Abstract

A ppb-level photoacoustic multicomponent gas sensor system for sulfur hexafluoride (SF6) decomposition detection was developed by the use of two near-infrared (NIR) diode lasers and an ultraviolet (UV) solid-state laser. A telecommunication fiber amplifier module was used to boost up the excitation optical power from the two NIR lasers. A dual-channel high-Q photoacoustic cell (PAC) was designed for the simultaneous detection of CO, H2S, and SO2 in SF6 buffer gas by means of a time division multiplexing (TDM) method. Feasibility and performance of the multicomponent sensor was evaluated, resulting in minimum detection limits of 435 ppbv, 89 ppbv, and 115 ppbv for CO, H2S, and SO2 detection at atmospheric pressure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm

Xukun Yin, Lei Dong, Hongpeng Wu, Huadan Zheng, Weiguang Ma, Lei Zhang, Wangbao Yin, Liantuan Xiao, Suotang Jia, and Frank K. Tittel
Opt. Express 25(26) 32581-32590 (2017)

Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy

Ruyue Cui, Lei Dong, Hongpeng Wu, Shangzhi Li, Lei Zhang, Weiguang Ma, Wangbao Yin, Liantuan Xiao, Suotang Jia, and Frank K. Tittel
Opt. Express 26(19) 24318-24328 (2018)

QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL

Yufei Ma, Rafał Lewicki, Manijeh Razeghi, and Frank K. Tittel
Opt. Express 21(1) 1008-1019 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Y. Chu, “SF6 decomposition in gas-insulated equipment,” IEEE Trans. Electr. Insul. EI-21(5), 693–725 (1986).
  2. X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
    [Crossref]
  3. V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37(21), 4461–4463 (2012).
    [Crossref] [PubMed]
  4. R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318–24328 (2018).
    [Crossref] [PubMed]
  5. M. Dong, C. Zhang, M. Ren, R. Albarracín, and R. Ye, “Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products,” Sensors (Basel) 17(11), 2627 (2017).
    [Crossref]
  6. Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
    [Crossref] [PubMed]
  7. J. Olthoff, R. Van Brunt, J. Herron, and I. Sauers, “Detection of trace disulfur decafluoride in sulfur hexafluoride by gas chromatography/mass spectrometry,” Anal. Chem. 63(7), 726–732 (1991).
    [Crossref]
  8. X. Zhang, H. Cui, Y. Gui, and J. Tang, “Mechanism and application of carbon nanotube sensors in SF6 decomposed production detection: a review,” Nanoscale Res. Lett. 12(1), 177 (2017).
    [Crossref] [PubMed]
  9. J. Suehiro, G. Zhou, and M. Hara, “Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor,” Sens. Actuators B Chem. 105(2), 164–169 (2005).
    [Crossref]
  10. A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu, “Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges,” J. Appl. Phys. 65(5), 1852–1857 (1989).
    [Crossref]
  11. T. Berer, M. Brandstetter, A. Hochreiner, G. Langer, W. Märzinger, P. Burgholzer, and B. Lendl, “Remote mid-infrared photoacoustic spectroscopy with a quantum cascade laser,” Opt. Lett. 40(15), 3476–3479 (2015).
    [Crossref] [PubMed]
  12. P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
    [Crossref] [PubMed]
  13. X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
    [Crossref]
  14. H. Yi, K. Liu, W. Chen, T. Tan, L. Wang, and X. Gao, “Application of a broadband blue laser diode to trace NO2 detection using off-beam quartz-enhanced photoacoustic spectroscopy,” Opt. Lett. 36(4), 481–483 (2011).
    [Crossref] [PubMed]
  15. Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren, “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper,” Sens. Actuators B Chem. 248, 1023–1028 (2017).
    [Crossref]
  16. H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
    [Crossref] [PubMed]
  17. A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
    [Crossref]
  18. T. Dinh, I. Choi, Y. Son, and J. Kim, “A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction,” Sens. Actuators B Chem. 231, 529–538 (2016).
    [Crossref]
  19. H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
    [Crossref]
  20. M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119(1), 111–118 (2015).
    [Crossref]
  21. Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
    [Crossref] [PubMed]
  22. M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
    [Crossref]
  23. X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
    [Crossref]
  24. H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, “Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment,” Fresenius J. Anal. Chem. 358(7–8), 793–799 (1997).
    [Crossref]
  25. X. Zhang, H. Liu, J. Ren, J. Li, and X. Li, “Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(Pt B), 884–889 (2015).
    [Crossref] [PubMed]
  26. J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
    [Crossref]
  27. X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
    [Crossref]
  28. X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
    [Crossref]
  29. Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
    [Crossref]
  30. X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
    [Crossref] [PubMed]
  31. N. Niu, S. Pu, Q. Chen, Y. Wang, Y. Zhao, W. Wu, and Q. Zheng, “302 nm continuous wave generation by intracavity frequency doubling of a diode-pumped Pr:YLF laser,” Appl. Opt. 57(33), 9798–9802 (2018).
    [Crossref] [PubMed]
  32. A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
    [Crossref]
  33. A. Miklós, “Acoustic aspects of photoacoustic signal generation and detection in gases,” Int. J. Thermophys. 36(9), 2285–2317 (2015).
    [Crossref]

2019 (2)

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

2018 (3)

2017 (8)

M. Dong, C. Zhang, M. Ren, R. Albarracín, and R. Ye, “Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products,” Sensors (Basel) 17(11), 2627 (2017).
[Crossref]

X. Zhang, H. Cui, Y. Gui, and J. Tang, “Mechanism and application of carbon nanotube sensors in SF6 decomposed production detection: a review,” Nanoscale Res. Lett. 12(1), 177 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren, “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper,” Sens. Actuators B Chem. 248, 1023–1028 (2017).
[Crossref]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

2016 (3)

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

T. Dinh, I. Choi, Y. Son, and J. Kim, “A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction,” Sens. Actuators B Chem. 231, 529–538 (2016).
[Crossref]

2015 (5)

T. Berer, M. Brandstetter, A. Hochreiner, G. Langer, W. Märzinger, P. Burgholzer, and B. Lendl, “Remote mid-infrared photoacoustic spectroscopy with a quantum cascade laser,” Opt. Lett. 40(15), 3476–3479 (2015).
[Crossref] [PubMed]

A. Miklós, “Acoustic aspects of photoacoustic signal generation and detection in gases,” Int. J. Thermophys. 36(9), 2285–2317 (2015).
[Crossref]

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119(1), 111–118 (2015).
[Crossref]

X. Zhang, H. Liu, J. Ren, J. Li, and X. Li, “Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(Pt B), 884–889 (2015).
[Crossref] [PubMed]

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

2014 (1)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (1)

2008 (2)

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
[Crossref]

2005 (1)

J. Suehiro, G. Zhou, and M. Hara, “Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor,” Sens. Actuators B Chem. 105(2), 164–169 (2005).
[Crossref]

2001 (1)

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

1997 (1)

H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, “Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment,” Fresenius J. Anal. Chem. 358(7–8), 793–799 (1997).
[Crossref]

1991 (1)

J. Olthoff, R. Van Brunt, J. Herron, and I. Sauers, “Detection of trace disulfur decafluoride in sulfur hexafluoride by gas chromatography/mass spectrometry,” Anal. Chem. 63(7), 726–732 (1991).
[Crossref]

1989 (1)

A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu, “Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges,” J. Appl. Phys. 65(5), 1852–1857 (1989).
[Crossref]

1986 (1)

F. Y. Chu, “SF6 decomposition in gas-insulated equipment,” IEEE Trans. Electr. Insul. EI-21(5), 693–725 (1986).

Albarracín, R.

M. Dong, C. Zhang, M. Ren, R. Albarracín, and R. Ye, “Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products,” Sensors (Basel) 17(11), 2627 (2017).
[Crossref]

Axner, O.

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Bartlome, R.

M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
[Crossref]

Berer, T.

Bernacki, B. E.

Bewley, W. W.

Borri, S.

Bozóki, Z.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Brandstetter, M.

Burgholzer, P.

Canedy, C. L.

Casanovas, J.

A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu, “Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges,” J. Appl. Phys. 65(5), 1852–1857 (1989).
[Crossref]

Chen, C.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
[Crossref]

Chen, Q.

Chen, W.

Choi, I.

T. Dinh, I. Choi, Y. Son, and J. Kim, “A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction,” Sens. Actuators B Chem. 231, 529–538 (2016).
[Crossref]

Chu, F. Y.

F. Y. Chu, “SF6 decomposition in gas-insulated equipment,” IEEE Trans. Electr. Insul. EI-21(5), 693–725 (1986).

Cui, F.

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Cui, H.

X. Zhang, H. Cui, Y. Gui, and J. Tang, “Mechanism and application of carbon nanotube sensors in SF6 decomposed production detection: a review,” Nanoscale Res. Lett. 12(1), 177 (2017).
[Crossref] [PubMed]

Cui, R.

Cui, Z.

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

Derdouri, A.

A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu, “Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges,” J. Appl. Phys. 65(5), 1852–1857 (1989).
[Crossref]

Dinh, T.

T. Dinh, I. Choi, Y. Son, and J. Kim, “A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction,” Sens. Actuators B Chem. 231, 529–538 (2016).
[Crossref]

Dong, L.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318–24328 (2018).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Dong, M.

M. Dong, C. Zhang, M. Ren, R. Albarracín, and R. Ye, “Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products,” Sensors (Basel) 17(11), 2627 (2017).
[Crossref]

Dong, X.

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

Fang, Y.

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Fischer, P.

H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, “Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment,” Fresenius J. Anal. Chem. 358(7–8), 793–799 (1997).
[Crossref]

Foltynowicz, A.

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Gao, X.

Grob, R.

A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu, “Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges,” J. Appl. Phys. 65(5), 1852–1857 (1989).
[Crossref]

Gui, Y.

X. Zhang, H. Cui, Y. Gui, and J. Tang, “Mechanism and application of carbon nanotube sensors in SF6 decomposed production detection: a review,” Nanoscale Res. Lett. 12(1), 177 (2017).
[Crossref] [PubMed]

Hara, M.

J. Suehiro, G. Zhou, and M. Hara, “Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor,” Sens. Actuators B Chem. 105(2), 164–169 (2005).
[Crossref]

He, Y.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
[Crossref]

Heise, H. M.

H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, “Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment,” Fresenius J. Anal. Chem. 358(7–8), 793–799 (1997).
[Crossref]

Hergli, R.

A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu, “Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges,” J. Appl. Phys. 65(5), 1852–1857 (1989).
[Crossref]

Herron, J.

J. Olthoff, R. Van Brunt, J. Herron, and I. Sauers, “Detection of trace disulfur decafluoride in sulfur hexafluoride by gas chromatography/mass spectrometry,” Anal. Chem. 63(7), 726–732 (1991).
[Crossref]

Hess, P.

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Hochreiner, A.

Janissek, P. R.

H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, “Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment,” Fresenius J. Anal. Chem. 358(7–8), 793–799 (1997).
[Crossref]

Jia, S.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318–24328 (2018).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Jin, W.

Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren, “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper,” Sens. Actuators B Chem. 248, 1023–1028 (2017).
[Crossref]

Kim, C. S.

Kim, J.

T. Dinh, I. Choi, Y. Son, and J. Kim, “A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction,” Sens. Actuators B Chem. 231, 529–538 (2016).
[Crossref]

Kim, M.

Klockow, D.

H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, “Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment,” Fresenius J. Anal. Chem. 358(7–8), 793–799 (1997).
[Crossref]

Köhring, M.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119(1), 111–118 (2015).
[Crossref]

Kriesel, J.

Kurte, R.

H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, “Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment,” Fresenius J. Anal. Chem. 358(7–8), 793–799 (1997).
[Crossref]

Langer, G.

Lendl, B.

Lewicki, R.

Li, D.

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Li, J.

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

X. Zhang, H. Liu, J. Ren, J. Li, and X. Li, “Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(Pt B), 884–889 (2015).
[Crossref] [PubMed]

Li, S.

Li, X.

X. Zhang, H. Liu, J. Ren, J. Li, and X. Li, “Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(Pt B), 884–889 (2015).
[Crossref] [PubMed]

Li, Y.

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Li, Z.

Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren, “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper,” Sens. Actuators B Chem. 248, 1023–1028 (2017).
[Crossref]

Liu, H.

X. Zhang, H. Liu, J. Ren, J. Li, and X. Li, “Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(Pt B), 884–889 (2015).
[Crossref] [PubMed]

Liu, J.

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Liu, K.

Liu, X.

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Liu, Y.

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Lou, M.

Luo, J.

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Ma, W.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318–24328 (2018).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Ma, W. G.

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Ma, Y.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
[Crossref]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL,” Opt. Express 21(1), 1008–1019 (2013).
[Crossref] [PubMed]

Marinov, D.

M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
[Crossref]

Märzinger, W.

Mathieu, J.

A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu, “Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges,” J. Appl. Phys. 65(5), 1852–1857 (1989).
[Crossref]

Merritt, C. D.

Meyer, J. R.

Miklós, A.

A. Miklós, “Acoustic aspects of photoacoustic signal generation and detection in gases,” Int. J. Thermophys. 36(9), 2285–2317 (2015).
[Crossref]

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Mordmüller, M.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119(1), 111–118 (2015).
[Crossref]

Niu, N.

Olthoff, J.

J. Olthoff, R. Van Brunt, J. Herron, and I. Sauers, “Detection of trace disulfur decafluoride in sulfur hexafluoride by gas chromatography/mass spectrometry,” Anal. Chem. 63(7), 726–732 (1991).
[Crossref]

Patimisco, P.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37(21), 4461–4463 (2012).
[Crossref] [PubMed]

Pei, K.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Pu, S.

Qi, Y.

Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren, “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper,” Sens. Actuators B Chem. 248, 1023–1028 (2017).
[Crossref]

Razeghi, M.

Ren, J.

X. Zhang, H. Liu, J. Ren, J. Li, and X. Li, “Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(Pt B), 884–889 (2015).
[Crossref] [PubMed]

Ren, M.

M. Dong, C. Zhang, M. Ren, R. Albarracín, and R. Ye, “Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products,” Sensors (Basel) 17(11), 2627 (2017).
[Crossref]

Ren, W.

Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren, “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper,” Sens. Actuators B Chem. 248, 1023–1028 (2017).
[Crossref]

Rey, J.

M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
[Crossref]

Sampaolo, A.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Sauers, I.

J. Olthoff, R. Van Brunt, J. Herron, and I. Sauers, “Detection of trace disulfur decafluoride in sulfur hexafluoride by gas chromatography/mass spectrometry,” Anal. Chem. 63(7), 726–732 (1991).
[Crossref]

Scamarcio, G.

Schade, W.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119(1), 111–118 (2015).
[Crossref]

Schmidt, F. M.

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

Sigrist, M.

M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
[Crossref]

Son, Y.

T. Dinh, I. Choi, Y. Son, and J. Kim, “A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction,” Sens. Actuators B Chem. 231, 529–538 (2016).
[Crossref]

Spagnolo, V.

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B. E. Bernacki, and J. Kriesel, “Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation,” Opt. Lett. 37(21), 4461–4463 (2012).
[Crossref] [PubMed]

Suehiro, J.

J. Suehiro, G. Zhou, and M. Hara, “Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor,” Sens. Actuators B Chem. 105(2), 164–169 (2005).
[Crossref]

Sun, R.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
[Crossref]

Tan, T.

Tang, J.

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

X. Zhang, H. Cui, Y. Gui, and J. Tang, “Mechanism and application of carbon nanotube sensors in SF6 decomposed production detection: a review,” Nanoscale Res. Lett. 12(1), 177 (2017).
[Crossref] [PubMed]

Tittel, F.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
[Crossref]

Tittel, F. K.

Van Brunt, R.

J. Olthoff, R. Van Brunt, J. Herron, and I. Sauers, “Detection of trace disulfur decafluoride in sulfur hexafluoride by gas chromatography/mass spectrometry,” Anal. Chem. 63(7), 726–732 (1991).
[Crossref]

Vogler, D.

M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
[Crossref]

Vurgaftman, I.

Wächter, H.

M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
[Crossref]

Wang, A.

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Wang, L.

Wang, Y.

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

N. Niu, S. Pu, Q. Chen, Y. Wang, Y. Zhao, W. Wu, and Q. Zheng, “302 nm continuous wave generation by intracavity frequency doubling of a diode-pumped Pr:YLF laser,” Appl. Opt. 57(33), 9798–9802 (2018).
[Crossref] [PubMed]

Wang, Z.

Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren, “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper,” Sens. Actuators B Chem. 248, 1023–1028 (2017).
[Crossref]

Warren, M. V.

Willer, U.

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119(1), 111–118 (2015).
[Crossref]

Wu, H.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318–24328 (2018).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Wu, J.

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Wu, W.

Xia, H.

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

Xiao, L.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318–24328 (2018).
[Crossref] [PubMed]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Yang, J.

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

Yang, Y.

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Ye, R.

M. Dong, C. Zhang, M. Ren, R. Albarracín, and R. Ye, “Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products,” Sensors (Basel) 17(11), 2627 (2017).
[Crossref]

Ye, W.

Yi, H.

Yin, W.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318–24328 (2018).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Yin, X.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Yu, X.

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
[Crossref]

Zhang, C.

M. Dong, C. Zhang, M. Ren, R. Albarracín, and R. Ye, “Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products,” Sensors (Basel) 17(11), 2627 (2017).
[Crossref]

Zhang, G.

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

Zhang, L.

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

R. Cui, L. Dong, H. Wu, S. Li, L. Zhang, W. Ma, W. Yin, L. Xiao, S. Jia, and F. K. Tittel, “Highly sensitive and selective CO sensor using a 2.33 μm diode laser and wavelength modulation spectroscopy,” Opt. Express 26(19), 24318–24328 (2018).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Zhang, X.

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

X. Zhang, H. Cui, Y. Gui, and J. Tang, “Mechanism and application of carbon nanotube sensors in SF6 decomposed production detection: a review,” Nanoscale Res. Lett. 12(1), 177 (2017).
[Crossref] [PubMed]

X. Zhang, H. Liu, J. Ren, J. Li, and X. Li, “Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(Pt B), 884–889 (2015).
[Crossref] [PubMed]

Zhang, Y.

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

Zhang, Z.

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

Zhao, Y.

N. Niu, S. Pu, Q. Chen, Y. Wang, Y. Zhao, W. Wu, and Q. Zheng, “302 nm continuous wave generation by intracavity frequency doubling of a diode-pumped Pr:YLF laser,” Appl. Opt. 57(33), 9798–9802 (2018).
[Crossref] [PubMed]

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Zheng, H.

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Highly sensitive SO2 photoacoustic sensor for SF6 decomposition detection using a compact mW-level diode-pumped solid-state laser emitting at 303 nm,” Opt. Express 25(26), 32581–32590 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

H. Zheng, M. Lou, L. Dong, H. Wu, W. Ye, X. Yin, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt, C. L. Canedy, M. V. Warren, I. Vurgaftman, J. R. Meyer, and F. K. Tittel, “Compact photoacoustic module for methane detection incorporating interband cascade light emitting device,” Opt. Express 25(14), 16761–16770 (2017).
[Crossref] [PubMed]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Zheng, Q.

Zhou, G.

J. Suehiro, G. Zhou, and M. Hara, “Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor,” Sens. Actuators B Chem. 105(2), 164–169 (2005).
[Crossref]

Zhou, H.

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

Anal. Chem. (1)

J. Olthoff, R. Van Brunt, J. Herron, and I. Sauers, “Detection of trace disulfur decafluoride in sulfur hexafluoride by gas chromatography/mass spectrometry,” Anal. Chem. 63(7), 726–732 (1991).
[Crossref]

Anal. Methods (1)

J. Luo, Y. Fang, Y. Zhao, A. Wang, D. Li, Y. Li, Y. Liu, F. Cui, J. Wu, and J. Liu, “Research on the detection of SF6 decomposition products based on non-resonant photoacoustic spectroscopy,” Anal. Methods 7(3), 1200–1207 (2015).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (3)

M. Sigrist, R. Bartlome, D. Marinov, J. Rey, D. Vogler, and H. Wächter, “Trace gas monitoring with infrared laser-based detection schemes,” Appl. Phys. B 90(2), 289–300 (2008).
[Crossref]

A. Foltynowicz, F. M. Schmidt, W. G. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential,” Appl. Phys. B 92(3), 313–326 (2008).
[Crossref]

M. Mordmüller, M. Köhring, W. Schade, and U. Willer, “An electrically and optically cooperated QEPAS device for highly integrated gas sensors,” Appl. Phys. B 119(1), 111–118 (2015).
[Crossref]

Appl. Phys. Lett. (2)

X. Yin, L. Dong, H. Wu, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell,” Appl. Phys. Lett. 111(3), 031109 (2017).
[Crossref]

H. Wu, X. Yin, L. Dong, K. Pei, A. Sampaolo, P. Patimisco, H. Zheng, W. Ma, L. Zhang, W. Yin, L. Xiao, V. Spagnolo, S. Jia, and F. Tittel, “Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork,” Appl. Phys. Lett. 110(12), 121104 (2017).
[Crossref]

Fresenius J. Anal. Chem. (1)

H. M. Heise, R. Kurte, P. Fischer, D. Klockow, and P. R. Janissek, “Gas analysis by infrared spectroscopy as a tool for electrical fault diagnostics in SF6 insulated equipment,” Fresenius J. Anal. Chem. 358(7–8), 793–799 (1997).
[Crossref]

IEEE Trans. Electr. Insul. (1)

F. Y. Chu, “SF6 decomposition in gas-insulated equipment,” IEEE Trans. Electr. Insul. EI-21(5), 693–725 (1986).

Int. J. Thermophys. (1)

A. Miklós, “Acoustic aspects of photoacoustic signal generation and detection in gases,” Int. J. Thermophys. 36(9), 2285–2317 (2015).
[Crossref]

J. Appl. Phys. (1)

A. Derdouri, J. Casanovas, R. Hergli, R. Grob, and J. Mathieu, “Study of the decomposition of wet SF6, subjected to 50-Hz ac corona discharges,” J. Appl. Phys. 65(5), 1852–1857 (1989).
[Crossref]

Nanoscale Res. Lett. (1)

X. Zhang, H. Cui, Y. Gui, and J. Tang, “Mechanism and application of carbon nanotube sensors in SF6 decomposed production detection: a review,” Nanoscale Res. Lett. 12(1), 177 (2017).
[Crossref] [PubMed]

Opt. Eng. (1)

X. Zhang, Y. Zhang, J. Tang, Z. Cui, Y. Li, H. Zhou, G. Zhang, and J. Yang, “Optical technology for detecting the decomposition products of SF6: a review,” Opt. Eng. 57(11), 1 (2018).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Rev. Sci. Instrum. (1)

A. Miklós, P. Hess, and Z. Bozóki, “Application of acoustic resonators in photoacoustic trace gas analysis and metrology,” Rev. Sci. Instrum. 72(4), 1937–1955 (2001).
[Crossref]

Sens. Actuators B Chem. (6)

Y. Ma, Y. He, X. Yu, C. Chen, R. Sun, and F. Tittel, “HCl ppb-level detection based on QEPAS sensor using a low resonance frequency quartz tuning fork,” Sens. Actuators B Chem. 233(5), 388–393 (2016).
[Crossref]

X. Yin, H. Wu, L. Dong, W. Ma, L. Zhang, W. Yin, L. Xiao, S. Jia, and F. Tittel, “Ppb-level photoacoustic sensor system for saturation-free CO detection of SF6 decomposition by use of a 10 W fiber-amplified near-infrared diode laser,” Sens. Actuators B Chem. 282, 567–573 (2019).
[Crossref]

J. Suehiro, G. Zhou, and M. Hara, “Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor,” Sens. Actuators B Chem. 105(2), 164–169 (2005).
[Crossref]

Z. Li, Z. Wang, Y. Qi, W. Jin, and W. Ren, “Improved evanescent-wave quartz-enhanced photoacoustic CO sensor using an optical fiber taper,” Sens. Actuators B Chem. 248, 1023–1028 (2017).
[Crossref]

X. Yin, L. Dong, H. Wu, H. Zheng, W. Ma, L. Zhang, W. Yin, S. Jia, and F. Tittel, “Sub-ppb nitrogen dioxide detection with a large linear dynamic range by use of a differential photoacoustic cell and a 3.5 W blue multimode diode laser,” Sens. Actuators B Chem. 247, 329–335 (2017).
[Crossref]

T. Dinh, I. Choi, Y. Son, and J. Kim, “A review on non-dispersive infrared gas sensors: improvement of sensor detection limit and interference correction,” Sens. Actuators B Chem. 231, 529–538 (2016).
[Crossref]

Sensors (Basel) (3)

P. Patimisco, G. Scamarcio, F. K. Tittel, and V. Spagnolo, “Quartz-enhanced photoacoustic spectroscopy: a review,” Sensors (Basel) 14(4), 6165–6206 (2014).
[Crossref] [PubMed]

M. Dong, C. Zhang, M. Ren, R. Albarracín, and R. Ye, “Electrochemical and infrared absorption spectroscopy detection of SF6 decomposition products,” Sensors (Basel) 17(11), 2627 (2017).
[Crossref]

X. Yin, L. Dong, H. Zheng, X. Liu, H. Wu, Y. Yang, W. Ma, L. Zhang, W. Yin, L. Xiao, and S. Jia, “Impact of humidity on quartz-enhanced photoacoustic spectroscopy based CO detection using a near-IR telecommunication diode laser,” Sensors (Basel) 16(2), 162 (2016).
[Crossref] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (2)

X. Zhang, H. Liu, J. Ren, J. Li, and X. Li, “Fourier transform infrared spectroscopy quantitative analysis of SF6 partial discharge decomposition components,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 136(Pt B), 884–889 (2015).
[Crossref] [PubMed]

Y. Zhang, Y. Wang, Y. Liu, X. Dong, H. Xia, Z. Zhang, and J. Li, “Optical H2S and SO2 sensor based on chemical conversion and partition differential optical absorption spectroscopy,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 210, 120–125 (2019).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Upper part: measured pure SF6 absorbance spectra (blue line) observed by a FTIR spectrometer with a 9.5-m multipass gas cell. Simulated SO2 (red line) and CO (green line) absorbance spectra according to the HITRAN database. Bottom part: simulated H2S (magenta line) absorbance spectrum.
Fig. 2
Fig. 2 Absorption line positions and line strengths of H2O (green), H2S (magenta), CO (blue) and CO2 (wathet). Star marks indicate two selected interference-free target absorption lines.
Fig. 3
Fig. 3 SO2 (blue line) and H2S (red line) absorption cross section between 170 nm-325 nm.
Fig. 4
Fig. 4 Schematic of the dual-channel photoacoustic detection module.
Fig. 5
Fig. 5 Schematic of the online multicomponent gas monitoring system for SF6 decompositions based on two NIR DFB lasers, an UV diode-pumped solid-state laser (DPSSL), a 1.5 W fiber amplifier, and a dual-channel photoacoustic cell (PAC). Inset: Resonance frequency response curves of the PAC in SF6 (blue) and N2 (red) buffer gases.
Fig. 6
Fig. 6 (a) The actual amplified optical power levels as a function of the set power for two laser wavelengths of 1568.1 nm (green) and 1582.1 nm (magenta). (b) CO (green) and H2S (magenta) photoacoustic signals as a function of the actual powers measured after the photoacoustic cell.
Fig. 7
Fig. 7 (a)-(c). Photoacoustic signal amplitudes as a function of the different CO/SF6 (green), H2S/SF6 (magenta) and SO2/SF6 (red) gas mixtures for the sensor performance evaluation.
Fig. 8
Fig. 8 (a)-(c). Response linearity of the photoacoustic Fspectroscopy-based CO (green), H2S (magenta) and SO2 (red) sensor system for the multicomponent SF6 decomposition analysis.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Q= R d vis +( γ1 ) d th ( 1+ 2R L )

Metrics