander, X. Zhao, S. Mendez, R. Yang, L. Qu, and G. Yu, “Highly efficient solar vapour generation via hierarchically nanostructured gels,” Nat. Nanotechnol. 13(6), 489–495 (2018).
[Crossref] [PubMed]

Opt. Express (6)

Sol. Energy (1)

K. Duer and S. Svendsen, “Monolithic silica aerogel in superinsulating glazings,” Sol. Energy 63(4), 259–267 (1998).
[Crossref]

Sol. Energy Mater. (1)

M. Rubin and C. M. Lampert, “Transparent silica aerogels for window insulation,” Sol. Energy Mater. 7(4), 393–400 (1983).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

J. M. Schultz, K. I. Jensen, and F. H. Kristiansen, “Super insulating aerogel glazing,” Sol. Energy Mater. Sol. Cells 89(2-3), 275–285 (2005).
[Crossref]

Other (6)

S. Chandrasekhar, Radiative Transfer (Dover Publications, 1960).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Oxford University, 1997).

L. Tsang, J. Kong, and K. Ding, Scattering of Electromagnetic Waves (Wiley, 2000).

M. A. Aegerter, N. Leventis, and M. M. Koebel, Aerogels Handbook (Springer, 2011).

“ASTM D1003-13 Standard test method for haze and luminous transmittance of transparent plastics,” ASTM International, West Conshohocken, PA (2013).

ARPA-E SHIELD program, “Single-Pane Highly Insulating Efficient Lucid Designs,” (U.S. DOE, 2015). https://arpa-e.energy.gov/?q=arpa-e-programs/shield .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diffuse transmission caused by silica nanoparticle scattering in a transparent aerogel layer. In the typical plane-parallel geometry, the light intensity within the aerogel layer depends on the distance into the layer z and the polar angle θ as shown on the right.
Fig. 2
Fig. 2 a. Diffuse transmittance, b. Haze as a function of optical depth for isotropic, Rayleigh, and Henyey-Greenstein (g = 0.5) phase functions. The difference in diffuse transmittance and haze between isotropic and Rayleigh phase function is negligible. Results of both ω = 1 (pure scattering medium) and ω = 0.5 (partially absorbing medium) are shown.
Fig. 3
Fig. 3 a. Schematic of the diffuse and total transmittance measurement using a spectrophotometer with an integrating sphere. b. Optical image of a piece of glass and aerogel sample C (2 cm × 2 cm) on top of printed MIT logo. c. Measured and modeled total transmittance (top), diffuse transmittance (middle), and haze (bottom) of samples A, B, and C. The diffuse transmittance of samples A and B monotonically increases towards shorter wavelength, whereas the diffuse transmittance of sample C peaks at around 252 nm. This behavior confirms the model prediction as shown by the dashed lines.
Fig. 4
Fig. 4 a. Haze, b. Total transmittance of a 5 mm thick aerogel layer as a function of its mean particle radius and density. c. Haze and total transmittance as a function of aerogel thickness (aerogel density: 200 kg/m3, mean particle radius: 3, 6, and 9 nm).
Fig. 5
Fig. 5 Haze and total transmittance of transparent aerogels reported in previous literature (triangles) and demonstrated in this work (stars). Solid lines are the model predictions for different scattering asymmetric factor g and single scattering albedo ω. Performance of a single-pane glass is indicated by the green shaded area.
Fig. 6
Fig. 6 RTE model validation on a high-haze aerogel sample (thickness = 14 mm, density = 150 kg/m3, optical mean particle radius = 10.1 nm).

Tables (1)

Tables Icon

Table 1 Transparent aerogel samples used in this study

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Haze= T diffuse T total = T diffuse T diffuse + T direct
μ d I d ( τ,μ ) dτ = I d ( τ,μ )+ ω 2 1 1 P( μ,μ' ) I d ( τ,μ' )dμ' + ω 4π P( μ, μ 0 ) F 0 e τ
P( μ,μ' )= 1 2π 0 2π dϕ 1 2π 0 2π dϕ' P( μ,ϕ;μ',ϕ' )
P( γ )=1 ( Isotropic )
P( γ )= 3 4 ( 1+ cos 2 ( γ ) ) ( Rayleigh )
P( γ )= 1 g 2 ( 1+ g 2 2gcos( γ ) ) 3 2 (HenyeyGreenstein)
I d ( 0,μ )=0 for 0μ1 I d ( τ 0 ,μ )=0 for -1μ0
T diffuse = 2π 0 1 I d ( τ 0 ,μ )μdμ F 0
σ abs =Nπ r 2 Q abs ( r,λ,n( λ ) ) σ sca =Nπ r 2 Q sca ( r,λ,n( λ ) )

Metrics